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Abstract 
Large calibrated datasets of 'random ' natural im- 

ages have recently become available. These make possi- 
ble precise and intensive statistical studies of the local 
nature of images. We report results ranging from the 
simplest single pixel intensity to joint distribution of 3 
Haar wavelet responses. Some of these statistics shed 
light on old issues such as the near scale-invariance 
of image statistics and some are entirely new. We fit 
mathematical models to some of the statistics and ex- 
plain others in terms of local image features. 

1 Introduction 
There has been much attention recently to the 

statistics of natural images. For example, Ruder- 
man [7] discusses the approximate scale invariance 
property of natural images and Field [4] linked the 
design of the biological vision system to the statis- 
tics of natural images. Zhu, Wu and Mumford [9] 
set up a general frame work for natural image mod- 
eling via exponential models. Simoncelli[l] uncovered 
significant dependencies of wavelet coefficients in nat- 
ural image statistics. In most of these papers, sim- 
ple statistics are calculated from which some proper- 
ties are derived to prove some point. But little effort 
has been made to systematically investigate the ex- 
act statistics that underline natural images. Many of 
these papers base their calculation on a small set of 
images, casting doubt on how robust their results are. 
Also, because of the small sample sets, rare events 
(e.g. strong contrast edges) which are important vi- 
sually may not show up frequently enough to stabilize 
the corresponding statistics. We tried to overcome 
these problems by using a very large calibrated im- 
age data base (about 4000 1024 x 1536 images taken 
by digital camera), provided by J.H. van Hateren (for 
details, see [5]). Figure 1 shows some sample images 
from this data base. These images measure light in 
the world up to an unknown multiplicative constant 
in each of the image. We will only work on the log 
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Figure 1: Four images from the data base 

intensity, and use statistics which do not contain the 
constant (now an additive constant). We believe our 
work here can serve as a solid starting point for fur- 
ther image modeling and provide guidance in design 
of image processing and image compression systems. 

We explain some symbols we will use in the paper: 
Assume X is a random variable on R, we use p and U' 

to represent the mean and variance of X .  We define: 

E ( X - d 4  s =  E ( X  - PI3 
I C =  

U 4  U3 

where K is the kurtosis, S is the skewness. Assuming Y 
is another random variable on R, we denote the differ- 
ential entropy for X by X ( X ) ,  and denote the mutual 
information between X and Y by Z ( X , Y ) ,  both in 
bits. We use differential entropy instead of discrete 
entropy, because the variables are real valued. For de- 
tails, see [a ] .  All our pictures of probability distribu- 
tions (or of normalized histograms) will be shown with 
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Space of Natural Images

• Most common patch — one 
colour

• Preprocessing 
1. Remove constant patches
2. Normalize to norm 1

• Resulting structure: Klein 
Bottle
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Figure 6. The H1 barcode for M[15, 25] reveals five persistent
generators. This implies the existence of two secondary circles,
each of which intersects the third, large-k, primary circle twice.

Figure 7. The secondary generators of H1 for M[15, 25] have
an interpretation as regulating changes from dual-patch to triple-
patch high contrast regions in horizontal and vertical biases respec-
tively.

that a repetition of the experiment with a camera held at a constant angle π/4 yields
a data set whose secondary persistent H1 generators exhibits a bias towards true
vertical and true horizontal: the axis of pixellation appears less relevant than the
axis of gravity in natural image data.

Is there any predictive power in the barcodes of the data set? Recent progress
[3] demonstrates the insight that a persistent topology approach can yield. The
barcodes for the second persistent homology H2 are more volatile with respect to
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Space of Natural Images

Figure 6: 3 by 3 patches parametrized by the Klein bottle
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Conformation Space of Cycleoctane

principles that the conformation space has two degrees of
freedom, suggesting that the space is a surface !but not nec-
essarily a manifold".

Using dimension reduction methods, we have analyzed
the cyclo-octane conformation space.11 In our previous
analysis, we used trans,trans-1,2,4-trifluorocyclo-octane. In
the present analysis, we use pure cyclo-octane !wherever
necessary, we have repeated our previous efforts using pure
cyclo-octane". We generated a data set of 1 031 644 cyclo-
octane conformations, enumerated using a triaxial loop clo-
sure algorithm set to assume fixed bond length and angles.21

Each conformation is placed in Cartesian space via the three-
dimensional !3D" position coordinates of the atoms in the
molecule. The conformations are aligned to a reference con-
formation such that the Eckart conditions are satisfied22 and
the final positions of a given conformation are concatenated
to obtain a vector in R72. The resulting collection is a data set
#xi$i=1

1,031,644!R72, which is presumed to describe a surface.
Repeating our previous work,11 we applied the Isomap di-
mension reduction algorithm.14 Our analysis is summarized
in Fig. 1.

