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Analysis of Designed Experiments

Theory of analysis of data from designed experiments is based on
the randomisation of the experiment determining the appropriate
analysis of variance and linear model.

Designed experiments and linear models are inextricably linked, but
sometimes more advanced modelling is appropriate.

Often experimenters:

I do over-simple design and/or analysis; or

I ignore the design when analysing the data and/or ignore the
appropriate analysis when designing the experiment.



Here, we aim to link several types of model, more advanced than
linear models, to designed experiments.

The emphasis is on the link between the structure of the design
and the precise formulation of the model.

Similar ideas apply to data from structured sample surveys, or
indeed any data where there is a clear structure, nested, crossed or
a combination of these.



Randomisation Analysis of Experimental Data

Planning an experiment:

1. objectives lead to treatments;

2. experimental units identified;

3. unit structure defined;

4. the responses are identified;

5. restrictions on allocation of treatments to units identified;

6. treatments allocated to units to get efficient design.



Randomisation analysis requires only the assumption that Response in unit
i when treatment

r is applied

 =

 Quantity
depending only

on the unit

+

 Quantity
depending only

on the treatment


Consider a field experiment in 20 plots to compare the yields of 4
varieties of crop each replicated 5 times. Assume that

yi(r) = m + ei + tr ,

where yi(r) is the yield from plot i if variety r is applied, where∑20
i=1 ei =

∑4
r=1 tr = 0.



Unrandomised design:

Plot Variety Plot Variety

1 1 11 3
2 1 12 3
3 1 13 3
4 1 14 3
5 1 15 3
6 2 16 4
7 2 17 4
8 2 18 4
9 2 19 4

10 2 20 4

Randomly allocate plot labels to plots.



The above deterministic model now becomes stochastic over the
population of possible randomisations, i.e.

Yi(r) = m + εi + tr ,

where εi = ej for some j determined by the outcome of
randomisation.

Note that εi has expectation 0 and constant variance.



This is where the usual linear model comes from. No assumption
about a population from which the units are sampled has been
made.

Other orthogonal block structures can be developed by rewriting
the unit effect ei in an appropriate way, e.g. with r rows and c
columns we write

yij(r) = m + ri + cj + eij + tr ,

which under randomisation becomes

Yij(r) = m + ρi + γj + εij + tr .

Appropriate randomisations ensure:

I least squares estimators are BLUEs of all treatment contrasts,
e.g. factorial contrasts, linear and quadratic contrasts;

I MSRes in each stratum is BUE of the variance for that
stratum.



Other Forms of Analysis

The obvious alternative is to assume that the units are a sample
from a (possibly structured) population of potential units.

This allows inferences to be made about the population of
potential units, not just those used in the experiment, but is reliant
on the additional assumptions about the nature of the population.

Then, for example, the randomised block model arises if we assume
the units in different blocks are random samples from different
populations. If the block populations are assumed to be a sample
from a super-population, we have random block effects, as in the
randomisation analysis.



If we randomise the experiment in a way that corresponds to the
population structure, the two analyses are identical.

This is obviously a good idea!

Then only the generalisation from the units used to the population
depends on the assumptions made about the population. The
analysis will be valid in any case.



Pure randomisation based analysis is frequentist, but it provides a
natural baseline for a model based analysis, whether likelihood
based or Bayesian.

Even the purist Bayesian viewpoint does not object to
randomisation and should not object to including blocking factors
defined by the randomisation in the model.

Doing this allows us to separate:

I conclusions obtained from the randomisation analysis (which
are robust to assumptions);

I conclusions which depend on the model assumptions;

I conclusions which depend on a particular prior distribution.



Nearly Saturated Factorial Treatment Structures

To investigate the effects of temperature (coded as X1) and
pressure (coded as X2) on the yield of a reaction, the first
experiment might use the design:

Treat X1 X2

1 −1 −1
2 −1 1
3 1 −1
4 1 1
5 0 0
5 0 0
5 0 0
5 0 0



Obtain the following analysis of variance:
Source df

TemperatureL 1
PressureL 1
TempL×PressL 1
Residual: 4:

Lack of fit 1
Pure error 3

Total 7

From the randomisation viewpoint, we obtain 4 orthogonal
treatment contrasts:

Source df

Treatments: 4:
TemperatureL 1
PressureL 1
TempL×PressL 1
Lack of fit 1

Residual 3

Total 7



This makes clearer the meaning of “pure error” - it is just the
usual unbiased estimator of σ2.

If lack of fit, or the interaction, are close to zero, should we replace
the unbiased estimator of σ2 with a biased one including these
terms in the residual?

No, unless there is some reason why we must get as good an
estimate from this small experiment as possible. Not usually the
case.



