Solids Mechanics, Including Elastic Wave
Propagation.

Professor Julius Kaplunov
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Part 1. Elementary introduction.

1D rod

* Oyl +

!
of.r‘-— N [
x x+ e

1. Equilibrium Equation (” Statics”)

r+Ax

Afo(z + Az) — o(x)} = Ap / 1y (€)dE

xr

Next, as it follows from the Mean Value theorem

o(x + Ax) — o(x) = pAxug(x + 0Ax), 0<0<1

Let us Az — 0

. o(x+Azx)—o(x)
AT A Pl OAY)
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Orpx = PUt

2.Strain (" Geometry”)

lim u(x + Ax) — u(x)
Ax—0 Ax

— U, = €

3. Constitutive relations (” Physics”)

A. Elasticity

(i) 0 = Ee - Hook’s Law for a Linearly elastic rod
strains are small e < 1

Now 0, = Fu,, and u,, — C—lzutt = 0 with ¢ = \/%

(ii) Finite elastic deformations € ~ 1
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Say, now ¢ = Fe + € which is an example of physical
non-linearity.

Then,
d 2
dx
and
1 3
Ugpxr — _zutt + _nug;u:caz =0
C

If 1 is small, then it is a room for asymptotics.

B. Plasticity

(i) Perfect plasticity

(ii) Plasticity with hardening / softening
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C. Elastic - plastic materials

(i) Elastic - perfectly plastic material

(ii) Elastic - hardening plastic material

D. Time - dependent materials

Small deformations o0 = Fe + ue; - Voight material

Or =— Eua:a: + MUzt

L+ 2 0
Upy — SU —Ugat —
Ut T Ut
Often we get a small u finalising with a singular perturbed

problem.
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Part 2. Linear Isotropic Elasticity.

2.1. Stress and Strain tensors and constitutive relations.
1. Stress tensor o;;
Equilibrium eqns

Tiji = PUjtt (2.1)
with 7 = 1,2, 3 and Einstein convention is assumed

Symmetry . 045 = O03jj

2. Strain tensor

€ij = 5 (Ui + k) (2.2)
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1 — x|z
2 — yl|lxo
3 — z|x3

3. Constitutive relation

O'z'j = )\Ekkaéij + 2,uez-j
A and o denote Lame constants

Young modulus

B HEBA+2p)
A+ 1
Poisson ratio
L A
2(A + )
usually
(0 < v <0.5)

(2.3)
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14+ v %
i = — 045 — —Ukk5z‘j

E

2.2. Equation of Motion in terms of displacements.
Clear from (2.2) and (2.3)

0iji = Nij€kk,i + 1(Us, i + Uj i)
On substituting into (2.1)
(A + p)ern,; + pldu; = puj i

Finally,
(X + p)graddivd + pAU — pU gy = (2.4)

where

7 = (Ul, U9, U3)
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2.3. Shear and Dilatation waves.

U = grady + curl? (2.5)

It follows from (2.5)
divd = Ay
On substituting (2.5) into (2.4) and taking into account the last
formula
grad(ciAp — @) + curl(c 2A$ — zm) =0
where ¢? = ’\22” , 3= £ denote the speeds of the dilatation and

shear waves.

Thus,
C%ASO — i =0
and
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CSAQ?/ —wt; =0

4. Rayleigh and Love waves.

4.1. Plane and antiplane strain.

For both of them 8%3 = (

Plane strain u; = u;(x1,22),7 = 1,2 and uz = 0
Antiplane strain u; = 0, u3 = us(x1, T2)

4.2. Rayleigh waves.

Consider plane strain of a half - space x5 > 0
Traction free surface

$2:O (0'22:(721 :0)

(2.6)

(2.7)
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(023 = 0)
for plane strain.
Traveling wave solutions

o = Ae—aa:2+iq(x1—ct) (28)

thg = Be~Pratialon=el) g, — 0(i = 1,2)

Conditions : a > 0,8 > 0 correspond to surface waves (decay as
Ty — 00)
Here c - phase velocity.