B. Terminology

At this point, we digress for a moment to clearly define
our use of the terms “surface” and “landscape.” In mathemat-
ics, the term surface is used to describe an object with two
degrees of freedom, such as a two-dimensional !2D" mani-
fold, or a 2D algebraic variety. This is how we use the term
surface. The term surface is used more loosely in the study of
molecular science. In particular, the term potential energy
surface !PES" is often used in the study of energy land-
scapes. Here the term surface has no connection to 2D, but
rather refers to the high-dimensional function !typically !2"
underlying the free energy landscape. To confuse the matter
further, the term energy landscape is also loosely defined, in
that it can be used to refer to the free energy landscape
!sometimes called the free energy surface" or the PES. We
use the term energy landscape to refer to the PES.

C. Algebraic decomposition and triangulation

As in our previous analysis,11 we found that the Isomap
representation of the cyclo-octane conformation space is a
3D visualization of an object that requires five-dimensions
!5D" for a full representation. The conformation space ap-
pears to be the union of a sphere and an hourglass intersect-
ing in two rings, but what are we missing by using 3D in-
stead of the necessary 5D in Fig. 1!c"?

To answer this question, we investigated the intersection
rings by using local dimension estimation. We identified 2D
and 3D neighborhoods within the data set.23 Perhaps unsur-
prisingly, the 3D neighborhoods were in the vicinity of the
intersection rings in the Isomap reduction. However, these
neighborhoods revealed an unexpected geometry. When pro-
jected using local PCA, the 3D neighborhoods of the inter-
section rings had the nonmanifold geometry of two intersect-
ing planes, as shown in Figs. 2!a"–2!c". We modeled the 3D
neighborhoods by fitting two planes through the data points
using quadratic polynomials. These polynomials were fit us-
ing least-squares optimization, with constraints to guarantee
that the solution factored as two intersecting planes !an alge-
braic decomposition". Although the minimization problem
was nonlinear, we were able to solve it using the singular
value decomposition followed by an eigenvalue
decomposition.23 An example of two fitted planes is shown
in Fig. 2!c".

FIG. 1. Conformation space of cyclo-octane. Here we show how the set of
conformations of cyclo-octane can be represented as a surface in a high-
dimensional space. On the top row !a", we show various conformations of
cyclo-octane. On the lower left !b", these conformations are represented by
the 3D coordinates of their atoms. The coordinates are concatenated into
vectors and shown as columns of a data matrix. As an example, the entry
c1,1,x of the matrix denotes the x-coordinate of the first carbon atom in the
first molecule. On the lower right !c", the Isomap method is used to obtain a
lower dimensional visualization of the data.

FIG. 2. Local geometry and triangulation of cyclo-octane data. In !a"–!c" we show the local nonmanifold geometry of the intersection rings in the cyclo-octane
conformation space. In !d" we show our triangulation of the data set. A neighborhood centered on a point in the upper ring is shown in !a" using the Isomap
coordinates; a PCA projection of this neighborhood from the original space !R72" is shown in !b"; the local characterization of this neighborhood as two
intersecting planes is shown in !c"; the triangulation obtained using an incremental surface reconstruction algorithm modified to use our local algebraic
decomposition is shown in !d".

234115-2 Martin et al. J. Chem. Phys. 132, 234115 !2010"
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chair-chair !TCC", boat !B", saddle, also known as twist-boat
!TB", boat-boat !BB", boat-chair !BC", twist-boat-chair
!TBC", chair !C", and twist-chair !TC". Each of Hendrick-
son’s ten conformations has certain symmetries when we
consider ring atoms. These symmetries are obtained by rota-
tion and reflection of the conformation in physical space.
!When such a change occurs as a result of molecular motion,
i.e., by changes in torsion angles, it is known as a pseudoro-
tation." One way to quantify these symmetries is by examin-
ing torsion angles. The crown conformation, for example, is
highly symmetric and can exist in only two states: !cr. The
boat conformation is also very symmetric but can exist in
four states: !b1 and !b2. In general, conformations on the
spherical component of the cyclo-octane space have the sym-
metry !t1 , t2 , t3 , t4 , t1 , t2 , t3 , t4" and absent additional symme-
try will exist in eight states. Conformations on the Klein
bottle component have no such constraint and absent addi-
tional symmetry will exist in 16 states.