Block Design

Block I Block II
Treat X1 X2 Treat X1 X2

1 −1 −1 1 −1 −1
2 −1 1 2 −1 1
3 1 −1 3 1 −1
4 1 1 4 1 1
5 0 0 5 0 0
5 0 0 5 0 0

How many df for pure error?



Only the randomisation analysis gives a sensible answer.
Source df

Blocks 1
Treatments: 4:

TemperatureL 1
PressureL 1
TempL×PressL 1
Lack of fit 1

Residual: 6:
“Lack of fit” 4
“Pure error” 2

Total 11



Saturated Structures

To study the effects of catalyst (two types), amount of chemical A
(low/high), amount of chemical B (low/high), stirring (yes/no)
and shaking (yes/no) on a chemical system, use a single replicate
of 25 factorial treatment combinations completely randomised.

Source df

Catalyst 1
Chemical A 1
Chemical B 1
Stirring 1
Shaking 1
2-factor interactions 10
3-factor interactions 10
4-factor interactions 5
5-factor interaction 1
Residual 0

Total 31



Get BLUEs of all factorial effects, but no estimator of σ2 with
which to carry out inference.

Possible solutions:

1. Do nothing! Exploratory analysis is all we need, e.g. Normal
plot of estimated effects.

2. Estimate σ2 from the small effects in the Normal plot. Biased
estimator.

3. Assume a priori that high order interactions will be zero.
Strong assumption and several small, but non-zero, effects
can cause unquantifiable bias. Given this assumption, 2
replicates of a half-fraction would be better.



4. Use a prior estimate of σ2. Strong assumption.

5. Use a prior distribution for σ2. Experiment provides no
information about σ2, so still a strong assumption.

6. Perform a fully Bayesian analysis, with priors on each effect
and updating all priors using Bayes’ Theorem.

I recommend 1 or 6, depending on what conclusions we want to
draw.



Supersaturated Structures

Study more factors than there are experimental units, e.g. crash
testing cars.

No sensible randomisation analysis, perhaps fully Bayesian analysis
is the only sensible one.



Quantitative Treatment Structures

Consider an experiment in enzyme kinetics with 3 replicates at
each substrate concentration 10, 20, 40, 80, 160, completely
randomised.

Biochemical theory implies

E (Yij) =
θ0xi
θ1 + xi

.

Natural to fit this by nonlinear least squares - gives estimates of θ0,
θ1 and σ2.



This is not an unbiased estimator of σ2. Get this from the
randomisation analysis. Difference represents lack of fit.

Source df

Treatments: 4:
Michaelis-Menten model 1
Lack of fit 3

Residual 10

Total 14

The Michaelis-Menten component in the analysis of variance does
not correspond to a linear contrast, but the interpretation is the
same.



If we use a randomised complete block design, we simply add a
random effect for blocks as usual.

Source df

Blocks 2
Treatments: 4:

Michaelis-Menten model 1
Lack of fit 3

Residual 8

Total 14



The error structure of NLLS has been questioned and instead a
transform-both-sides model suggested:

Y
(λ)
ij =

(
θ0xi
θ1 + xi

)(λ)

+ εij ,

where

Y (λ) =

{
Y λ−1

λ , λ 6= 0;
logY , λ = 0.

This is a good idea, but can be difficult to fit in practice.

Randomisation theory allows a two-stage analysis which greatly
simplifies the computation.



The assumption now is that unit and treatment effects are additive
on some transformed scale, i.e.

y
(λ)
i(r) = m + ei + tr .

We fit the model
Y

(λ)
i(r) = m + εi + tr ,

i.e. estimate a Box-Cox transformation for a completely
randomised design model.

Now fixing λ̂, use NLLS to fit

Y
(λ̂)
ij =

(
θ0xi
θ1 + xi

)(λ̂)

+ εij ,

adjusting the residual term by one df.



Models for Complex Unit Effects

Spatial analysis of field experiments and modelling time trends in
laboratory experiments have become fashionable.

The reason is an alleged increase in precision.

These methods involve replacing the unit effect, ei , in our basic
model with something more complex, e.g. an AR(1)×AR(1)
process in field experiments.

Block effects should be included in the model, so that we can
separate conclusions that depend on the modelling assumptions
from those that do not.



The model implied by the randomisation will often be adequate, so
that no other strong assumptions are needed.

When the stronger assumptions lead to great increases in
efficiency, it is often a sign that the experiment has been badly
designed, e.g. with blocks that are too large.

Rescuing badly designed experiments seems to be the main
purpose of these methods. However, the “rescue” is so dependent
on assumptions that it is questionable whether these should still be
called experiments.



