Theory of Linear Models Exercises 3

27 January 2020

1. Consider the half-replicate fractional factorial design for three factors, each at two levels, plus two centre points:

X_1	X_2	X_3
-1	-1	-1
-1	1	1
1	-1	1
1	1	-1
0	0	0
0	0	0

Find a 95% confidence interval for $\beta_1 + \beta_{23}$ if $\beta_1 + \beta_{23} = 10.03$ and $s^2 = 5.34$. How would the result be interpreted?

2. Consider the following data:

Y	X_1	X_2	X_3
10	-1	-1	-1.0001
12	-1	1	-0.9999
20	1	-1	1.0000
22	1	1	1.0000
16	0	0	0.0000
18	0	0	0.0000

- (a) Test the hypothesis $\beta_1 = \beta_2 = 0$ against a two-sided alternative.
- (b) Test the hypothesis $\beta_1 = \beta_3 = 0$ against a two-sided alternative.
- (c) Calculate the leverage of each observation.
- (d) Assuming that the experiment was completely randomized, carry out a permutation test of $\beta_1 = 0$ against a two-sided alternative.
- (e) Comment on the results.
- 3. For the general second order polynomial regression model, with q explanatory variables, find the location of the stationary point as a function of the parameters. (Hint: rewrite the model using the vector $\mathbf{b}' = [\beta_1 \cdots \beta_q]$ and the matrix

$$\mathbf{B} = \begin{bmatrix} \beta_{11} & \frac{1}{2}\beta_{12} & \cdots & \frac{1}{2}\beta_{1q} \\ \frac{1}{2}\beta_{12} & \beta_{22} & \vdots \\ \vdots & \ddots & \frac{1}{2}\beta_{(q-1)q} \\ \frac{1}{2}\beta_{1q} & \cdots & \frac{1}{2}\beta_{(q-1)q} & \beta_{qq} \end{bmatrix}$$

and then use vector differentiation.)