In Fig. 4 we have located each instance of Hendrickson’s
ten conformations in our representation of the cyclo-octane
conformation space. Also shown in Fig. 4 are two additional
conformations, which we call peak !P" and saddle !S". P and
S occur on the intersection rings and within the set of inter-
section ring conformations they are energy maxima !P" and
minima !S". Figure 4 can be used to understand how particu-
lar cyclo-octane conformers influence the topology and ge-
ometry of the full conformation space. As an example, con-
sider the spherical component of the conformation space in
Fig. 4!a". There are two Cr conformers, related to each other
through reflection. This reflection occurs through the center

of the sphere so that the two Cr’s are opposite each other on
the north and south poles. At a high northern latitude, there
are four TCCs, related to each other through rotation, thus
forming a ring. In the southern hemisphere, there are four
additional TCCs, forming their own ring, and related to the
northern TCCs through reflection. Similarly, there are four
northern and four southern CCs, S’s, and P’s. On the equator,
there are four B’s and BBs, related through rotation, again
forming rings. Finally, there are eight TBs related to each
other by both rotation and reflection. Since reflection is
through the center of the sphere, reflected TBs again lie on
the equator. !In fact this also occurs with the B’s and BBs,
except that the reflected Bs and BBs can also be obtained by
rotation." All of these symmetries are accommodated by the
topology of the sphere. If we now consider distance as a
constraint, we see how the particular conformers influence
the geometry of the sphere. Both TCCs and CCs are very
similar to Cr’s so that they are near the poles. They are also
very similar to each other so they form small diameter !high
latitude" rings. By comparison, B’s and BBs are distinct from
Cr’s and from each other so are far from the poles and form
large diameter !equatorial" rings. These rings are then con-
nected by meridians !e.g., Cr-TCC-S-B-S-TCC-Cr" to form
the sphere.

Similar observations can be made to understand why the
Möbius strip occurs in Fig. 4!b". The S and P conformers are
connected in a central ring corresponding to the northern S
and P intersection ring in Fig. 4!a". These conformations are
related by rotation, i.e., the S’s are related by rotation, as are
the P’s, while their reflections occur on the red Möbius strip

FIG. 3. Projections from torsion space. Here we show how the canonical crown-boat-chair basis can be used to produce a fully reduced 2D representation of
the cyclo-octane conformation space. The canonical conformations corresponding to the crown !cr", boat !b1 ,b2", and chair !c1 ,c2" are shown in !a". The
projection of the space onto !b1 ,b2 ,cr" is shown in !b", analytically reproducing the results previously obtained using Isomap. We use green to represent the
spherical component !c" of the conformation space and blue/red to represent the Klein bottle component !e". The intersection rings are shown using black. The
spherical component !c" of the conformation space can be reduced to 2D by varying the azimuthal angle !"" between 0 and 2# in the !b1 ,b2" plane, as shown
in !d". The Klein bottle component can be reduced to 2D by decomposition into two Möbius strips, apparent using !c1 ," ,c2" coordinates !f", where " again
varies between 0 and 2#. The Möbius strips in !f" are in fact helicoids, which can be parametrized using signed distances r1 and r2 from the line c1=c2
=0. The signed distances can be used to reduce the two Möbius strips to 2D #!g" and !h"$. In !g" and !h", we show how the two Möbius strips can be glued
together to form the Klein bottle using labeled arrows to show equivalences !e.g.—A→". It is interesting to note that representation of the Klein bottle in !b"
and !e" has two deficiencies. First, the Möbius strips have been folded over the intersection rings so that the hourglass shape actually consists of two sheets,
although it appears as one. Second, the apparent singularity at the origin is in fact an artifact of the projection. In actuality, the Möbius strips are joined
according to the equivalences in !g" and !h", although using dimensions which are not visible in the !b1 ,b2 ,cr" coordinates.

234115-4 Martin et al. J. Chem. Phys. 132, 234115 !2010"
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Figure 2: Persistence landscapes for the homology in degree 1 of the example in Figure 1.
For the rank function (top left) and rescaled rank function (top right) the values
of the functions on the corresponding region are given. The top left graph also
contains the three points of the corresponding persistence diagram. Below the
top right graph is the corresponding barcode. We also have the corresponding
persistence landscape (bottom left) and its 3d-version (bottom right). Notice
that �1 gives a measure of the dominant homological feature at each point of the
filtration.
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Persistence Landscapes
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Figure 3: Means of persistence diagrams and persistence landscapes. Top left: the rescaled
persistence diagrams {(6, 6), (10, 6)} and {(8, 4), (8, 8)} have two (Fréchet) means:
{(7, 5), (9, 7)} and {(7, 7), (9, 5)}. In contrast their corresponding persistence
landscapes (top right and bottom left) have a unique mean (bottom right).