Saturated Structures in Sequential Runs

A small experiment to study the effects of moisture content (coded
as X1), addition of enzyme (coded as X2), mixing speed (coded as
X3) and baking temperature (coded as X4) on properties of bread.

A half-fraction, units are run one after another.

Time X1 X2 X3 X4

1 -1 -1 1 1
2 1 -1 -1 1
3 1 1 1 1
4 1 1 -1 -1
5 -1 1 -1 1
6 -1 -1 -1 -1
7 -1 1 1 -1
8 1 -1 1 -1



A linear time trend is expected, but the experiment is too small to
sensibly use blocks of size 2.

We could completely randomise, then model unit effects as

ei = β1vi + εi ,

where vi is the centred time of run i .

Since the full treatment model is inestimable, we might assume all
interactions are zero and estimate the main effects.

This analysis is typical, but relies heavily on strong assumptions.

Better to either make neither of these assumptions or to do a fully
Bayesian analysis.



Assume full factorial treatment model.

Independent priors for each factorial effect, e.g. βr ∼ N(0, 4σ2),
βrs ∼ N(0, 0.25σ2), βrst ∼ N(0, 0.01σ2) and
βrstu ∼ N(0, 0.0001σ2).

Assume general unit model, parameterised as a polynomial,
i.e. ei = β1vi + β2v

2
i + · · ·+ β7v

7
i + εi .

Independent priors for each polynomial time effect,
e.g. β1 ∼ N(0, σ2), β2 ∼ N(0, 0.01σ2), etc.

Prior for σ2: scaled inverse-Gamma.

Typically will give a similar analysis to that described above, but
with more uncertainty implied by the priors.



Discrete Data

Textbooks almost always present designed experiments in the
context of a single, univariate, continuous response measured from
each experimental unit. This is rare in practice. Can we deal with
other situations?

Response is number of infected plants out of 30.



Given the possible outcomes, the original model,

yi(r) = m + ei + tr ,

makes no sense.

Instead a reasonable assumption seems to be

Yi(r) ∼ Binom(30, πi(r)),

where πi(r) depends on the plot and the treatment.

We have assumed a distribution, but we can apply the ideas of
randomisation based analysis to the unobservable linear predictor,
e.g. assume

log

(
πi(r)

1− πi(r)

)
= ηi(r) = m + ei + tr .



Under complete randomisation, this becomes

ηi(r) = m + εi + tr ,

where εi is a random effect, as before.

If we approximate εi as being Normally distributed, we have a
generalised linear mixed model (GLMM).

We can include block effects in the usual way.

Thus GLMs have no place in the analysis of data from designed
experiments.



Longitudinal Data

An experiment to compare two growth hormones for cattle.

The experimental unit is the animal, but we have repeated
measurements on each unit.

As with discrete data, we can first model the responses from each
experimental unit, e.g. if yij is the jth measurement from animal i ,
assume

Yij = β0i + β1ivij + εij ,

where E (εij) = 0 and

Var(εi ) = σ2


1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ
ρ3 ρ2 ρ 1

 .



Combine this model with the usual randomisation model by
assuming that the unobserved β0i and the unobserved β1i are
additive in terms of unit and treatment effects.

Under randomisation we get

Yij(r) = m0 + αi + t0r + (m1 + γi + t1r )vij + εij ,

where αi and γi are random effects. This is the random slopes
model.

Could apply to repeated measurements in space, rather than time.



Multivariate Responses

In many experiments there is more than one response variable.
Usually, we analyse each one separately.

Consider an experiment to compare the effects of several factors on
the baking pastry dough. Two responses are the cross-sectional
expansion index and the longitudinal expansion index.



The multivariate analysis of variance model is[
y1i(r)
y2i(r)

]
=

[
m1

m2

]
+

[
e1i
e2i

]
+

[
t1r
t2r

]
.

Under randomisation, this becomes[
y1i(r)
y2i(r)

]
=

[
m1

m2

]
+

[
ε1i
ε2i

]
+

[
t1r
t2r

]
,

where ε1i and ε2i are correlated because they are randomised to
the same experimental unit.

This model implies that the treatments could have completely
different effects on different responses.

A reasonable alternative model is[
y1i(r)
y2i(r)

]
=

[
m1

m2

]
+

[
ε1i
ε2i

]
+

[
t1r
φt1r

]
.

This can be fitted by NLLS.



Final Comments

The main message is that the model used should be determined
initially by the design of the experiment, especially the
randomisation.

If the basic theory of designed experiments had been worked out in
the 1970s and 80s, instead of the 1920s and 30s, perhaps these
methods would have been developed in the same way. The
required computation that was not available before then.

There are many types of more complex models which are becoming
available and the same ideas can be used with them.
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