On substituting (2.8) into (2.6) and (2.8) into (2.5) we get
Oé:c]\/l_z_; 5261\/1—2—;
1 2

U1 = 90,1 -+ ¢3,2 — Z’q(Ae—ozzUQ _ 5B6—5$2)
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= @ — 131 = (—ade "2 — igBe” 772

Here and below we omit factor explig(z — ct)].

(2.9)

On making use of constitutive relations (2.3) in (2.7) and taking into
account geometric relations (2.2) and formulae (2.9) we arrive at

homogeneous equations in A and B.
They are

2 2
(2—C—>A+2@ 1 - B =

02

2 2
02 Ca

Solvability of (2.10) yields

R(v) = (2 — 4/ (1 =22)(1 — 2292) = 0

(2.10)
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With

Cr Co 1 — 2y L
P — —— T — p— 2.]_].

R - Rayleigh denominator, ¢ = ¢, - Rayleigh wave speed.
We will prove that there exist a root v < 1 of R(vy) =0 at
0<rv< % This root is unique for given v.

4.3. Love waves.

co < Co
Antiplane problem
82U3 I 82’&3 _ 1 8QU3
0x? = 0x3 2 Ot?
O%ui  0%ui 1 0%uj

= 2.12
oy " drs  ci? Ot? (2.12)
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Traction free surface o = —H, i.e.

9
023:0@6—?;3:0 (2.13)
2

Contact conditions at x5 = 0,
% %
U3z = Uz,023 — 093

or

8u3 3U§
T % 2.14
Mo = Hog (2.14)
Let us
us = f(zq)et?®1=ct) (2.15)

= fulas)eteie
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On substituting (2.15) into (2.12) we get

0° f 2 2 ¢’

— =0 = /=1
cat B2f=0, [B= 1< (2.15)
5’33% q x — U, — C;Q -

Thus, we have a decaing at 2o — oo wave (Love wave):
f(xs) = Asin(aqrs) + B cos(aqxs)

fulwg) = Ce™Par2 (2.16)
It follows from contact conditions (2.14)

fos 3
Jite!

B=0C, A=-""C
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Then, the substitution of (2.16) into boundary condition (2.13) at
free surface yields

tan(aqH ) = Hoe (2.17)
1%’
which is the dispersion relation for Love waves. It determines the
phase speed versus wave number, i.e. ¢ = c¢(qH). There are

infinitely many Love waves.

Part 3. Lamb (Rayleigh - Lamb)wauves.

Consider an infinite layer of thickness 2h with fraction free faces

Recall the equations of motion in plane strain

E E 0°u
A ddivu — pe—s
2010 T B vy (1= 2 P

—0, (3.1)
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where u = (u1,u9,0) is the displacement vector whose components
do not depend on x3(ur = ux(x1,x2,t),k = 1,2); A is Laplacian.

The "displacements - stresses’ formulae are

B E Ouq N v Ous
71 = 21 +v)? \Ox1 1—v0xy)’
B Ev ou N %

738 = 2(1 — v2)2 \Ox1  Oxa)
o b vV (9114 n %
72T 00 1 v)2\1 — 0z, | O1s)’

E (8’&2 1 8’&1)
2(1 —+ V)%2 0x1 0xo ’

013 = 023 = 0.

021 =—
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We impose homogeneous boundary conditions on faces x5 = %h
091 — 099 — 0 (33)

We specify displacement as before in (2.9)

Op  Ovs Op _ v (3.4)

Uy = — U9 =
85171 8562’ 8$2 8331

where ¢ and 13 are potentials. Substituting (3.4) into (3.1) we
obtain two equations

1 a2g0 1 82¢3
Nop — —=——, A — =0 3.5
2 C% 8t2’ 2¢3 C% 8t2 9 ( )
where 52 52
Ag =~ +—

— 5.2 2
Oxy 0x5
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Let us introduce the dimensionless coordinates §; = 5, ( = 52 and
T = 22 and seek the solution to equations (3.5) in the form

o = f(¢) expli(KE& — QT)],
Y3 = g(¢) expli(K& — QT)] (3.6)