2.3 Barcodes and Persistence Diagrams

All of the information in a (tame) persistence module is completely contained in a multiset
of intervals called a barcode (Zomorodian and Carlsson, 2005; Crawley-Boevey, 2012; Chazal
et al., 2012). Mapping each interval to its endpoints we obtain the persistence diagram.

There exist maps in both directions between these topological summaries and our func-
tions. For an example of corresponding persistence diagrams, barcodes and persistence
landscapes, see Figure 2. Informally, the persistence diagram consists of the “upper-left
corners” in our rank function. In the other direction, �(b, d) counts the number of points
in the persistence diagram in the upper left quadrant of (b, d). Informally, the barcode con-
sists of the “bases of the triangles” in the rescaled rank function, and the other direction is
obtained by “stacking isosceles triangles” whose bases are the intervals in the barcode. We
invite the reader to make the mappings precise. For example, given a persistence diagram
{(bi, di)}ni=1,

�k(t) = kth largest value of min(t� bi, di � t)+,

where c+ denotes max(c, 0). The fact that barcodes are a complete invariant of persistence
modules is central to these equivalences.

The geometry of the space of persistence diagrams makes it hard to work with. For
example, sets of persistence diagrams need not have a unique (Fréchet) mean (Mileyko
et al., 2011). In contrast, the space of persistence landscapes is very nice. So a set of
persistence landscapes has a unique mean (4). See Figure 3.

Compared to the persistence diagram, the barcode has extra information on whether or
not the endpoints of the intervals are included. This finer information is seen in the rank
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Persistence Images and Kernels
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Figure 1: Algorithm pipeline to transform data into a persistence image.

PIs provide a convenient way to combine PDs of di↵erent homological dimensions into a single
object. Indeed, suppose in an experiment the PDs for H0, H1, . . . , Hk are computed. One can
concatenate the PI vectors for H0, H1, . . . , Hk into a single vector representing all homological
dimensions simultaneously, and then use this concatenated vector as input into ML algorithms.

There are three choices the user makes when generating a PI: the resolution, the distribution
(and its associated parameters), and the weighting function.

Resolution of the image: The resolution of the PI corresponds to the grid being overlaid on
the PD. The classification accuracy in the PI framework appears to be fairly robust to choice of
resolution, as discussed in §6.2 and (Zeppelzauer et al., 2016).

The Distribution: Our method requires the choice of a probability distribution which is
associated to each of the points in the PD. The examples in this paper use a Gaussian centered at
each point, but other distributions may be used. The Gaussian distribution depends on a choice of
variance: we leave this choice as an open problem, though the experiments in §6.2 and (Zeppelzauer
et al., 2016) show a low sensitivity to the choice of variance.

The Weighting Function: In order for our stability results in §5 to hold, our weighting
function f : R2 ! R must be zero along the horizontal axis (the analogue of the diagonal in birth-
persistence coordinates), continuous, and piecewise di↵erentiable. A simple choice is a weighting
function that depends only on the vertical persistence coordinate y. In order to weight points of
higher persistence more heavily, functions which are nondecreasing in y, such as sigmoidal functions,
are a natural choice. However, in certain applications such as Bendich et al. (2015) it may be points
of small or medium persistence that perform best for ML tasks, and hence, one may choose to use
more general weighting functions. In our experiments in §6, we use a piecewise linear weighting
function f : R2 ! R which only depends on the persistence coordinate y. Given b > 0, define
wb : R ! R via

wb(t) =

8
><

>:

0 if t  0,
t
b if 0 < t < b, and

1 if t � b.

We use f(x, y) = wb(y), where b is the persistence value of the most persistent feature in all trials
of the experiment.

In the event that the birth coordinate is zero for all points in the PD, as is often the case

7
We omit points that correspond to features with infinite persistence, e.g. the H0 feature corresponding to the

connectedness of the complete simplicial complex.
8
Instead of birth-persistence coordinates, one could also use other choices such as birth-death or (average size)-

persistence coordinates. Our stability results (§5) still hold with only a slight modification to the constants.
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Figure 1: Visual data (e.g., functions on surface meshes, textures, etc.) is analyzed using persistent homology [11]. Roughly speaking,
persistent homology captures the birth/death times of topological features (e.g., connected components or holes) in the form of persis-
tence diagrams. Our contribution is to define a kernel for persistence diagrams to enable a theoretically sound use of these summary
representations in the framework of kernel-based learning techniques, popular in the computer vision community.

approaches that indirectly use topological information. That
is, information about topological features is used as input to
some machine-learning algorithm.

