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Notation

In this course we will use the following standard notations:

N = {1, 2, 3, . . . },
Z = {. . . ,−2,−1, 0, 1, 2, . . . },
Q = rational numbers,
R = real numbers,
C = complex numbers.

Furthermore we will need the following sets:

Z≥0 = {0, 1, 2, . . . },
R>0 = positive real numbers,
R≥0 = non-negative real numbers.

1



2 p-adic numbers, LTCC 2010

By a ring we will always mean a commutative ring with 1. If R is a ring then R×

denotes the group of units in R, so in particular if R is a field then R× = R \ {0}.

1. Absolute values and completion

In this chapter we define absolute values on fields, construct all absolute values
on the field of rational numbers Q, and discuss the completion of a valued field.

1.1. Absolute values. We write R≥0 for the set of non-negative real numbers.

Definition 1.1. Let K be a field. An absolute value on K is a function

| | : K → R≥0

that satisfies the following conditions.
(1) |x| = 0 if and only if x = 0
(2) |xy| = |x| · |y| for all x, y ∈ K
(3) |x + y| ≤ |x|+ |y| for all x, y ∈ K

We say that an absolute value | | on K is non-archimedean if it satisfies the
following strengthening of (3).

(3’) |x + y| ≤ max{|x|, |y|} for all x, y ∈ K

We say that an absolute value | | on K is archimedean if it is not non-archimedean.

Some authors use the word norm or valuation instead of absolute value. A pair
(K, | |) consisting of a field K and an absolute value | | on K is called a valued
field. We will sometimes refer to K as a valued field if the absolute value | | is clear
from the context.

If | | is an absolute value on K then one easily sees that |1| = 1 and |−x| = |x|
for all x ∈ K.

Example 1.2. Let K be any field and define | | : K → R≥0 by

|x| =
{

0 if x = 0,

1 if x 6= 0.

One easily sees that this defines a non-archimedean absolute value on K. It is called
the trivial absolute value on K.

Remark 1.3. If K is a field and n ∈ N then we also write n for the element
1+1+ · · ·+1 ∈ K (where 1+1+ · · ·+1 has n summands, and 1 is the multiplicative
identity of K). Now if | | is a non-archimedean absolute value on K, then for every
n ∈ N we have |n| ≤ 1 (this follows by induction using |n| = |(n − 1) + 1| ≤
max{|n − 1|, |1|}). One can show that the converse of this statement is also true,
i.e. if an absolute value | | on K has the property that |n| ≤ 1 for all n ∈ N then
| | is non-archimedean; for a proof see e.g. [Schikhof, §8].

Example 1.4. The usual absolute value |x + iy|C =
√

x2 + y2 is an absolute value
on the field of complex numbers C. This absolute value is archimedean (because
since |2|C = 2 > 1 it is not non-archimedean by the previous remark).

Exercise 1.5. Let K be a finite field. Show that K has no non-trivial absolute
values.

1.2. The topology of a valued field. Let (K, | |) be a valued field.

Lemma 1.6. The function d : K × K → R≥0 defined by d(x, y) = |x − y| is a
metric on K. We call d the metric induced by the absolute value | |.
Proof. Clear. ¤
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If | | is a non-archimedean absolute value, then the induced metric satisfies the
ultrametric inequality

d(x, z) ≤ max{d(x, y), d(y, z)} for all x, y, z ∈ K.

Definition 1.7. Let x ∈ K and ε > 0.

(1) The set B<ε(x) = {y ∈ K : |y − x| < ε} is called the open ball with radius
ε and centre x.

(2) The set B≤ε(x) = {y ∈ K : |y− x| ≤ ε} is called the closed ball with radius
ε and centre x.

From the metric d we obtain a topology on K which we call the topology induced
by | |. The set of all open balls B<ε(x) (with x ∈ K and ε > 0) is a basis of this
topology. So a valued field (K, | |) has a natural metric and topology, therefore
it makes sense to talk about open sets in K, limits of sequences in K, continuous
functions K → K, etc.

Proposition 1.8. K is a topological field, i.e. the field operations

(1) K ×K → K, (x, y) 7→ x + y
(2) K ×K → K, (x, y) 7→ xy
(3) K → K, x 7→ −x
(4) K \ {0} → K \ {0}, x 7→ x−1

are continuous.