Inserting the latter into (3.5) we have

82
8(5]; o’ f = (3.7)
82
6—§ — 8% =0, (3.8)

where

0= K?— 5202 82 = K2 — Q2.
The vibration modes corresponding to the above equations are
separated into two groups. The modes of the first group are
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symmetric with respect to the midplane of the layer ( = 0 and those
of the second group are antisymmetric. First, examine the
symmetric modes. For them the displacement u; and the stresses
011,022, 033 are even with respect to the thickness variable ¢ and
the displacement uy and the stress 097 are odd. The solutions to the
equations (3.7), (3.8) are given by

f = Acosh(aC), g = Bsinh(5() (3.9)

where A and B are arbitrary constants. Because of the symmetry it
Is sufficient to obey the boundary conditions only on one of the
faces. The boundary conditions on the other face are satisfied
automatically. Expressing the stresses entering into the boundary
conditions (3.3) in terms of the functions f and ¢ defined by
formulae (3.9) we obtain a system of two linear equations:

AKiasinha + By*sinh 8 =0
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A~v?*cosha — BKifScosh B =0 (3.10)

where

V2= K2 — %QQ.

Equating the determinant of this system to zero we obtain the

Rayleigh-Lamb dispersion equation [classical works by Lord Rayleigh
(1889) and Lamb (1889)]

4 cosh asinh 5 QZKQSinh Q

15 o

cosh 8 = 0. (3.11)
Displacements and stresses are expressed as
u; = RK1 (72 sinh 5 cosh(a() — af sinh « cosh(ﬁg“)) :

us = Ra (WZ sinh B sinh(a¢) — K*sinh « sinh(BC)) :
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E R

011 =

1+v)h
(—72([(2 + 20 V_ V)Qz) sinh 8 cosh(a()) + K*af sinh o cosh(ﬁ(j)) ,
E R, , . 2 o -
02 =17 (v* sinh 8 cosh(a¢) — K“af sinh a cosh(5¢)) ,
O33 = —ER Y v*Q? sinh 3 cosh(a() (3.12)
> h2(1 — 12) ’ |
021 = 3 fy) fiKoxf (sinh g sinh(a() — sinha sinh(5()),

In these formulae the factor exp[i(K & — €27)] is omitted and R is
arbitrary constant.
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In case of antisymmetric modes the displacement u; and the stresses
011,099,033 are odd with respect to ¢ while the displacement us and
the stress 091 are even. The solutions to equations (3.7), (3.8) can
be written as

f = Asinh(a(), g = cosh(5(), (3.13)

and the Rayleigh-Lamb dispersion equation is

0. (3.14)

inh inh
42 “cosh § — 82K Coshozsmﬁ b_
o

The corresponding expressions for stresses and displacements can be
obtained from (3.12) by substituting

~

sinh — cosh and cosh — sinh.

We deduce now the asymptotic approximation of the Rayleigh-Lamb
equations. First, we consider the long-wave low-frequency
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approximations K << 1,{) << 1. In this case the argument of the
hyperbolic functions in (3.11), (3.14) are small. Expanding these
functions in Taylor’'s series we obtain:

for equation (3.11)

K2 =2 U014 0(9?) (3.15)
for equations (3.14)
Kt = 3(12_ )2n + ()] (3.16)
For symmetric modes
K ~Q (3.17)

for the antisymmetric modes

K ~VQ (3.18)
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Therefore O-term in asymptotics (3.15), (3.16) is equal to O(K?).

Consider now long-wave high-frequency approximations
(K << 1,92 ~ 1). It follows directly from the dispersion equations
(3.11) and (3.14) that cosh asinh 8 ~ K2, respectively.

Thus, the condition

QO— A~ K?
holds. Here
A=A or A=A,
where
T™m Tm
Ny =— Agp, = — =1,2,3, ... 1
t 95 h 9 (m 3 ) (3 9)

The frequencies Ag; and Ay, are the co-called thickness stretch
and thickness shear resonance frequencies, respectively. They
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represent the natural frequencies of an infinitely thin transverse fibre

of the layer.