As a representative of the first category, Skraba et al.
[26] adapt the idea of persistence-based clustering [6] in a
segmentation approach for surface meshes of 3D shapes,
driven by the topological information in the persistence di-
agram. Gao et al. [12] use persistence information to re-
store so called handles, i.e., topological cycles, in already
existing segmentations of the left ventricle, extracted from
computed tomography images. In a di↵erent segmenta-
tion setup, Chen et al. [7] propose to directly incorporate
topological constraints into random-field based segmenta-
tion models.

In the second category of approaches, Chung et al. [8]
and Pachauri et al. [22] investigate the problem of analyzing
cortical thickness measurements on 3D surface meshes of
the human cortex in order to study developmental and neu-
rological disorders. In contrast to [26], persistence informa-
tion is not used directly, but rather as a descriptor that is fed
to a discriminant classifier in order to distinguish between
normal control patients and patients with Alzheimer’s dis-
ease/autism. Yet, the step of training the classifier with
topological information is typically done in a rather adhoc
manner. In [22] for instance, the persistence diagram is first
rasterized on a regular grid, then a kernel-density estimate
is computed, and eventually the vectorized discrete proba-
bility density function is used as a feature vector to train a
SVM using standard kernels for Rn. It is however unclear
how the resulting kernel-induced distance behaves with re-
spect to existing metrics (e.g., bottleneck or Wasserstein
distance) and how properties such as stability are a↵ected.
An approach that directly uses well-established distances
between persistence diagrams for recognition was recently
proposed by Li et al. [19]. Besides bottleneck and Wasser-
stein distance, the authors employ persistence landscapes
[3] and the corresponding distance in their experiments.

Their results expose the complementary nature of persis-
tence information when combined with traditional bag-of-
feature approaches. While our empirical study in Sec. 5.2 is
inspired by [19], we primarily focus on the development of
the kernel; the combination with other methods is straight-
forward.

In order to enable the use of persistence information in
machine learning setups, Adcock et al. [1] propose to com-
pare persistence diagrams using a feature vector motivated
by algebraic geometry and invariant theory. The features
are defined using algebraic functions of the birth and death
values in the persistence diagram.

From a conceptual point of view, Bubenik’s concept of
persistence landscapes [3] is probably the closest to ours,
being another kind of feature map for persistence diagrams.
While persistence landscapes were not explicitly designed
for use in machine learning algorithms, we will draw the
connection to our work in Sec. 5.1 and show that they in
fact admit the definition of a valid positive definite kernel.
Moreover, both persistence landscapes as well as our ap-
proach represent computationally attractive alternatives to
the bottleneck or Wasserstein distance, which both require
the solution of a matching problem.

3. Background
First, we review some fundamental notions and results

from persistent homology that will be relevant for our work.

Persistence diagrams. Persistence diagrams are a con-
cise description of the topological changes occurring in a
growing sequence of shapes, called filtration. In particu-
lar, during the growth of a shape, holes of di↵erent dimen-
sion (i.e., gaps between components, tunnels, voids, etc.)
may appear and disappear. Intuitively, a k-dimensional hole,
born at time a and filled at time b, gives rise to a point (a, b)
in the kth persistence diagram. A persistence diagram is thus

Reininghaus, Jan, et al. "A stable multi-scale kernel for topological machine learning."  
Proceedings of the IEEE conference on computer vision and pattern recognition. 2015


Adams, Henry, et al. "Persistence images: A stable vector representation of persistent homology."   
The Journal of Machine Learning Research 18.1 (2017): 218-252.




Some Other 
Applications



Euler Calculus/Integration
• Euler characteristic is a generalised measure

• Developed by Schapira, Kashiwara, Viro

• Counting trajectories

traces Uα := ∪tUα(t)× {t}: this is a contractible set, as illustrated in Figure 6.1[right]. Let
g : X → N be g =

∑

α 1Uα
. From Theorem 3.2, the number of targets is

∫

X
g dχ. By the

Fubini theorem, this equals
∫

W
F∗g dχ, where (F∗g)(w) =

∫

F−1(w) g dχ. The intersection

F−1(w)∩Uα is a finite number of compact intervals — one for each time w goes from being
outside Uα(t) to inside it as t increases. Thus, h = F∗g and

∫

W

h dχ =

∫

W

F∗g dχ =

∫

X

g dχ = #α.