Proof. Let’s prove statement (2) in detail. We must show that if (x, y) ∈ K×K and
ε > 0 then there exists a δ > 0 such that the open neighbourhood B<δ(x)×B<δ(y)
of (x, y) in K ×K is mapped into B<ε(xy) under the multiplication map. Now if
(u, v) ∈ B<δ(x)×B<δ(y) then

|uv − xy| = |(u− x)(v − y) + (u− x)y + (v − y)x|
≤ |u− x| · |v − y|+ |u− x| · |y|+ |v − y| · |x|
≤ δ · δ + δ · |y|+ δ · |x|.

So for sufficiently small δ > 0 (where sufficiently small depends on |x| and |y| but
not on u and v) we have |uv − xy| < ε, i.e. uv ∈ B<ε(xy) as required.

The proofs of statements (1),(3) and (4) are similar. ¤

Exercise 1.9. Show that the function K → R≥0, x 7→ |x| is continuous.

1.3. Absolute values on the rational numbers. We now consider absolute val-
ues on the field of rational numbers Q.

We will denote the usual absolute value on Q by | |∞, so

|x|∞ =

{
x if x ≥ 0,

−x if x < 0.

Clearly | |∞ is an archimedean absolute value on Q.
Now fix a prime number p. We will define a non-archimedean absolute value | |p

on Q, the p-adic absolute value. First let x ∈ Q×. By the fundamental theorem
of arithmetic we can write x = ±peqe1

1 · · · qer
r where q1, . . . , qr are non-zero prime

numbers different from p and e, e1, . . . , er ∈ Z. We define |x|p = p−e. For x = 0 we
define |0|p = 0.

Lemma 1.10. | |p is a non-archimedean absolute value on Q.

Proof. Conditions (1) and (2) of an absolute value are clearly satisfied. It remains
to prove condition (3’). We first observe that if x = 0 or y = 0 or x + y = 0 then
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condition (3’) is clearly true, so we can assume that x, y, x + y ∈ Q×. We write
x = ±peqe1

1 · · · qer
r , y = ±pfqf1

1 · · · qfr
r and x + y = ±pgqg1

1 · · · qgr
r . Then

x = pmin{e,f}qmin{e1,f1}
1 · · · qmin{er,fr}

r · x′,
y = pmin{e,f}qmin{e1,f1}

1 · · · qmin{er,fr}
r · y′

for some x′, y′ ∈ Z \ {0}. It follows that

x + y = pmin{e,f}qmin{e1,f1}
1 · · · qmin{er,fr}

r · (x′ + y′),

hence
pgqg1

1 · · · qgr
r = pmin{e,f}qmin{e1,f1}

1 · · · qmin{er,fr}
r · z

for some z ∈ Z \ {0}. From this we can deduce that g ≥ min{e, f}. It follows that

|x + y|p = p−g ≤ p−min{e,f}

= pmax{−e,−f}

= max{p−e, p−f} = max{|x|p, |y|p}.
This completes the proof of condition (3’). ¤

Hence for each prime number p we obtain a non-archimedean absolute value
| |p on Q. Furthermore we have the archimedean absolute value | |∞ on Q and
the trivial absolute value. Theorem 1.12 below shows that this is essentially the
complete list of absolute values on Q.

Definition 1.11. Two absolute values on a field K are called equivalent if they
induce the same topology on K.

One can show that two absolute values | | and ‖ ‖ on K are equivalent if and
only if there exists a positive real number α such that |x| = ‖x‖α for all x ∈ K. In
particular it follows that a sequence in K is Cauchy with respect to | | if and only
if it is Cauchy with respect to ‖ ‖. Hence two equivalent absolute values give rise
to the same completion of K.

Theorem 1.12. (Ostrowski) Every non-trivial absolute value on Q is equivalent
to either the archimedean absolute value | |∞ or to the non-archimedean absolute
value | |p for some prime number p.

For a proof of Ostrowski’s theorem and the statements about equivalent absolute
values see e.g. [Gouvea, §3.1].

Exercise 1.13. The product formula states that

|x|∞ ·
∏
p

|x|p = 1

for all x ∈ Q× (where the product runs over all prime numbers p). Prove this
formula.

1.4. Completion. Let K be a field with an absolute value | | : K → R≥0 and
let d(x, y) = |x− y| be the induced metric. A Cauchy sequence in K is a sequence
x1, x2, x3, · · · ∈ K with the property that for every ε > 0 there exists an N ∈ N such
that d(xi, xj) < ε for all i, j ≥ N . We call K complete if every Cauchy sequence in
K has a limit.

Definition 1.14. Let (K, | |) be a valued field. A completion of K is a valued field
(K̂, ‖ ‖) where K̂ is a field extension of K and ‖ ‖ is an absolute value on K̂ which
extends the absolute value on K such that

(1) K̂ is complete,
(2) K is dense in K̂, i.e. every non-empty open subset of K̂ contains an element

from K.
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Theorem 1.15. Let (K, | |) be a valued field. Then there exists a completion
(K̂, ‖ ‖) of K.

