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Introduction to Statistical Modelling

This is a course on statistical modelling and especially linear
models. I do not assume prior knowledge of linear models, but I
take a fairly theoretical approach, so some familiarity with
distribution theory, statistical inference and linear algebra is a great
advantage.

A statistical model is a mathematical model, which includes a
stochastic component, of a process which generates (actual or
potential) data.



Note:

I There is no implication that the model is a physically correct
description of the data generating mechanism. “All models
are wrong, some models are useful” (G. E. P. Box).

I The aim is to represent the process which generates the actual
data (including measurement error, effects of imprecise
experimentation, etc.), not an idealised process which would
produce “perfect” data.

I Actual data are subject to influence from more sources than
we can ever hope to identify. The stochastic element of the
model aims at describing all of these influences.



Simple statistical models describe a single variable, e.g.
Yi ∼ N(µ, σ2); i = 1, . . . , n, with all pairs of random variables
(r.v.s) independent, where y1, . . . , yn are the heights of a sample of
6-year old boys, assumed to be realisations of r.v.s Y1, . . . ,Yn.

A typical model for a variable will include:

I an assumed family of probability distributions (e.g. the normal
distribution);

I a number of unknown parameters of the distribution (e.g. µ
and σ2).



Notes:

I Usually, we will use the data to estimate the unknown
parameters of the model and to draw inferences about them.

I It is also usually important to use the data to question the
assumptions of the model, e.g. the assumed distribution.

I The same model can be represented by different
parameterisations, e.g. σ instead of σ2.

I It is most common to use parameters which are closely related
to the central moments of the distribution, i.e. mean
(location), variance and covariance (dispersion), etc.

I We might try to estimate and draw inferences about
parameters relating to the central moments without assuming
a particular probability distribution (so-called semi-parametric
inference).



In this course, we will be considering models for datasets having
more than one variable. We will be interested in relationships
among the variables.

In particular, there will be one or more response variables,
Y1, . . . ,Ym, variation in which are of primary interest, and one or
more explanatory variables, X1, . . . ,Xq, whose relationships with
the response variables we must describe.



I In this course, we will mostly restrict ourselves to a single
response variable, Y . In practice, multivariate responses are
often analysed separately (especially if they are measuring
physically different things).

I Y might be continuous, typically on R or R+, or discrete,
typically on Z+

⋃
{0} or {0, 1, . . . ,m}.

I Y might represent the natural variable on a transformed scale,
e.g. log Height.

I Xr might be quantitative, either continuous or discrete, or
qualitative, either ordered, partially ordered or unordered.



An important distinction is between explanatory variables whose
values are:

I controlled in an experiment;

I used as a basis for selecting these particular sampling units in
a survey;

I unknown at the time the sample is selected.

This distinction determines the types of conclusions we can draw
from the results of our analysis. However, it has less impact on
how the analysis is carried out; in particular, we use the same
methodology for estimation in each case.



Conceptually, we will always assume that our data are recorded in
this form:

Variable
Observation X1 X2 . . . Xq Y

1 x11 x21 . . . xq1 y1
2 x12 x22 . . . xq2 y2
...

...
...

...
...

n x1n x2n . . . xqn yn



However the data were collected, it is usual to model relationships
between Y and the explanatory variables by:

I assuming a family of probability distributions (e.g. the normal
distribution) for Y ;

I assuming that (some or all of) the unknown parameters of the
distribution depend on the observed values of the explanatory
variables (e.g. µ = µ(x) and σ2 is constant);

I assuming some functional form for the relationship between
the parameters and the explanatory variables (e.g.
µ(x) = β0 + β1x).

Again we might try to do without the distributional assumption.



The Linear Model

A model which can be written as

E (Yi ) = µi =

p∑
s=1

βs fs(xi )

and V (Yi ) = σ2, with all r.v.s uncorrelated, where β1, . . . , βp are
unknown real-valued parameters and f1(·), . . . , fp(·) are functions
of the levels of the explanatory variables, is called a linear model,
or a general linear model.

If we additionally assume that Yi has a normal distribution, it is a
normal linear model.



Note:

I The model is linear in the parameters; fs(x) can be a nonlinear
function of x.

I The model can be written in this form, but it need not be.

I The parameters are often labelled in a different way, e.g.
β0, β1, . . . , βp−1.

I We might broaden the assumption from the process which
produced our data to the process more generally, i.e.