The fact that integration with respect to Euler characteristic admits a Fubini theorem is
thus not merely a curiosity but rather a crucial feature.

t

Fig. 6.1. Vehicles moving in a planar environment activate sensors along regions which intersect
over time and accumulate a larger height function there. The resulting integrand is the pushforward of a
temporal projection map.

Example 6.3. Moving targets. Fig. 6.1 illustrates a height function for a moving-target
situation as in Problem 6.1. Note that some traces self-intersect. One computes:

∫

h dχ =
∞
∑

s=0

χ {h > s} =

s=2
︷︸︸︷

1 +

s=1
︷︸︸︷

16 +

s=0
︷︸︸︷

−13 = 4. (6.2)

Theorem 6.2 is applicable to the problem of counting vehicles which move over a region with
acoustic sensors embedded. The advantage of the Euler integration method is that one can
count vehicles of different ‘size’ — large or small vehicle traces are irrelevant. A challenge
for implementation lies in (cusp) singularities generated by a vehicle that turns too sharply,
leading to an integrand that it not upper semi-continuous, as in Fig. 6.2. Such a singularity
does not invalidate Theorem 6.2. Indeed, the integral of this height function with respect
to Euler characteristic is equal to

∫

R2

h dχ = χ{h > 1} + χ{h > 0} = (1 − 1) + (1) = 1.

The upper excursion set h > 1 is not a compact disc, but rather has a closed interval in the
boundary removed. Thus χ{h > 1} = 1−1 = 0. Any sensor network, no matter how dense,
will fail to see the higher codimension piece of boundary that is set to 1 instead of 2.

15

Baryshnikov, Yuliy, and Robert Ghrist. "Target enumeration via Euler characteristic integrals.” 
 SIAM Journal on Applied Mathematics 70.3 (2009): 825-844.




Euler Calculus/Integration

1

1

2

1

2

3

1

2

1

1
1

1
1

1

1

1

1 2

2

2
2

2

2

2

2

2

2

2

1

1

0

0
0

0

0

0

0

0

0

3

4

3

3

3

4

Fig. 4.1. A collection of contractible patches {Uα} in R2 corresponding to the supports or ‘visibility
regions’ of seven targets. The collection decomposes R2 into cells labeled according to the height function h
returned by a dense sensor network.

χ {h > 0} = −1

χ {h > 1} = 3

χ {h > 2} = 3

χ {h > 3} = 2

Fig. 4.2. Decomposing h into upper excursion sets and computing χ yields the integral
∫

h dχ.

There are other means of computing integrals with respect to dχ, many of which are related
to Morse theory. We detail these in subsequent work.

4.2. Homology and duality. Since the Euler characteristic has a homological as well
as a combinatorial definition, we can switch perspectives at will, playing off strengths for
computational purposes. We augment Proposition 4.1 with a specialized formula for certain
integrands on the plane.
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Fig. 4.1. A collection of contractible patches {Uα} in R2 corresponding to the supports or ‘visibility
regions’ of seven targets. The collection decomposes R2 into cells labeled according to the height function h
returned by a dense sensor network.

χ {h > 0} = −1

χ {h > 1} = 3

χ {h > 2} = 3

χ {h > 3} = 2

Fig. 4.2. Decomposing h into upper excursion sets and computing χ yields the integral
∫

h dχ.

There are other means of computing integrals with respect to dχ, many of which are related
to Morse theory. We detail these in subsequent work.

4.2. Homology and duality. Since the Euler characteristic has a homological as well
as a combinatorial definition, we can switch perspectives at will, playing off strengths for
computational purposes. We augment Proposition 4.1 with a specialized formula for certain
integrands on the plane.
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Figure 1: Refer to Example 3.2. The data is sampled from a

noisy circle, and the filter used is f (x) = ||x− p||2, where p

is the left most point in the data. The data set is shown on the

top left, colored by the value of the filter. We divide the range

of the filter into 5 intervals which have length 1 and a 20%

overlap. For each interval we compute the clustering of the

points lying within the domain of the filter restricted to the

interval, and connect the clusters whenever they have non

empty intersection. At the bottom is the simplicial complex

which we recover whose vertices are colored by the average

filter value.

presented here. The desired characteristics of the clustering

were:

1. Take the inter-point distance matrix (D∈R
N×N ) as an in-

put. We did not want to be restricted to data in Euclidean

Space.