Proof. In this proof we will write (xi) for a sequence x1, x2, x3, . . . in K.
Let C be the set of all Cauchy sequences in K. Then C becomes a commutative

ring if we define the sum and product of two sequences (xi), (yi) ∈ C by (xi)+(yi) =
(xi + yi) and (xi) · (yi) = (xiyi) (check that these are again Cauchy sequences).

Define M to be the set of all sequences in K that converge to 0 (these are
automatically Cauchy sequences). It is easy to check that M is an ideal of the ring
C. In fact, M is a maximal ideal of C. To see this, let I ⊆ C be an ideal that
properly contains M . We must show that I = C. Let (xi) ∈ I \M . Then (xi) is
a Cauchy sequence that does not converge to 0, therefore there exists a δ > 0 such
that |xi| ≥ δ for all sufficiently large i. In particular xi 6= 0 for all sufficiently large
i. Define a sequence (yi) by yi = 0 if xi = 0 and yi = x−1

i if xi 6= 0. It is easy
to check that (yi) is a Cauchy sequence, i.e. (yi) ∈ C, hence (yi) · (xi) ∈ I since I
is an ideal. But the sequence (xiyi) is equal to 1 for all but finitely many i, hence
(1, 1, . . . ) = (xiyi) + (zi) for some sequence (zi) ∈ M ⊂ I (here (1, 1, . . . ) denotes
the constant sequence 1, 1, 1, . . . ). This shows that (1, 1, . . . ) ∈ I and thus I = C
as required.

We define K̂ to be the quotient ring, K̂ = C/M . This is a field because M is
maximal. The (injective) homomorphism h : K → K̂, x 7→ h(x) = (x, x, . . . ) + M
(where (x, x, . . . ) denotes the constant sequence x, x, x, . . . ) allows us to consider
K as a subfield of K̂.

Next we define an absolute value ‖ ‖ : K̂ → R≥0. First note that if (xi) is
a Cauchy sequence in K then |x1|, |x2|, |x3|, . . . is a Cauchy sequence in R, and
since R is complete the limit limi→∞|xi| exists. Now for (xi) + M ∈ K̂ we define
‖(xi) + M‖ = limi→∞|xi|. It is easy to check that this gives a well-defined absolute
value on K̂ which extends the absolute value on K.

To remains to show that K is dense in K̂ and that K̂ is complete.
Let (xi) + M ∈ K̂ and ε > 0. Choose N ∈ N such that |xi − xj | < ε/2 for all

i, j ≥ N . Then

‖(xi) + M − h(xN )‖ = ‖(x1 − xN , x2 − xN , . . . ) + M‖ = lim
i→∞

|xi − xN | ≤ ε/2 < ε.

This shows that the ε-ball in K̂ with centre (xi) + M contains the element h(xN )
from K, i.e. K is dense in K̂.

Finally let a1, a2, a3, . . . be a Cauchy sequence in K̂. Since K is dense in K̂,
for every i ∈ N we can choose an xi ∈ K such that ‖ai − h(xi)‖ < 1/i. It is
not difficult to see that the sequence x1, x2, x3, . . . is a Cauchy sequence in K, so
a = (x1, x2, x3, . . . ) + M ∈ K̂. Furthermore for every i ∈ N we have

‖ai − a‖ ≤ ‖ai − h(xi)‖+ ‖h(xi)− a‖ < 1/i + lim
j→∞

|xi − xj |.
Since x1, x2, x3, . . . is a Cauchy sequence, the right hand side of this inequality tends
to 0 as i →∞. This shows that limi→∞ ai = a in K̂. Thus K̂ is complete. ¤

Exercise 1.16. Let (K, | |) be a valued field with completion (K̂, ‖ ‖). Show that
| | is non-archimedean if and only if ‖ ‖ is non-archimedean.

Exercise 1.17. Formulate and prove a uniqueness statement for completions.

The previous exercise shows that completions are essentially unique. From now
on we will talk about the completion K̂ of K and write | | instead of ‖ ‖ for the
absolute value on K̂.

The completion of Q with respect to the archimedean absolute value | |∞ (i.e.
the usual absolute value) is canonically isomorphic to R (with its usual absolute
value). The completion of Q with respect to the p-adic absolute value | |p (for some
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fixed prime number p) is denoted by Qp and called the field of p-adic numbers. The
absolute value on Qp will again be denoted by | |p (or simply by | | if p is clear
from the context).