E (Y |X = x) =

p∑
s=1

βs fs(x),

which allows us, for example, to predict future observations or
to consider counterfactuals, i.e. data which could have been
collected, but were not.



The model is usefully written in matrix form,

E (Y) = µ = Xβ; V (Y) = σ2I,

where Y′ = [Y1, . . . ,Yn], µ′ = [µ1, . . . , µn], X is an n × p matrix
with ith row given by [f1(xi ), . . . , fp(xi )] and β′ = [β1, . . . , βp].

Then to specify a particular model, we need only specify a general
row i of X (and the labelling of the parameters in β).



The model can also be written as

Y = Xβ + ε; E (ε) = 0; V (ε) = σ2I,

where ε′ = [ε1, . . . , εn] and the εi s are known as error terms.

This form of the model is convenient for obtaining some theoretical
results, but mainly it is useful for model checking.

A plot of the data y1, . . . , yn does not tell us anything about
whether they come from a normal distribution or have constant
variance, since the model states that they are from different
distributions.

On the other hand, a plot of residuals (which estimate the εi s) can
allow such model checking, since they should all be from the same
distribution.



We will now consider some commonly used examples of linear
models.

The simple linear regression model:

µi = β0 + β1xi .

The multiple linear regression model:

µi = β0 +

q∑
r=1

βrxri .



The second order polynomial regression model:

µi = β0 +

q∑
r=1

βrxri +

q∑
r=1

βrrx
2
ri +

q−1∑
r=1

q∑
s=r+1

βrsxrixsi ,

sometimes called the second order response surface model.

Transformed regression models, e.g.

µi = β0 + β1 log xi

or
µi = β0 + β1

√
xi .

A subtle point is that these are linear models, given the
transformation used. If the transformation is itself to be estimated
from the data, e.g. which power of x to use, then these models
become nonlinear.



Analysis of variance models: if the explanatory variables are
qualitative, we use indicator variables to represent their effects. For
example, if there are m categories, we can write

µi = β1x1i + β2x2i + · · ·+ βmxmi ,

where

xri =

{
1 if observation i is from category r ;
0 otherwise,

so that βr represents the expected response from category r .

More usually, we write

µi = β0 + β2x2i + · · ·+ βmxmi ,

so that category 1 is treated as a baseline and βr represents the
difference in expected response between category r and category 1.

This parameterisation makes it simpler to include many explanatory
variables, some qualitative, some quantitative, in the model.



We can also deal with the model

E (Y) = Xβ; V (Y) = σ2G, (1)

where G is a known, nonsingular, matrix.

There exists a unique symmetric nonsingular matrix G1/2 such that
G = G1/2G1/2.

Considering Z = G−1/2Y, we have

E (Z) = G−1/2Xβ = Uβ; V (Z) = σ2I,

so that model (1) is a linear model in Z from which we can
estimate (and draw inferences about) the parameters of model (1)
for Y.

This is useful in some applications, but not universally, since in
practice it is unusual to know G.



Justifications for the Linear Model

Why should we use linear models?

If the functional form relating the parameters of Y to x is known
and nonlinear, then we should not use linear models.

However, in many areas of scientific investigation and most areas
of clinical medicine, social sciences and business, there is no known
model.

Then if we locally approximate the true, but unknown, function

µ(x) = g(x;θ),

using a Taylor series expansion, truncated after low order terms, we
obtain low order polynomial regression models.



A second justification applies to almost all designed experiments.

In an experiment, a number of treatments will be compared by
applying each to a number of experimental units and observing the
response from each unit.

The basic model which will (almost) always be assumed is

yi(r) = ui + tr ,

where yi(r) is the response on unit i if treatment r is applied, ui is
the response on unit i when a treatment with zero effect is applied
and tr is the effect of treatment r .

The model can also be written

yi(r) = µ+ tr + ei , (2)

where µ is the mean of ui across the units and ei is the deviation
of unit i from this mean, with

∑
ei = 0.



Note:

I this is a deterministic mathematical model, not a statistical
model;

I the only assumption is additivity of treatment and unit effects;

I yi(r) might represent a transformation of the measured
response to ensure additivity.



Now, randomization provides the basis for inference from the
designed experiment.

We will set up the theory for a completely randomized design for n
experimental units with t treatments each applied to nt = n

t
experimental units.

Perform randomization by:

1. writing down the combinatorial design;

2. randomly allocating units to unit labels.



