LTCC:
 Stochastic Processes

Maria De Iorio

Department of Statistical Science
University College London
m.deiorio@ucl.ac.uk

Course structure

- $5 \times 2 \mathrm{hr}$ lectures
- every Monday: Oct. 9 to Nov. 6 (inclusive) usually at 11:15-13:00hrs (except next week at 12!!!!!!)
- assignment:
- handed out (emailed) in 'Spring-time'
- typically, number of questions $\in\{1,2,3\}$
- you will have at least one week to complete and hand in.
- should only take \leqslant 'a few' hours
- state space of assessment $=\{0,1,2\}$ or $\{A, B, C\}$.

Recommended literature

- Grimmet \& Stirzacker (2001) Probability and Random Processes [Oxford Uni. Press]
- Ross (1996) Stochastic Processes [Wiley]
- Daley \& Vere-Jones (2003) An Introduction to the Theory of Point Processes, Volume I. Elementary Theory and Methods [Springer]

What is it about?
Introduction to

- discrete time Markov processes
- continuous time Markov processes

Motivation: Markov chains/processes

- physics thermodynamics \& statistical mechanics
- chemistry enzyme activity models
- biology epidemic modelling
- sociology population dynamics
- audio music restoration; hidden Markov models used in speech recognition (and bioinformatics and too many other things to mention)
- operational research queueing theory, game theory, (baseball!?) etc
- telecommunications networks etc
- internet search engines, on-line fraud
- computational statistics Markov chain Monte Carlo (Markov random fields)
- economics modelling asset prices, market crashes, etc
- text language can be modelled as a Markov chain; 'who wrote this text'; spam arms race, etc
- and many, many, more!

Outline

(1) preliminaries

- stochastic processes
- Markov process
(2) Markov chains
- transition probabilities
- example
- notation
- questions
(3) examples
- gambler's ruin
- urn model
- 1st order weather model
- 2nd order weather model
(4) n-step transition probabilities
- notation
- Chapman-Kolmogorov

Definition 1

A stochastic process is a family of random variables $\{X(t), t \in \mathcal{T}\}$, with some indexing set \mathcal{T} (informally 'time').

Remark 2
Indexing set can be

$$
\begin{array}{cc}
\mathcal{T} \subseteq \mathbb{Z} & \text { discrete } \\
\mathcal{T}=[a, b] \subseteq \mathbb{R} & \text { continuous }
\end{array}
$$

Definition 3

The set of all values that X takes, namely $\mathcal{S}:=\{x: X(t)=x, t \in \mathcal{T}\}$ is called the state space of X.

Remark 4
For each $t, X(t)$ is a r.v.:

Note on terminology
If $\mathcal{S}=\{0,1,2, \ldots\}$, we refer to the process as integer valued or discrete state process.

If $\mathcal{S}=$ real line, we call $X(t)$ a real-valued stochastic process.
If \mathcal{S} is Euclidean k space, $X(t)$ is called a k-vector process.
If $\mathcal{T}=\{0,1,2, \ldots\}$, we refer to $X(t)$ as a discrete time stochastic process. If $\mathcal{T}=[0, \infty)$, we refer to $X(t)$ as a continuous time stochastic process.

Example 5

Flip a fair coin n times. Let $X(n)=\#$ heads after n flips. Then X: $\Omega \times \mathcal{T} \mapsto \mathcal{S}$ with sample space $\Omega=\{$ 'heads', 'tails' $\}$, and $\mathcal{T}=\mathbb{N}$, with state space $\mathcal{S}=\mathbb{N}_{0}$.

Definition 6 (Markov process)
A stochastic process is called a Markov process if it satisfies the Markov property, namely

$$
\begin{aligned}
& \mathbb{P}(\underbrace{X(t) \leq x}_{\text {future }} \mid \underbrace{X\left(t_{n}\right)=x_{n}}_{\text {present }}, \underbrace{X\left(t_{n-1}\right)=x_{n-1}, \ldots, X\left(t_{0}\right)=x\left(t_{0}\right)}_{\text {past }}) \\
= & \mathbb{P}(\underbrace{X(t) \leq x}_{\text {future }} \mid \underbrace{X\left(t_{n}\right)=x_{n}}_{\text {present }})
\end{aligned}
$$

$\forall t_{0}<t_{1}<\ldots<t_{n}<t \in \mathcal{T}$ and $\forall x_{0}, x_{1}, \ldots, x_{n}, x \in \mathcal{S}$. I.e. the past and future are conditionally independent, given the present.