The frequencies A; are eigenvalues of the problem

%QQQUQ =0

with

which is obtained from problems (3.1)-(3.3) by setting u; =
The frequencies Ay, are eigenvalues of the problem

with

(3.20)

ouy __
ox1

(3.21)
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d

aiql =0 at ( = +1,

which follows from the original plane problem at us = g—f‘ﬁ =
The thickness resonance frequencies

where

m(2n — 1)
21

A3, = , A, =71 n(n=1,2,3,...), (3.22)

correspond to the dispersion equation (3.11). In their vicinities the
following estimates hold

K? =T — (A3)°|(1+ O(K?)) (3.23)
with . . It
cot
Ts _ st
2 N A%, 7
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and

K* = P [Q% = (A5)7] + (1 + O(K7)) (3.24)
with )
po—1_ S%tan(nASh).
Adh

The thickness resonance frequencies
Ast = AS, and Agp =AY where

2n —1
A% = %‘ o« ull ”2 ) (n=1,2,3,..), (3.25)
correspond to the dispersion equation (3.14). In their vicinities
K? =T — (A% + (1 + O(K?)) (3.26)
with | Stan AC
oL an st
2 AS,
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and

K? =P YO% — (A3)?] + (1 + O(K?)) (3.27)
with . Aa
Po— 14 s cot (s St).
AG

At K ~ Q) ~ 1 the dispersion equations (3.11),(3.14) do not contain
small parameters. In this case simpler short-wave high-frequency
approximations cannot be constructed. The short-wave
low-frequency approximations (K ~ 1,€) < 1) of the Rayleigh-Lamb
equations, corresponding to quasi-statics, can be obtained by
discarding in equations (3.11), (3.14) terms of order O(Q2?) with
respect to unity. The result is

2K + sinh(2K) = 0 (3.28)

2K — sinh(2K) = 0 (3.29)
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It is well known that for all non-zero roots of these equations the
condition Im K 2 1 holds. These roots correspond to boundary
layers localized in narrow vicinities (of the order of the thickness) of

the edges of the layer.

Now we obtain asymptotic formulae for displacements and stresses.
At K ~ ) ~ 1 all the stresses and displacements are of the same

asymptotic order, i.e.
U1 ~ U, O11 ~ 099 ~ 033 ~ 021 (3.30)

This conclusion cannot be extended to the long-wave approximations
for which the small parameter K? enters into formulae (3.12). The
leading-approximations of the displacements and stresses are given

by:

the low-frequency approximation of the symmetric modes
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K~Qx1

5O (3.31)

where
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the low frequency approximation of the antisymmetric modes
K~VaO<1 |
Uy = R;@K%Q%,

Uo =— —R%KQ2,

R 1
h2(1—v?)
R 1
h12(1 — v?)
R v
h2(1—v?)
R 1
h4(1 — v?)
the high-frequency approximation of the symmetric modes in the
vicinities of the thickness stretch resonance frequencies

K°Q?C, (3.32)

011 — —E

K5Q2(<3 o C)a

0'22:E

K302,

033 — —E

021 = F ?:K4QZ(<2—1),
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(K<1,Q~1,Q—- A%, ~ K?)

1

= RK(A%,)? (5 sin A3, cos(AZ5¢C) + (—1)"sccos(A€ )) ,

= Rig(Ait) sin A3, sin(2¢A2,(), (3.33)
R 4 S . S S
011 = Ehz4(1 ey (A2,)*sin A%, cos(2A%,(),
T99 = ER ! A2 ) %sinA3, cos(22A%,0),
2= B0 o) st t
R v S . S S
T35 = Eh4(1 — V2)(A8t)4 sin A3, cos(scA2,(),
R

K(A‘;t)( sin A2, sin(seAZ,() + (— )"Hsm(AStC))

e A TE R
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the high-frequency approximation of the symmetric modes in the

vicinities of the thickness shear resonance frequencies
(K <<1,Q~1,9— A%, ~ K?)

up = —RxK (A5)?sin(sA%,) cos(A%,(),

= RixK?A®, tan(scA%))
(( 1)"+12%Sln(%AStC) + cos(xAZ,) sin(A gtg)) :

ER
h Zl—I—V

K?(A%,)* tan(s¢A%))

011 =

(1)1 2 con(oed5,0) — cos(diy) cos(A5,0) )
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FER. i
Bl +v
((=1)"* cos(3eA2,¢) — cos(3eA%),) cos(AZ,0))

022 = K?(A3),)? tan(seA2))

