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Sampling Distributions of Estimators

In order to construct confidence intervals and hypothesis tests, it is
necessary to know the sampling distributions of the relevant
estimators.

In order to make progress we make the distributional assumption
Y ∼ N(Xβ, σ2I).

Theorem
Let C be a p × q matrix with columns c1, . . . , cq such that c′sβ are
simultaneously estimable for all s = 1, . . . , q. Then

C′β̂ ∼ Nq

(
C′β, σ2C′(X′X)−C

)

This follows immediately from the fact that β̂ is linear in Y.



Theorem

SSR
σ2
∼ χ2

n−r .

Theorem
C′β̂ and SSR are independently distributed.

The following theorem follows immediately from the previous
three, using some results on distribution theory.

Theorem
For any estimable function c′β,

c′β̂ − c′β√
S2c′(X′X)−c

∼ tn−r .



Inference for a Single Function

Tests and confidence intervals for a single function of the
parameters follow immediately.

To test H0 : c′β = θ0, use the test statistic

T =
c′β̂ − θ0√
S2c′(X′X)−c

.

Under H0, T ∼ tn−r .

A 100(1− α)% confidence interval for c′β is given by

c′β̂ ± tn−r ;1−α/2

√
S2c′(X′X)−c.



Note that this is a generalization of what is given by standard
packages:

I It applies whether or not X is of full rank.

I It applies to any estimable function of the parameters and not
just the parameters themselves.

I It applies to any null value θ0 and not just zero.



Inference for Several Functions

Theorem
Let SSR0 be the minimum of S subject to C′β = θ0. Then

I SSR and SSR0 − SSR are independently distributed;

I SSR0− SSR has a noncentral χ2 distribution with q degrees of
freedom;

I if C′β = θ0, then
SSR0−SSR

σ2 ∼ χ2
q.

An immediate corollary is that if C′β = θ0, then

(SSR0 − SSR)/q

SSR/(n − r)
∼ Fq,n−r .



Tests and confidence regions for several functions of the
parameters follow immediately.

To test H0 : C′β = θ0, use the test statistic

F =
(SSR0 − SSR)/q

SSR/(n − r)
.

Under H0, F ∼ Fq,n−r .

These include (but are not restricted to) the usual global and
partial F -tests in analysis of variance, which have θ0 = 0.



These results can be extended further.

If C is partitioned as [C1 C2], with C1 having dimensions n × q1,
θ0 is partitioned as θ′0 = [θ′1 θ′2], with θ1 having dimensions
q1 × 1, and SSR1 is the minimum of S subject to C′1β = θ1, then,
using similar arguments to Theorem 10, under H0 : C′β = θ0,

(SSR0 − SSR1)/(q − q1)

SSR/(n − r)
∼ Fq−q1,n−r .

This provides a basis for using hypothesis tests in model building.

Note that when comparing two reduced models, we should still use
the residual sum of squares from the full model (although this
might be more or less well defined).



Large Sample Inference

We can use the Central Limit Theorem to justify our inferences for
large samples without having to make distributional assumptions
initially.

We do, however, have to be a bit careful. The following theorem
tells us what we can do.

Theorem
If E (Y) = Xβ, V (Y) = σ2I, X is of full rank and maxi hii → 0 as
n→∞, where hii are the diagonal elements of H = X(X′X)−1X′,
then

C′β̂ → Nq

(
C′β, σ2C′(X′X)−1C

)
as n→∞.



H is the hat matrix and hii is the leverage of the ith observation.

The leverage measures the remoteness of a point in the x-space.

This is one more reason why study design is important.

How small maxi hii has to be before we can invoke CLT depends
on how good an approximation we require and how far from
normality the distribution is.

A rule of thumb is that if the distribution is not too heavy-tailed or
multimodal, then normal theory inference is acceptable if
maxi hii < 0.2.

Even though we are using asymptotic results, we still usually use
the t and F distributions, rather than standard normal and χ2.



Small Sample Inference

In small samples, if it is not considered appropriate to make
distributional assumptions, suggested methods of inference include:

I permutation tests, especially in experiments in which the
permutations can be defined as the set of possible outcomes
of the randomization;

I bootstrapping the residuals, y − µ̂;

I Bayesian methods with uncertainty about the distributional
form expressed using priors.



Ratios of Parameters

It is possible to obtain confidence intervals for ratios of parameters
using Fieller’s method.

For example, assume that

µi = β0 + β1xi + β11x
2
i

and we wish to estimate the location of the stationary point on the
curve

x0 = − β1
2β11

.

Then
β̂1 + 2β̂11x0 ∼ N(0, σ2c′(X′X)−c),

where c′ = [0 1 2x0].



It follows that a 100(1− α)% confidence interval for x0 is given by
the set of all x such that∣∣∣∣∣ β̂1 + 2β̂11x√

S2c′(X′X)−c

∣∣∣∣∣ ≤ tn−r ;1−α/2.

Note:

I This idea extends to multiple dimensions.

I This confidence interval will sometimes have infinite area, i.e.
it might be (−∞,∞).

I This can be avoided by, for example, using (parametric)
bootstrap confidence intervals, which always have finite
length.

I It can be shown, however, that any confidence interval which
always has finite length must have minimum coverage
probability of zero.



We are probably more interested in the location of the maximum
or minimum (within a particular range of x), rather than the
stationary point.

There is probably no satisfactory method for obtaining frequentist
confidence intervals in such cases.

Bootstrapping can be used, but will again give intervals with
minimum coverage zero.