Over the population of possible randomizations, the deterministic
model (2) becomes the stochastic model

Yi(r) = µ+ tr +
n∑

j=1

δijej ,

where δij = 1 if unit j is randomized to unit label i and δij = 0
otherwise.∑n

j=1 ej = 0 and
∑n

j=1 e
2
j = (n − 1)σ2, where σ2 is the

(population) variance of the ej .

Then
n∑

j=1

n∑
l=1
l 6=j

ejel = −
n∑

j=1

e2j = −(n − 1)σ2.



We also have

E (δij) =
1

n
;

E (δ2ij) =
1

n
⇒ Var(δij) =

n − 1

n2
;

E (δijδil) = 0 ⇒ Cov(δij , δil) = − 1

n2
;

E (δijδkj) = 0 ⇒ Cov(δij , δkj) = − 1

n2
;

E (δijδkl) =
1

n(n − 1)
⇒ Cov(δij , δkl) =

1

n2(n − 1)
.



Letting εi =
∑n

j=1 δijej , the model is

Yi(r) = µ+ tr + εi , (3)

where the variance-covariance structure of ε is known.

Hence the deterministic model (2) leads inevitably, under
randomization, to a linear model.

The theory extends to designs which use more complicated forms
of restricted randomization, such as block designs, row-column
designs, split-plot designs, etc.

These give model (3), but with a more complicated
variance-covariance structure.



A similar justification for linear models can be obtain through
sampling theory for designed surveys.

Hence (in carefully planned statistical investigations) if the levels
of the explanatory variables are known before the data on the
response variables are collected, a linear model is the correct
model, at least for an initial analysis of the data.

In studies in which the values of the explanatory variables are
unknown before the data are collected, it is rare for the true model
form to be known, so a local polynomial approximation is often
appropriate.

Hence linear models have enormously wide application.



Estimation

We have the defined the general linear model, most usefully
written in matrix form

E (Y) = µ = Xβ; V (Y) = σ2I,

where Y′ = [Y1, . . . ,Yn], µ′ = [µ1, . . . , µn], X is an n × p matrix
with ith row given by [f1(xi ), . . . , fp(xi )] and β′ = [β1, . . . , βp].

Now we concentrate on estimating β. We will discuss the
estimation of σ2 later.



The idea of least squares estimation is that we find an estimator β̂
of β which minimises

S =
n∑

i=1

(Yi − µi )2.

This can be written

S = (Y − Xβ)′(Y − Xβ)

and we find the minimum by differentiating S with respect to β
and equating to zero.



Writing
S = Y′Y − 2β′X′Y + β′X′Xβ,

we differentiate with respect to β to get

dS

dβ
= −2X′Y + 2X′Xβ

and equating to 0 gives the normal equations,

X′Xβ = X′Y. (4)

Since X′y is in the vector space generated by the columns of X′X,
a result from linear algebra implies that the normal equations
always have a real solution.



Let β̂ be any solution of equation (4). Then, for any β,

S = (Y − Xβ)′(Y − Xβ)

= {Y − Xβ̂ + X(β̂ − β)}′{Y − Xβ̂ + X(β̂ − β)}
= (Y − Xβ̂)′(Y − Xβ̂) + (β̂ − β)′X′X(β̂ − β)

≥ (Y − Xβ̂)′(Y − Xβ̂)

and so all solutions β̂ of the normal equations minimise S . The
minimum is

(Y − Xβ̂)′(Y − Xβ̂),

which is the residual sum of squares.

For any p × 1 vector c, c′β̂ is defined to be a least squares
estimator of c′β, where β̂ is any solution of equation (4).



Example (simple linear regression): If β′ = [β0 β1] and

X =


1 x1
1 x2
...

...
1 xn

 ,
then

X′X =

[
n

∑
xi∑

xi
∑

x2i

]
and

X′Y =

[ ∑
Yi∑
xiYi

]
.

The normal equations, then, are

β0n + β1
∑

xi =
∑

Yi

β0
∑

xi + β1
∑

x2i =
∑

xiYi

}
. (5)



Consider the case where xi = x ∀i = 1, . . . , n. Then equations (5)
reduce to the single equation

β0 + β1x = Ȳ

and any β̂0 and β̂1 which satisfy this equation are least squares
estimators of β0 and β1.

The function of parameters c′β, where c′ = [1 x ], has a unique
least squares estimator c′β̂ = β̂0 + β̂1x = Ȳ .
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