ER n Vaa% s
O33 = Tz( 1) +11 — y2K2( 5. )* tan(2eA%)) cos(22A%, (),
LR . S . s S
o1 = TEn V)K( Sh)?’ sin(2AZ, ) sin(AZ;();

the hight-frequency approximation of the antisymmetric modes in

the vicinities of the thickness stretch resonance frequencies
(K <<1,Q~1,Q— A% ~ K?)
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= RK(Agh) ( cos A% sin(»A% () + (— )nH%SlH(AahC))

2
o = —Ri— %( )7 cos(A%,) cos(3A%,Q),

ER v

ER. 1 )

_ a a A

022 h 7’4(1 1 V)( sh) COS( sh) Slﬂ(% hC)
ER. 1% a a

933 = @4(1 — VQ)( sn)" cos(Ag,) sin(3¢A%,0),

ER
_ K Aa 3
021 h 2(1 + ) ( Sh)

(cos(AZ,) cos(6A%,C) + (—1)" ! cos(A%C)ight)

the high-frequency approximation of the antisymmetric modes in the
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vicinities of the thickness shear resonance frequencies

(K<1l,a=1,0~1,Q—-A%,

U1 — —R%K(

~ K2)

o) cos(32Agy) sin(Ag,Q),

= RixK*A% cot(»xA%)
(( )(n+1)2%COS(%AahC)—SlIl(%A )cos(AahC))

ER v

011 =

1 —v

h Zl+y

K?(

a

sh

)2 cot(»A%))

(-1 sinehy ) = sin(ehy) sin(A6) )

(3.36)
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ER . s
hol + v
((=1)"sin(scA%, () + sin(2A%;) sin(AS, (),

K?(A%,)? cot(3cA)

022 =

ER V1% a a
033 = Tz(—l) = V2K2( 1 )% cot(3eA% ) sin(seA%, (),
ER s
— K(A® 3 AC AC
0-21 h 2(1 _|_ V) ( Sh) COS(% sh )COS( ]’LC)

The asymptotic error of formulae (3.31) - (3.36) coincides with that
of the leading approximations of the roots of the Rayleigh-Lamb
dispersion equations and is equal to O(K?).

Examining formulae (3.31) - (3.36) we arrive at the following
relations:
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in the case of formulae (3.31)

uy ~ Kuy, o091 ~ Kogg ~ Koy,

i)
oii ~ —u(t =1,3)

h
in the case of formulae (3.32)

wy ~ Kug, 099 ~ Koo ~ K20y

E
Tij ™~ EKQUQ (i=1,3)
in the case of formulae (3.33) and (3.35)

uy ~ Kug, 031 ~ Koy

E .
Okk ™ EUQ (Z = 1,2,3)

(3.37)

(3.38)

(3.39)
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in the case of formulae (3.34) and (3.36)

Uo ~~ Kul, Okl " KO’21 (340)
E .
0921 "~ Eul (Z — 1, 2,3)

The follows from the asymptotics above that the low-frequency
approximation of the symmetric modes and the high-frequency
approximation in the vicinities of the thickness shear resonance
frequencies are tangential (u; >> us) while the low-frequency
approximation of the antisymmetric modes and the high-frequency
approximation in the vicinities of the thickness stretch resonance
frequencies are transverse (u; < us).

Part 4. Elastic Plate Bending.

The model problem considered in the previous section provide
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iImportant preliminary information for asymptotic derivation of
various approximate equations. We now use the latter to deduce the
1D equations of plate bending from the 2D equations of elasticity
corresponding to plane strain of a layer.

Let us determine the asymptotic behavior of the stresses and strains
in the layer by the formulae

U1 — RT]UT, Uy — R’U,;, O — EO’,Z (41)
021 = E772<7§1a 022 = E7730§z, (1=1,3)

Where % << 1 - small geometric parameter R - a typical
wave-length.

Here all the quantities with the asterisk are of the same asymptotic
order.

— Typeset by Foil TEX — 40



The asymptotics proposed coincide with asymptotics (3.38)
corresponding to the long-wave low-frequency approximation of the
antisymmetric modes of a layer in the case of plane strain. In back,
K ~n<<1and )~ n. Such a choice is in agreement with the
usual idea. In this case, plate bending represents a long-wave
low-frequency state which is antisymmetric with respect to the
midplane.