Example 7 (random walk)
Define

$$
X(n+1):=\left\{\begin{array}{ll}
X(n)+1, & \text { head } \\
X(n)-1, & \text { tail }
\end{array} \quad X(0)=0\right.
$$

Then $\mathcal{T}=\mathbb{N}, \mathcal{S} \subseteq \mathbb{Z}$, and X is Markov. [Given value of $X(n)$, the value of $X(n+1)$ is independent of $X(n-1), \ldots, X(0)$.]

We assume that the random direction of each jump is independent of all earlier jumps.

Remark 8 (Markov is one-step away from independence)
Consider joint distribution of a stochastic process X :

$$
\begin{aligned}
\mathbb{P}\left(X\left(t_{0}\right), \ldots, X\left(t_{n}\right)\right) & =\mathbb{P}\left(X\left(t_{0}\right)\right) \\
& \times \mathbb{P}\left(X\left(t_{1}\right) \mid X\left(t_{0}\right)\right) \\
& \times \mathbb{P}\left(X\left(t_{2}\right) \mid X\left(t_{1}\right), X\left(t_{0}\right)\right) \\
& \times \mathbb{P}\left(X\left(t_{3}\right) \mid X\left(t_{2}\right), X\left(t_{1}\right), X\left(t_{0}\right)\right) \\
& \vdots \\
& \vdots \\
& \mathbb{P}\left(X\left(t_{n}\right) \mid X\left(t_{n-1}\right), X\left(t_{n-2}\right), \ldots, X\left(t_{0}\right)\right)
\end{aligned}
$$

If X is Markov, then this collapses to

$$
\mathbb{P}\left(X\left(t_{0}\right), \ldots, X\left(t_{n}\right)\right)=\mathbb{P}\left(X\left(t_{0}\right)\right) \prod_{i=1}^{n} \mathbb{P}\left(X\left(t_{i}\right) \mid X\left(t_{i-1}\right)\right)
$$

Hence Markov processes are one-step away from independence.

Note on terminology

	\mathcal{T}	
	discrete	continuous
S_{S} discrete, countable	discrete-time Markov chain	continuous-time Markov chain
continuous	x	x

Definition 9 (discrete-time Markov chain)
A discrete-time process $\left\{X_{n}, n \in \mathbb{N}_{0}\right\}$ with countable discrete state space \mathcal{S} is a Markov chain if

$$
\begin{aligned}
& \mathbb{P}(\underbrace{X_{n+m}=j}_{\text {future }} \mid \underbrace{X_{n}=i_{n}}_{\text {present }}, \underbrace{X_{n-1}=i_{n-1}, \ldots, X_{0}=i_{0}}_{\text {past }}) \\
&=\mathbb{P}(\underbrace{X_{n+m}=j}_{\text {future }} \mid \underbrace{X_{n}=i_{n}}_{\text {present }}), \forall i_{0}, i_{1}, \ldots, i_{n}, j \in \mathcal{S} ; \forall m, n \in \mathbb{N}_{0}
\end{aligned}
$$

Definition 10 (transition probability)

$\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i\right)$ is known as the (one-step) transition probability.

Generally, the one-step transition probability depends on three indexes: i, j, and n. We will consider the case where this is constant w.r.t. n.

Definition 11 (time-homogeneity)
Markov chain X is time-homogenous if

$$
\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i\right)=\mathbb{P}\left(X_{1}=j \mid X_{0}=i\right), \forall n \in \mathbb{N}_{0} \text { and } i, j \in \mathcal{S}
$$

For $\mathcal{S}=\{0,1, \ldots, N-1\}$, the transition matrix $\mathbf{P} \in[0,1]^{N \times N}$ is

$$
\mathbf{P}=\left[\begin{array}{cccc}
p_{00} & p_{01} & \cdots & p_{0, N-1} \\
p_{10} & p_{11} & \cdots & p_{1, N-1} \\
\vdots & \vdots & \ddots & \vdots \\
p_{N-1,0} & p_{N-1,1} & \cdots & p_{N-1, N-1}
\end{array}\right]
$$

Definition 13

A stochastic matrix is a matrix $\mathbf{P}=\left(p_{i j}\right)_{i, j \in \mathcal{S}}$ which satisfies
(1) $p_{i j} \geq 0, \forall i, j \in \mathcal{S}$ [P has non-neg. entries]
(2) $\sum_{j \in \mathcal{S}} p_{i j}=1, \forall i \in \mathcal{S}$ [rows of P sum to 1]