2. Do not require specifying the number of clusters before-

hand.

We have implemented an algorithm based on single-linkage

clustering [Joh67], [JD88]. This algorithm returns a vector

C ∈ R
N−1 which holds the length of the edge which was

added to reduce the number of clusters by one at each step

in the algorithm.

Now, to find the number of clusters we use the edge length

at which each cluster was merged. The heuristic is that the

inter-point distance within each cluster would be smaller

than the distance between clusters, so shorter edges are re-

quired to connect points within each cluster, but relatively

longer edges are required to merge the clusters. If we look at

the histogram of edge lengths in C, it is observed experimen-

tally, that shorter edges which connect points within each

cluster have a relatively smooth distribution and the edges

which are required to merge the clusters are disjoint from

this in the histogram. If we determine the histogram of C

using k intervals, then we expect to find a set of empty in-

terval(s) after which the edges which are required to merge

the clusters appear. If we allow all edges of length shorter

than the length at which we observe the empty interval in

the histogram, then we can recover a clustering of the data.

Increasing k will increase the number of clusters we observe

and decreasing k will reduce it. Although this heuristic has

worked well for many datasets that we have tried, it suffers

from the following limitations: (1) If the clusters have very

different densities, it will tend to pick out clusters of high

density only. (2) It is possible to construct examples where

the clusters are distributed in such a way such that we re-

cover the incorrect clustering. Due to such limitations, this

part of the procedure is open to exploration and change in

the future.

3.2. Higher Dimensional Parameter Spaces

Using a single function as a filter we get as output a com-

plex in which the highest dimension of simplices is 1 (edges

in a graph). Qualitatively, the only information we get out of

this is the number of components, the number of loops and

knowledge about structure of the component flares etc.). To

get information about higher dimensional voids in the data

one would need to build a higher dimensional complex us-

ing more functions on the data. In general, the Mapper con-

struction requires as input: (a) A Parameter space defined by

the functions and (b) a covering of this space. Note that any

covering of the parameter space may be used. As an exam-

ple of the parameter space S1, consider a parameter space

defined by two functions f and g which are related such that

f 2 +g2 = 1. A very simple covering for such a space is gen-

erated by considering overlapping angular intervals.

One natural way of building higher dimensional complexes

is to associate many functions with each data point instead

of just one. If we used M functions and let R
M to be our

parameter space, then we would have to find a covering of

an M dimensional hypercube which is defined by the ranges

of the M functions.

Example 3.3 Consider using two functions f and g which

are defined for each data point (refer to Figure 2). We need

to define a covering of the rectangle R= [min f ,max f ]×
[ming,maxg]. This covering defines constraints on values

of f and g within each region, which enables us to select

subsets of the data. As in the case of covering an interval,

the regions which cover R must overlap. Now, if we cover

R using hexagons then we can adjust the size and overlap of

hexagons such that a maximum of three hexagons intersect.

Thus, the dimension of simplices which we use to construct

the complex will always be 3 or less. On the other hand if

we cover R using rectangles, there will be regions where

four rectangles intersect. Thus, the dimension of simplices

which we use to construct the complex will be 4 or less.

We now describe the Mapper algorithm using two func-

tions and the parameter space R
2. Consider two functions

on each data point, and the range of these being cov-

ered by rectangles. Define a region R= [min f1,max f1]×
[min f2,max f2]. Now say we have a covering ∪i, jAi j such

c⃝ The Eurographics Association 2007.

Singh, Gurjeet, Facundo Mémoli, and Gunnar Carlsson. "Mapper: a topological mapping tool for point cloud 
data." Eurographics symposium on point-based graphics. Vol. 102. 1991.
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Mapper

The Normal-like (blue) group of tumors (15 tumors) con-
stitutes 5% of the cohort. The low value of the filter function
indicates little activity different from normal.
The c-MYB+ (red) group of tumors (22 tumors) constitutes

7.5% of the cohort, or the more compact subset (outliers re-
moved 14 tumors) 5% of ER+ tumors. The high value of the
filter function identifies these tumors as among the most distinct
from normal tissue, showing extremely high activity in some gene
groups (ER+, c-MYB+) and low activity in others (innate im-
mune genes), relative to normal tissue. This extreme deviation
from normal molecular profiles, together with the biology of the
overly active gene groups, and the excellent overall survival
suggests that these tumors have a mechanism to respond in
a protective way, antagonizing the presence of neoplastic tissue.
In the next paragraphs we give evidence for the following two
points: (i) c-MYB+ breast cancer warrants being identified as
a breast cancer group because it shows uniformity in molecular
signature and clinical and survival properties, and because it is
validated in other cancer data sets; and (ii) c-MYB+ breast
cancer is a unique group that does not fit into previously iden-
tified breast cancer types.

