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Course structure

5 × 2 hr lectures

every Monday: Oct. 9 to Nov. 6 (inclusive) usually at 11:15 - 13:00hrs
(except next week at 12!!!!!!)

assignment:

handed out (emailed) in ‘Spring-time’

typically, number of questions ∈ {1, 2, 3}

you will have at least one week to complete and hand in.

should only take 6 ‘a few’ hours

state space of assessment = {0, 1, 2} or {A,B,C}.
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Recommended literature

Grimmet & Stirzacker (2001) Probability and Random Processes
[Oxford Uni. Press]

Ross (1996) Stochastic Processes [Wiley]

Daley & Vere-Jones (2003) An Introduction to the Theory of Point
Processes, Volume I. Elementary Theory and Methods [Springer]
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What is it about?

Introduction to

discrete time Markov processes

continuous time Markov processes
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Motivation: Markov chains/processes

physics thermodynamics & statistical mechanics

chemistry enzyme activity models

biology epidemic modelling

sociology population dynamics

audio music restoration; hidden Markov models used in speech
recognition (and bioinformatics and too many other things to mention)

operational research queueing theory, game theory, (baseball!?) etc

telecommunications networks etc

internet search engines, on-line fraud

computational statistics Markov chain Monte Carlo (Markov random
fields)

economics modelling asset prices, market crashes, etc

text language can be modelled as a Markov chain; ‘who wrote this
text’; spam arms race, etc

and many, many, more! 5 / 29
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preliminaries stochastic processes

Definition 1

A stochastic process is a family of random variables {X (t), t ∈ T }, with
some indexing set T (informally ‘time’).

Remark 2

Indexing set can be T ⊆ Z discrete
T = [a, b] ⊆ R continuous

Definition 3

The set of all values that X takes, namely S := {x : X (t) = x , t ∈ T } is
called the state space of X .

Remark 4

For each t, X (t) is a r.v.:

X (t) : Ω︸︷︷︸
sample space

7→
state space︷︸︸︷
S

and we sometimes write X : Ω× T 7→ S.
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preliminaries stochastic processes

Note on terminology

If S = {0, 1, 2, . . .}, we refer to the process as integer valued or discrete
state process.

If S = real line, we call X (t) a real-valued stochastic process.

If S is Euclidean k space, X (t) is called a k-vector process.

If T = {0, 1, 2, . . .}, we refer to X (t) as a discrete time stochastic process.

If T = [0,∞), we refer to X (t) as a continuous time stochastic process.
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preliminaries Markov process

Example 5

Flip a fair coin n times. Let X (n) = # heads after n flips. Then
X : Ω× T 7→ S with sample space Ω = {‘heads’, ‘tails’ }, and T = N, with
state space S = N0.

Definition 6 (Markov process)

A stochastic process is called a Markov process if it satisfies the Markov
property, namely

P
(
X (t) ≤ x︸ ︷︷ ︸

future

∣∣X (tn) = xn︸ ︷︷ ︸
present

,X (tn−1) = xn−1, . . . ,X (t0) = x(t0)︸ ︷︷ ︸
past

)
= P

(
X (t) ≤ x︸ ︷︷ ︸

future

∣∣X (tn) = xn︸ ︷︷ ︸
present

)
∀t0 < t1 < . . . < tn < t ∈ T and ∀x0, x1, . . . , xn, x ∈ S. I.e. the past and

future are conditionally independent, given the present.
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preliminaries Markov process

Example 7 (random walk)

Define

X (n + 1) :=

{
X (n) + 1 , head

X (n)− 1 , tail
X (0) = 0

Then T = N, S ⊆ Z, and X is Markov. [Given value of X (n), the value of
X (n + 1) is independent of X (n − 1), . . . ,X (0).]

We assume that the random direction of each jump is independent of all
earlier jumps.
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preliminaries Markov process

Remark 8 (Markov is one-step away from independence)

Consider joint distribution of a stochastic process X :

P
(
X (t0), . . . ,X (tn)

)
= P

(
X (t0)

)
× P

(
X (t1)

∣∣X (t0)
)

× P
(
X (t2)

∣∣X (t1),X (t0)
)

× P
(
X (t3)

∣∣X (t2),X (t1),X (t0)
)

...
...