Theorem 14
The transition matrix is a stochastic matrix.
Proof $p_{i j}$ is a probability \Rightarrow (1) and $\sum_{j \in \mathcal{S}} \mathbb{P}\left(X_{1}=j \mid X_{0}=i\right)=1 \Rightarrow$ (2).
bayer A and player B play a series of games. Now

$$
\begin{aligned}
\mathbb{P}(A \text { wins }) & =p \\
\mathbb{P}(B \text { wins }) & =1-p=: q
\end{aligned}
$$

where the outcome of each game is independent. Find the transition probability matrix.
b \cdot.

$$
\begin{array}{ccc}
p_{-1,-1} & p_{-1,0} & p_{-1,1} \\
p_{0,-1} & p_{0,0} & p_{0,1} \\
p_{1,-1} & p_{1,0} & p_{1,1}
\end{array}
$$

$$
\begin{array}{llll}
q & 0 & p & \tag{0}\\
& q & 0 & p
\end{array}
$$

Remark 15 (marginal distribution notation)
Denote marginal probability that the chain is in state j at time n as:

$$
p_{j}^{(n)}:=\mathbb{P}\left(X_{n}=j\right)
$$

Then the row vector

$$
\mathbf{p}^{(n)}:=\left(p_{j}^{(n)}\right)_{j \in \mathcal{S}}
$$

is the distribution (pmf) of X_{n} with initial distribution $\mathbf{p}^{(0)}$. E.g., for $\mathcal{S}=\mathbb{Z}$, the marginal distribution (at time n) is $\mathbf{p}^{(n)}=\left[\ldots, p_{-1}^{(n)}, p_{0}^{(n)}, p_{1}^{(n)}, \ldots\right]$.

Example 16

Remark 17

Next week or so, we will consider the following:

- $\mathbf{p}^{(n)}$ distn. of A 's lead over B after n games
- In particular $\lim _{n \rightarrow \infty} p_{0}^{(n)}$, prob. that A and B win equal \#games for large n (in the long run)
- distn. of \#games played until $X_{n}=0:\left[\mathbb{P}\left(T_{0}=n\right)\right]_{n \in \mathcal{T}}$ where $T_{j}:=\min \left\{n>0: X_{n}=j\right\}$
- $\mathbb{E}\left(T_{0}\right)$ mean return time to state 0 .
- $X_{n} \rightarrow$?

Before that, it will be instructive to introduce a couple more examples.

Example 18 (gambler's ruin)

A and B play for chips; loser pays winner 1 chip.
$\mathbb{P}(A$ wins $)=p$
$\mathbb{P}(B$ wins $)=1-p=: q$
A starts with a chips, B starts with b chips. Let $X_{n}=\# c h i p s ~ A ~ h a s ~ a f t e r ~$ n games. Game ends when A or B is bankrupted $\left(p_{00}=p_{a+b, a+b}=1\right)$.
X is Markov with state space

$$
\mathcal{S}=\{\underbrace{0,}_{\text {bankrupted }} 1, \ldots, \underbrace{a+b}_{B \text { is bankrupted }}\}
$$

Transition matrix:

$$
\mathbf{P}=\left[\begin{array}{llllll}
1 & & & & & \\
q & 0 & p & & & \\
& q & 0 & p & & \\
& & \ddots & \ddots & \ddots & \\
& & & q & 0 & p \\
& & & & & 1
\end{array}\right]
$$

If/when X_{n} reaches state 0 or $a+b$, it stays there. The states 0 and $a+b$ are called absorbing states.
gambler's ruin state transition diagram

Remark 19

Finite state space does not necessarily imply existence of absorbing states.

Example 20 (urn model)

Consider 2 urns. Urn A contains N white balls. Urn B contains N black balls. At each turn (time index $n=1,2, \ldots$) a ball is chosen at random from each urn and the two balls are interchanged. Denote the \# of black balls in urn A, after nth interchange, by $\left\{X_{n}, n \in \mathbb{N}_{0}\right\}$.
X is Markov. $X_{0}=0$ (urn A starts out with 0 black balls.) State space: $\mathcal{S}=\{0, \ldots, N\}$. Transition probabilities:

- one more black ball in $A: p_{i, i+1}=\mathbb{P}\left(X_{n+1}=i+1 \mid X_{n}=i\right)$
- one less black ball in A : $p_{i, i-1}=\mathbb{P}\left(X_{n+1}=i-1 \mid X_{n}=i\right)$
- no change in $\#$ black balls in $A: p_{i, i}=\mathbb{P}\left(X_{n+1}=i \mid X_{n}=i\right)$
- one more black ball in $A: p_{i, i+1}=\mathbb{P}\left(X_{n+1}=i+1 \mid X_{n}=i\right)$
$=\mathbb{P}($ white from A, black from $B \mid N-i$ white in $A, N-i$ blacks in $B)$
$=\left(\frac{N-i}{N}\right)^{2}=\left(1-\frac{i}{N}\right)^{2}=: q_{i}^{*}$
- one less black ball in $A: p_{i, i-1}=\mathbb{P}\left(X_{n+1}=i-1 \mid X_{n}=i\right)$
$=\mathbb{P}($ black from A, white from $B \mid i$ black in A, i white in $B)$
$=\left(\frac{i}{N}\right)^{2}=: q_{i}$
- no change in \# black balls in $A: p_{i, i}=1-q_{i}-q_{i}^{*}$

$$
\mathbf{P}=\left[\begin{array}{cccccc}
0 & 1 & & & & \\
q_{1} & 1-q_{1}-q_{1}^{*} & q_{1}^{*} & & & \\
& q_{2} & 1-q_{2}-q_{2}^{*} & q_{2}^{*} & & \\
& & \ddots & \ddots & \ddots & \\
& & & q_{N-1} & 1-q_{N-1}-q_{N-1}^{*} & q_{N-1}^{*} \\
& & & & &
\end{array}\right]
$$

See also state transition diagram. I.e., if/when you are in state 0 (resp. N), you never stay there, you always go back to state 1 (resp. $N-1$). States 0 and N are called reflecting barriers.
urn state transition diagram

Example 21 (weather 'forecasting')

(1) 2 possible weather conditions on any single day: $\{$ rainy, sunny\}.
(2) Tomorrow's weather depends only on today's weather.
(3) $\mathbb{P}($ rain tomorrow \mid rain today $)=\alpha$
(9) $\mathbb{P}($ sunny tomorrow \mid sunny today $)=\beta$

Find transition probabilities.
Solution

$$
\text { (1) } \Rightarrow Y_{n}:=\left\{\begin{array}{ll}
1, & \text { sunny on } n \text {th day } \\
0, & \text { rains on } n \text {th day }
\end{array} \quad \mathcal{S}=\{0,1\}\right.
$$

(2) $\Rightarrow Y_{n}$ Markov, and

$$
\text { (3) } \Rightarrow p_{00}=\alpha, \quad p_{01}=1-\alpha, \quad \text { (3) } \Rightarrow p_{10}=1-\beta, \quad p_{11}=\beta
$$

I.e.

$$
\mathbf{P}=\left[\begin{array}{cc}
\alpha & 1-\alpha \\
1-\beta & \beta
\end{array}\right]
$$

Example 22 (weather 'forecasting' II)

- Now assume tomorrow's weather depends only on weather of today and yesterday

Find transition probabilities.
Solution

$$
\mathbb{P}\left(Y_{n+1} \mid Y_{n}, Y_{n-1}, \ldots\right)=\mathbb{P}\left(Y_{n+1} \mid Y_{n}, Y_{n-1}\right) \neq \mathbb{P}\left(Y_{n+1} \mid Y_{n}\right)
$$

Hence, Y_{n} not Markov (at least the way we have defined it). However...
Remark 23
Define $\left\{X_{n}\right\}$ s.t.

$$
X_{n}:=Y_{n-1}+2 Y_{n}, \quad X_{0}=0
$$

i.e. for $Y_{n-1}=i$ and $Y_{n}=j$, we have $X_{n}:=i+2 j$. then X is Markov.

Proof ...

$$
\begin{aligned}
\mathbb{P}\left(X_{n+1} \mid X_{n}, X_{n-1}, \ldots\right) & =\mathbb{P}\left(Y_{n+1}, Y_{n} \mid Y_{n}, Y_{n-1}, \ldots\right) \\
& =\mathbb{P}\left(Y_{n+1} \mid Y_{n}, Y_{n-1}, \ldots\right) \\
& =\mathbb{P}\left(Y_{n+1} \mid Y_{n}, Y_{n-1}\right) \\
& =\mathbb{P}\left(Y_{n+1}, Y_{n} \mid Y_{n}, Y_{n-1}\right) \\
& =\mathbb{P}\left(X_{n+1} \mid X_{n}\right)
\end{aligned}
$$

Homework: compute transition matrix of X and draw state transition diagram

Recall notation from Remark 15:

$$
\begin{aligned}
p_{j}^{(n)} & =\mathbb{P}\left(X_{n}=j\right) \\
p_{i j} & =\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i\right)
\end{aligned}
$$