My recommendation would be to employ Bayesian methods.
Samples from the posterior distribution of x0 are easily obtained
from samples from the posterior distribution of β, e.g. by Gibbs
sampling.



Methods for Comparing Models

There are many ways in which we select a particular linear model
from a set of candidate models, e.g.

I Fitting polynomial or factorial models of increasing orders.

I Variable selection methods in which we compare all possible
models using a criterion such as Mallows’ Cp (or the adjusted
C̄p), Akaike’s information criterion (AIC), Schwarz’s Bayesian
information criterion (BIC), etc.

I Sequential variable selection methods, such as stepwise
selection or stochastic search variable selection.

I Use of a carefully chosen subset, e.g. a fractional replicate of
the candidate models.

I Bayesian model choice methods.

These have become even more important with increasingly large
data sets.



Variable selection methods can be thought of as an alternative to
biased estimation methods, e.g. whereas ridge regression shrinks all
the estimates towards zero, variable selection forces some to zero
and leaves others alone.

Other methods, such as the lasso, represent a compromise, forcing
some estimates to zero and shrinking others.

From this viewpoint, PLS has a the unusual property of stretching
some estimates and shrinking others.

The following comments apply to these methods as well as to
variable selection, but often in unknown ways.



Inference After Variable Selection

All the frequentist inference we have discussed so far is valid only
for the use of a single model.

If the model was selected from among a set of candidates, there is
a selection bias. If the number of candidate models is very large,
the bias might be enormous.

The idea is best understood through a simple example.

Example: Assume Y ∼ N(µ, σ2I). Say the true model is µi = β0.

If we fit the single model µi = β0 + β1x1i , then the probability that
β̂1 is significantly different from zero at the 5% level is 0.05.



If we fit 100 models µi = β0 + β1x1i , · · · , µi = β0 + β1x100i ,
where the explanatory variables are orthogonal, and select the one
with the largest value of the F statistic, then the probability that
β̂1 is significantly different from zero is approximately

1− 0.95100 = 0.9941,

so we are almost certain to find the regression significant.

The existence of selection bias is well understood and widely
recognised, but there is no clear agreement on what to do about it.

Opinion: In a well-designed confirmatory study, we should not use
model selection, but should test pre-planned functions of the
parameters. We can adjust for multiple testing (or use false
discovery rates, etc.), as appropriate.

In an exploratory study we should use model selection, but not
follow it up with formal inference.



Residual Analysis

The assumptions of constant variance and normality should, if
possible, be checked.

This is most often done using plots of residuals, e.g. against fitted
values and normal probability plots.

More formal methods for testing the assumptions have been
suggested, but I would not recommend them (because they are not
true hypothesis tests). Stick to graphical methods.

The only exception to this is in large and informative data sets, for
which we can nest our model in a more general model, e.g. one
which does not assume constant variance.



Weighting

We have seen that if E (Y) = Xβ and V (Y) = σ2G, where G is
known, the model can be rewritten as a linear model. This is
known as generalized least squares or, if G is diagonal, with
trace(G) = n, as weighted least squares.

Now consider the case where E (Y) = µ = Xβ and V (Y) = σ2G,
where G is diagonal, but unknown.

We typically assume a parametric form relating gi to µi or xi ,
where gi is the ith diagonal element of G.

For example, we might assume that gi = xθi , where θ is an
unknown parameter.



We usually fit such models using iterated weighted least squares,
i.e.

1. start with the least squares estimates;

2. use the residuals to estimate θ and hence gi ;

3. use these estimates in a weighted least squares fit to
re-estimate β;

4. iterate steps 2 and 3 until convergence to β̂G .

It can be shown that, asymptotically,

β̂G ∼ N(β, σ2(X′G
−1

X)−1).

Note, however, that the variance depends on G, which is a
function of θ and not Ĝ, which is a function of θ̂.

The quality of the asymptotic approximation depends on how well
we estimate θ. In particular, standard errors are usually
underestimated if a simple plug-in estimator is used.



Transformations

The famous Box-Cox family of transformations is given by

Y (λ) =

{
(Y λ − 1)/λ if λ 6= 0;
logY if λ = 0.

The assumed model is

Y
(λ)
i ∼ N(x′iβ, σ

2),

with Yi s independent.

The main purpose of this transformation is to ensure symmetry
(normality) in the distribution of Y .

In a randomization framework, it ensures additivity of unit and
treatment effects.



The best fitting λ will be chosen by maximum likelihood and
should stabilise the variance.

The MLEs are easily obtained by using an iterative maximisation
over λ and finding the least squares estimates of β, at each λ, i.e.
we minimise

S(λ) =
n∑

i=1

{
Y

(λ)
i − x′iβ

}2
.

It can be shown that, for a fixed λ,

{S(λ)− S(λ̂)} → χ2
1.

This means that we can conduct all the usual inference, but with
one degree of freedom “lost” for estimating λ.



Both weighting and transformation rely on the assumption that the
variance increases (or decreases) with µ or with x . Whereas
weighting assumes a symmetrical distribution, transformation
assumes that the distribution becomes more asymmetrical the
smaller the variance is.

It is also possible to combine transformations and weighting (if the
data are sufficiently rich), to simultaneously correct for
heteroskedasticity and asymmetry.

Other families of transformations are possible.



It is also possible to transform both sides, i.e.

Y
(λ)
i ∼ N

((
x′iβ
)(λ)

, σ2
)
.

This corrects for asymmetry, while maintaining the functional
relationship between µ and the explanatory variables.

This makes most sense when the functional form of µ is known
(and so is much more common with nonlinear functional forms).
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