× P
(
X (tn)

∣∣X (tn−1),X (tn−2), . . . ,X (t0)
)

If X is Markov, then this collapses to

P
(
X (t0), . . . ,X (tn)

)
= P

(
X (t0)

) n∏
i=1

P
(
X (ti )

∣∣X (ti−1)
)

Hence Markov processes are one-step away from independence.
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Markov chains transition probabilities

Note on terminology

T

discrete continuous

S
discrete, countable

discrete-time continuous-time
Markov chain Markov chain

continuous 7 7

Definition 9 (discrete-time Markov chain)

A discrete-time process {Xn, n ∈ N0} with countable discrete state space S
is a Markov chain if

P
(
Xn+m = j︸ ︷︷ ︸

future

∣∣Xn = in︸ ︷︷ ︸
present

,Xn−1 = in−1, . . . ,X0 = i0︸ ︷︷ ︸
past

)
= P

(
Xn+m = j︸ ︷︷ ︸

future

∣∣Xn = in︸ ︷︷ ︸
present

)
, ∀i0, i1, . . . , in, j ∈ S;∀m, n ∈ N0
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Markov chains transition probabilities

Definition 10 (transition probability)

P(Xn+1 = j |Xn = i) is known as the (one-step) transition probability.

Generally, the one-step transition probability depends on three indexes: i , j ,
and n. We will consider the case where this is constant w.r.t. n.

Definition 11 (time-homogeneity)

Markov chain X is time-homogenous if

P
(
Xn+1 = j

∣∣Xn = i
)

= P
(
X1 = j

∣∣X0 = i
)
, ∀n ∈ N0 and i , j ∈ S
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Markov chains transition probabilities

P
For S = {0, 1, . . . ,N − 1}, the transition matrix P ∈ [0, 1]N×N is

P =


p00 p01 . . . p0,N−1
p10 p11 . . . p1,N−1

...
...

. . .
...

pN−1,0 pN−1,1 . . . pN−1,N−1


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Markov chains transition probabilities

Definition 13

A stochastic matrix is a matrix P = (pij)i , j∈S which satisfies

1 pij ≥ 0, ∀i , j ∈ S [P has non-neg. entries]

2
∑

j∈S pij = 1,∀i ∈ S [rows of P sum to 1]

Theorem 14

The transition matrix is a stochastic matrix.

Proof pij is a probability ⇒ 1 and
∑

j∈S P(X1 = j |X0 = i) = 1⇒ 2 .
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Markov chains notation

bayer A and player B play a series of games. Now

P (A wins) = p

P (B wins) = 1− p =: q

where the outcome of each game is independent. Find the transition
probability matrix.

b . . .

p−1,−1 p−1,0 p−1,1
p0,−1 p0,0 p0,1
p1,−1 p1,0 p1,1

. . .

[
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Markov chains notation

. . .

q 0 p
q 0 p

. . .

(0)

Remark 15 (marginal distribution notation)

Denote marginal probability that the chain is in state j at time n as:

p
(n)
j := P(Xn = j)

Then the row vector
p(n) :=

(
p
(n)
j

)
j∈S

is the distribution (pmf) of Xn with initial distribution p(0). E.g., for S = Z,
the marginal distribution (at time n) is p(n) =

[
. . . , p

(n)
−1 , p

(n)
0 , p

(n)
1 , . . .

]
.

Example 16

For random walk, initial distribution is p(0) =
(
δj ,0
)
j∈Z
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Markov chains questions

Remark 17

Next week or so, we will consider the following:

p(n) distn. of A’s lead over B after n games

In particular limn→∞ p
(n)
0 , prob. that A and B win equal #games for

large n (in the long run)

distn. of #games played until Xn = 0:
[
P(T0 = n)

]
n∈T where

Tj := min{n > 0: Xn = j}
E(T0) mean return time to state 0.