2.1. Survival Analysis. Survival analysis was performed on each of
the two groups of ER+ tumors: the blue Normal-like group and
the red group that shows altered transcriptional activity in a large
number of genes compared with the normal tissue, c-MYB+ red
group. Each group showed 100% overall survival, with no re-
currence and no death from disease. Median time to follow-up
was 10 y for the Normal-like group and 8.5 y for the c-MYB+

tumors. It is important to note that survival information was not
incorporated in the DSGA decomposition or the Mapper pro-
gression. We simply tested survival of groups of tumors that our
PAD analysis found to stand out, purely on the basis of our two-
step analysis: (i) DSGA, highlighting the distinction between
normal and disease data, and (ii) Mapper, identifying subtle
aspects in the shape of the data.

2.2. Comparison with Cluster Analysis Applied to the Same Data
Matrix. The Normal-like tumor group (blue) is often observed

through this type of analysis. However, the other group, c-MYB+

tumor group, was scattered across several clusters, as seen in Fig.
4. Thus, unlike PAD, cluster analysis was unable to identify this
new group of tumors. This shows that the appearance of the new
group of tumors was not due to the way data were transformed
via DSGA nor to the specific method used for thresholding
genes, but rather to the ability of PAD to identify subtle shape
characteristics of the data set. Cluster analysis scattered the
tumors in the ER+ tumor progression and even the very tight c-
MYB+ tumor group. That the tumors in this group (22 in all, 14
without outliers) ought indeed to appear together is seen below,
in sections 2.4–2.6, which show that the molecular signatures of
these tumors are indeed very similar to one another and signif-
icantly distinct from other tumors.

2.3. Comparison with Molecular Subtype Classification. The 22
tumors in the c-MYB+ group were analyzed for molecular sub-
type (Basal, ERBB2, Luminal A, Luminal B, and Normal-like) (7)
as previously assigned (6). Of the 22 tumors, only six had cor-
relation >0.1 to one of the five centroids, the rest having been
left unclassified. Five were classified as Luminal A and one as
Normal-like. The rest of the c-MYB+ tumors were partially
classified by the centroid they were closest to as follows: seven
Normal-Like, six Luminal A, and three Luminal B. These
assignments to subtype have changed (9) to be two Normal-Like,
two Luminal B, and 18 Luminal A. This new assignment changes
the subtype of 77% of tumors (17 of the 22 tumors have different
assignment from their original one).

2.4. Prediction Analysis of Microarrays (PAM). PAM (10) was per-
formed on DSGA-transformed data, using all genes, before
thresholding (step 1 only). We wanted to investigate whether the
two tumor groups, c-MYB+ and Normal-like, are good candidates
for being molecular subtypes as far as their gene expression data
were concerned. Using PAM, we wanted to determine whether
they are (i) distinct from normal tissue, (ii) distinct from each
other, and (iii) uniform within each group of tumors. Thus, we
tested how successful PAM was in finding predictor variables for
distinguishing these groups. The distinctions had extremely good
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Fig. 3. PAD analysis of the NKI data. The output has three progression arms, because tumors (data points) are ordered by the magnitude of deviation from
normal (the HSM). Each bin is colored by the mean of the filter map on the points. Blue bins contain tumors whose total deviation from HSM is small (normal
and Normal-like tumors). Red bins contain tumors whose deviation from HSM is large. The image of f was subdivided into 15 intervals with 80% overlap. All
bins are seen (outliers included). Regions of sparse data show branching. Several bins are disconnected from the main graph. The ER − arm consists mostly of
Basal tumors. The c-MYB+ group was chosen within the ER arm as the tightest subset, between the two sparse regions.
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Cohomological CoordinatesParameterization

Circle-valued functions:

X

Fundamental equation

X X Z

This gives an intrinsic
parameterization of a circle

P S

De Silva, Vin, Dmitriy Morozov, and Mikael Vejdemo-Johansson. "Persistent cohomology and circular 
coordinates." Discrete & Computational Geometry 45.4 (2011): 737-759.
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Cohomological Coordinates

Vejdemo-Johansson, Mikael, et al. "Cohomological learning of periodic motion." Applicable Algebra in Engineering, 
Communication and Computing 26.1-2 (2015): 5-26.

see https://www.youtube.com/watch?v=NGQ-M2gdibQ 
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