We also assume that §; = Ry, = 32, t =7~ %(2) " '7, i.e. in the
same manner as for the long-wave low-frequency approximation of
the antisymmetric modes (see (3.18)).

We substitute formulae (4..1) into equations of part 1. Then, we
write down the equations obtained in an easy-to-use form

6’u§ 4 % 2 * *
—— =1 059 —N°V(0]1 + 039),

oC
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E?uik au% 2 *
— 2(1
1 0u) o Vo,
011 = 1= 1204, T 022 (4.2)
0054 _ ~ Joty o 1 0%u}
oC 0&q 2(1 + V) or2’
0035, _ ~dosy N 1 0%u}
¢ 061 2(1+v)or?

We also assume that differentiation with respect to the variables &;
and 7 does not change the asymptotic order of unknown quantities.

The boundary conditions on faces take from

Formulae (4.2) show that to within the error O(n?)
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(i) the variation of the length of the normal element,
(ii) the transverse shear deformation,
(iii) the Poisson influence of the stress component 095 on o711,

(iv) the tangential forces of inertia

are asymptotically negligible (see (4.2) — (4.2), respectively). The

factors enumerated define the Kirchhoff hypotheses in the theory
of plate bending. The analogous hypotheses in the shell theory are
known as the Kirchoff-Love hypotheses.

Let us construct the leading asymptotic approximation of the
problem (4.2)-(4.3). First, we neglect terms of order O(n?) in
equations (4.2).

They become
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*
ous

o,
dui  0uj
¢ 738
. 1 0uj
P11 T T 2061
v 0uj
O22 =7 5 ¢, (4.4)
00354 _ ~ doty
o¢ 0¢1
0035, _ ~ Josy N 1 0%u}
oC 0&q 2(1 + V) or2

Integrating the latter equations with respect to ( we establish the
dependence of the unknown quantities on the transverse coordinate
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(0)
u2 — Ug

ul — Cugl)v
« 1
011 = CU&), (4-5)

* (1)
099 = C‘733 ;

091 = 0;2) + (%o, (2)

O30 = Cg(l) + Cgag)

All the quantities with a suffix in parentheses do not depend on the
variable ¢ and are related by the formulae (the boundary conditions
(4.3) are taken into account)

(1) _ o
9¢1
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(2) 180'(1)

o — __
21 2 afl

0 2
‘751) — ‘751)7
0(1) _ 8(7(0) n 1 ({9211,&0)
22 851 2(1 e V) O72

(3) ].(90'(2)

o — __
22 3 agl

05? + 0532’) = 0.

Relations (4.6) represent a system of eight equations in eight
unknown 1D quantities. The system does not contain a small
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parameter. It follows from this that all the quantities with a suffix in
parentheses and, consequently, all the quantities with the asterisk are
of the same asymptotic order. This reasoning justifies asymptotics
(4.1).

Formulae (4.6) define the basic relations of the approximate theory
of plate bending in the 1D case. The governing equation of plate
bending in terms of the transverse displacement of the midplane can
be easily derived from them. Let us express all the quantities

entering into (4.6) in terms of component ugo)

0
) _Ouy)
1 851 )
0
C N 1 82u§ )
H 1—v2 0627
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0_(1) _ 1 aQu;O)
2 1 -2 962

3,,(0)
021 2(1—V2) af% Y ( . )

O-(O) _ 1 @3ugo)
L 2(1—0?) 9g

o1 w1 Puy)

2201 —-v?) o¢t 2(1+v) 072
0-(3) _ 1 84’&50)
22— 6(1 —v2) 0&F

Substituting now the expressions for the components 0%) and aég)

into the formula (4.6) we obtain the following 1D equation
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1 84ugo) N 1 82ugo)
3(1 —v2) o¢t  2(1+v) 072

=0, (4.8)

which coincides with the classical equation of plate bending in the
1D case.

Let us w = Ruéo). Then the Kirchhoff equation becomes

0w 0% w
With D = —2Eh°

3(1—v2)

— Typeset by Foil TEX — 49