Xn → ?

Before that, it will be instructive to introduce a couple more examples.
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examples gambler’s ruin

Example 18 (gambler’s ruin)

A and B play for chips; loser pays winner 1 chip.

P (A wins) = p

P (B wins) = 1− p =: q

A starts with a chips, B starts with b chips. Let Xn = #chips A has after
n games. Game ends when A or B is bankrupted (p00 = pa+b,a+b = 1).

X is Markov with state space

S = { 0,︸︷︷︸
A is bankrupted

1, . . . , a + b︸ ︷︷ ︸
B is bankrupted

}

Transition matrix:

P =



1
q 0 p

q 0 p
. . .

. . .
. . .

q 0 p
1


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examples gambler’s ruin

If/when Xn reaches state 0 or a + b , it stays there. The states 0 and a + b
are called absorbing states.

gambler’s ruin state transition diagram

0 1 2 · · · a+b−2 a+b−1 a+b

q

1

q

p p

q

p

q

p

q

p

1
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examples urn model

Remark 19

Finite state space does not necessarily imply existence of absorbing states.

Example 20 (urn model)

Consider 2 urns. Urn A contains N white balls. Urn B contains N black
balls. At each turn (time index n = 1, 2, . . .) a ball is chosen at random
from each urn and the two balls are interchanged. Denote the # of black
balls in urn A, after nth interchange, by {Xn, n ∈ N0}.

X is Markov. X0 = 0 (urn A starts out with 0 black balls.) State space:
S = {0, . . . ,N}. Transition probabilities:

one more black ball in A: pi ,i+1 = P
(
Xn+1 = i + 1

∣∣Xn = i
)

one less black ball in A: pi ,i−1 = P
(
Xn+1 = i − 1

∣∣Xn = i
)

no change in # black balls in A: pi ,i = P
(
Xn+1 = i

∣∣Xn = i
)
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examples urn model

one more black ball in A : pi ,i+1 = P
(
Xn+1 = i + 1

∣∣Xn = i
)

= P
(
white from A, black from B

∣∣N−i white in A, N−i blacks in B
)

=

(
N − i

N

)2

=

(
1− i

N

)2

=: q∗i

one less black ball in A : pi ,i−1 = P
(
Xn+1 = i − 1

∣∣Xn = i
)

= P
(
black from A,white from B

∣∣i black in A, i white in B
)

=

(
i

N

)2

=: qi

no change in # black balls in A : pi ,i = 1− qi − q∗i
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examples urn model

P =



0 1
q1 1− q1 − q∗1 q∗1

q2 1− q2 − q∗2 q∗2
. . .

. . .
. . .

qN−1 1− qN−1 − q∗N−1 q∗N−1
0


See also state transition diagram. I.e., if/when you are in state 0 (resp. N),
you never stay there, you always go back to state 1 (resp. N − 1). States 0
and N are called reflecting barriers.

urn state transition diagram

0 1 2 · · · N − 2 N − 1 N

q1 q2

1 q∗
1 q∗

2

q3

q∗
N−3

qN−2

q∗
N−2

qN−1 1

q∗
N−1

1− q1 − q∗
1 1− q2 − q∗

2 1− qn−2 − q∗
n−2 1− qn−1 − q∗

n−1
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examples urn model

Example 21 (weather ‘forecasting’)

1 2 possible weather conditions on any single day: {rainy, sunny}.
2 Tomorrow’s weather depends only on today’s weather.

3 P
(
rain tomorrow

∣∣rain today
)

= α

4 P
(
sunny tomorrow

∣∣sunny today
)

= β

Find transition probabilities.

Solution

1 ⇒ Yn :=

{
1, sunny on nth day

0, rains on nth day
S = {0, 1}

2 ⇒ Yn Markov, and

3 ⇒ p00 = α, p01 = 1− α, 4 ⇒ p10 = 1− β, p11 = β

I.e.

P =

[
α 1− α

1− β β

]
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examples 2nd order weather model

Example 22 (weather ‘forecasting’ II)

Now assume tomorrow’s weather depends only on weather of today
and yesterday

Find transition probabilities.