Definition 24 (n-step transition probabilities)
Define the n-step transition probabilities by

$$
p_{i j}^{(n)}:=\mathbb{P}\left(X_{n}=j \mid X_{0}=i\right)
$$

and the n-step transition matrix by

$$
\mathbf{P}^{(n)}:=\left(p_{i j}^{(n)}\right)_{i, j \in \mathcal{S}}
$$

Remark 25
$\mathbf{P}^{(0)}=I$, (the identity matrix): $p_{i j}^{(0)}=\mathbb{P}\left(X_{0}=j \mid X_{0}=i\right)=\delta_{i j}$
Remark 26
X time-homogeneous
$\mathbb{P}\left(X_{n+m}=j \mid X_{m}=i\right)=\mathbb{P}\left(X_{n}=j \mid X_{0}=i\right)=p_{i j}^{(n)} \quad \forall n, m \in \mathcal{T} ; i, j \in \mathcal{S}$

Theorem 27 (Chapman-Kolmogorov (cf p215, G\&S))
$\mathbf{P}^{(m+n)}=\mathbf{P}^{(m)} \mathbf{P}^{(n)}$, for all $m, n \in \mathbb{N}_{0}$
Proof I.e., we want to show that:

$$
p_{i j}^{(m+n)}=\sum_{k \in \mathcal{S}} p_{i k}^{(m)} p_{k j}^{(n)}
$$

for all $m, n \in \mathbb{N}_{0}$ and $i, j \in \mathcal{S}$. LHS is

$$
p_{i j}^{(m+n)}=\mathbb{P}\left(X_{n+m}=j \mid X_{0}=i\right)
$$

$$
=\sum_{k \in \mathcal{S}} \mathbb{P}\left(X_{n+m}=j, X_{m}=k \mid X_{0}=i\right)
$$

$$
=\sum_{k \in \mathcal{S}} \mathbb{P}\left(X_{n+m}=j \mid X_{m}=k, X_{\theta}=i\right) \mathbb{P}\left(X_{m}=k \mid X_{0}=i\right) \quad[\text { Markov }]
$$

$$
=\sum_{k \in \mathcal{S}} \mathbb{P}\left(X_{n}=j \mid X_{0}=k\right) \mathbb{P}\left(X_{m}=k \mid X_{0}=i\right) \quad[t-\text { homog. }]
$$

$$
=\sum_{k \in \mathcal{S}} p_{i k}^{(m)} p_{k j}^{(n)}
$$

Corollary 28

$\mathbf{P}^{(n)}=\mathbf{P}^{n}$
Proof (I.e., this says the nth step transition matrix is the nth power of the one-step transition matrix.) From Chapman-Kolmogorov

$$
\mathbf{P}^{(m+n)}=\mathbf{P}^{(m)} \mathbf{P}^{(n)}
$$

But

$$
\begin{aligned}
\mathbf{P}^{(n)}=\mathbf{P}^{(n-1+1)} & =\mathbf{P}^{(n-1)} \mathbf{P}^{(1)} \\
& =\mathbf{P}^{(n-1)} \mathbf{P} \\
& =\mathbf{P}^{(n-2)} \mathbf{P}^{(1)} \mathbf{P} \\
& =\mathbf{P}^{(n-2)} \mathbf{P} \mathbf{P} \\
& =\mathbf{P}^{(n-2)} \mathbf{P}^{2} \\
& \vdots \vdots \\
& =\mathbf{P}^{n}
\end{aligned}
$$

Corollary 29

$\mathbf{p}^{(n)}=\mathbf{p}^{(0)} \mathbf{P}^{n}$
Proof I.e. this says distn. at time n is row-matrix product of initial distn. with n-step transition matrix. We have

$$
\begin{aligned}
p_{j}^{(n)}=\mathbb{P}\left(X_{n}=j\right) & =\sum_{i \in \mathcal{S}} \mathbb{P}\left(X_{n}=j, X_{0}=i\right) \\
& =\sum_{i \in \mathcal{S}} \mathbb{P}\left(X_{0}=i\right) \mathbb{P}\left(X_{n}=j \mid X_{0}=i\right) \\
& =\sum_{i \in \mathcal{S}} p_{i}^{(0)} p_{i j}^{(n)}
\end{aligned}
$$

i.e. $\mathbf{p}^{(n)}=\mathbf{p}^{(0)} \mathbf{p}^{(n)}$. Chapman-Kolmogorov (Corollary 28) completes the proof.