Solution

P
(
Yn+1

∣∣Yn,Yn−1, . . .
)

= P
(
Yn+1

∣∣Yn,Yn−1
)
6= P

(
Yn+1

∣∣Yn

)
Hence, Yn not Markov (at least the way we have defined it). However...

Remark 23

Define {Xn} s.t.
Xn := Yn−1 + 2Yn, X0 = 0

i.e. for Yn−1 = i and Yn = j , we have Xn := i + 2j . then X is Markov.

Proof ...
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examples 2nd order weather model

P
(
Xn+1

∣∣Xn,Xn−1, . . .
)

= P
(
Yn+1,Yn

∣∣Yn,Yn−1, . . .
)

= P
(
Yn+1

∣∣Yn,Yn−1, . . .
)

= P
(
Yn+1

∣∣Yn,Yn−1
)

= P
(
Yn+1,Yn

∣∣Yn,Yn−1
)

= P
(
Xn+1

∣∣Xn

)
Homework: compute transition matrix of X and draw state transition
diagram
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n-step transition probabilities notation

Recall notation from Remark 15:

p
(n)
j = P

(
Xn = j

)
pij = P

(
Xn+1 = j

∣∣Xn = i
)

Definition 24 (n-step transition probabilities)

Define the n-step transition probabilities by

p
(n)
ij := P

(
Xn = j

∣∣X0 = i
)

and the n-step transition matrix by

P(n) :=
(
p
(n)
ij

)
i , j∈S

Remark 25

P(0) = I , (the identity matrix): p
(0)
ij = P

(
X0 = j

∣∣X0 = i
)

= δij

Remark 26

X time-homogeneous

P
(
Xn+m = j

∣∣Xm = i
)

= P
(
Xn = j

∣∣X0 = i
)

= p
(n)
ij ∀n,m ∈ T ; i , j ∈ S
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n-step transition probabilities Chapman-Kolmogorov

Theorem 27 (Chapman-Kolmogorov (cf p215, G&S))

P(m+n) = P(m)P(n), for all m, n ∈ N0

Proof I.e., we want to show that:

p
(m+n)
ij =

∑
k∈S

p
(m)
ik p

(n)
kj

for all m, n ∈ N0 and i , j ∈ S. LHS is

p
(m+n)
ij = P

(
Xn+m = j

∣∣X0 = i
)

=
∑
k∈S

P
(
Xn+m = j ,Xm = k

∣∣X0 = i
)

=
∑
k∈S

P
(
Xn+m = j

∣∣Xm = k,����X0 = i
)
P
(
Xm = k

∣∣X0 = i
)

[Markov ]

=
∑
k∈S

P
(
Xn = j

∣∣X0 = k
)
P
(
Xm = k

∣∣X0 = i
)

[t − homog .]

=
∑
k∈S

p
(m)
ik p

(n)
kj
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n-step transition probabilities Chapman-Kolmogorov

Corollary 28

P(n) = Pn

Proof (I.e., this says the nth step transition matrix is the nth power of the
one-step transition matrix.) From Chapman-Kolmogorov

P(m+n) = P(m)P(n)

But

P(n) = P(n−1+1) = P(n−1)P(1)

= P(n−1)P

= P(n−2)P(1)P

= P(n−2)PP

= P(n−2)P2

...
...

= Pn
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n-step transition probabilities Chapman-Kolmogorov

Corollary 29

p(n) = p(0)Pn

Proof I.e. this says distn. at time n is row-matrix product of initial distn.
with n-step transition matrix. We have

p
(n)
j = P(Xn = j) =

∑
i∈S

P
(
Xn = j ,X0 = i

)
=

∑
i∈S

P
(
X0 = i

)
P
(
Xn = j

∣∣X0 = i
)

=
∑
i∈S

p
(0)
i p

(n)
ij

i.e. p(n) = p(0)P(n). Chapman-Kolmogorov (Corollary 28) completes the
proof.
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