1.5. Archimedean absolute values. For a proof of the following theorem see e.g.
[Cassels, Chapter 3].

Theorem 1.18. Let L be a complete archimedean valued field. Then either L ∼= R
or L ∼= C as topological fields.

From this we can deduce a complete classification of archimedean valued fields.
If K is a field with an archimedean absolute value | | and K̂ its completion, then by
the theorem either K̂ ∼= R or K̂ ∼= C as topological field. Therefore there exists an
embedding i : K → C such that the given absolute value | | on K and the absolute
value | |C ◦ i which is induced by the embedding are equivalent (here | |C denotes
the usual absolute value on C).

In the rest of this course we will only consider non-archimedean valued fields.

2. The fields Qp and Cp

In the first two sections of this chapter we sketch the construction of the complete
and algebraically closed extension Cp of Qp. In the remaining sections we then
develop some general properties of (complete) non-archimedean valued fields, with
particular emphasis on the cases Qp and Cp.

2.1. Algebraic extensions of a complete field.

Theorem 2.1. Let (K, | |) be a complete non-archimedean valued field. Let L be
a finite field extension of K. Then there exists a unique absolute value on L that
extends the absolute value on K. Furthermore L is complete with respect to this
absolute value.

Idea of proof. The proof is quite long and we will omit the details. Many books
prove the result only under the additional assumption that K is locally compact; a
complete proof in the general case can be found for example in [Schikhof, §14 and
15] or [Cassels, Chapter 7]. The following are the main ideas of the proof.

Uniqueness: Let ‖ ‖1 and ‖ ‖2 be two absolute values on the field L which extend
the absolute value of K. If we consider L as a vector space over K, then ‖ ‖1 and
‖ ‖2 become norms on the vector space L (as defined in the next chapter). But
L is finite dimensional as a vector space over K, and any two norms on a finite
dimensional vector space over a complete field are equivalent as norms, i.e. they
induce the same topology on L. But then ‖ ‖1 and ‖ ‖2 are also equivalent as
absolute values, hence there exists an α > 0 such that ‖x‖1 = ‖x‖α

2 for all x ∈ L.
By choosing x ∈ K× for which |x| 6= 1 we obtain |x| = ‖x‖1 = ‖x‖α

2 = |x|α, hence
α = 1, and thus ‖ ‖1 = ‖ ‖2. (The last step does not work if | | is trivial, however
in this case one can show that every extension of | | to L is trivial.)

Completeness: A finite dimensional normed vector space over a complete field is
automatically complete.

Existence: Let d be the degree of the extension L/K, and let NL/K : L → K be
the norm map of the field extension L/K. We define a function ‖ ‖ : L → R≥0 by

‖x‖ = d

√
|NL/K(x)|.

From the standard properties of the norm it follows immediately that ‖x‖ = |x| if
x ∈ K, ‖x‖ = 0 if and only if x = 0, and that ‖xy‖ = ‖x‖ · ‖y‖. The most difficult
step is to show that ‖x + y‖ ≤ max{‖x‖, ‖y‖}. For a proof of this inequality see
e.g. [Cassels, Chapter 7, §3]. (A completely different proof of the existence of the
absolute value on L can be found in [Schikhof, §14].) ¤
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Corollary 2.2. Let (K, | |) be a complete non-archimedean valued field. Let Kalg

be an algebraic closure of K. Then there exists a unique absolute value on Kalg that
extends the absolute value on K.

Proof. This follows immediately from the previous theorem because Kalg is a union
of finite field extensions of K. ¤

2.2. The field Cp. We want to construct a complete and algebraically closed ex-
tension of Qp. First we consider an algebraic closure Qalg

p of Qp. In the previous
section we have seen that the absolute value of Qp can be extended uniquely to
Qalg

p . However one can show that Qalg
p is not complete (see e.g. [Robert, III.1.4]).

We define Cp to be the completion of Qalg
p . Then by definition Cp is a complete

non-archimedean valued field. The next theorem shows that Cp is algebraically
closed.

Theorem 2.3. Let K be a non-archimedean valued field and K̂ its completion. If
K is algebraically closed then K̂ is algebraically closed.

Idea of proof. Let f(X) ∈ K̂[X] be a polynomial of degree ≥ 1. We must show that
f(X) has a root in K̂.

Now K is dense in K̂, therefore we can find a sequence of polynomials f1(X),
f2(X), f3(X), · · · ∈ K[X] (all of the same degree as f(X)) that converges to f(X),
more precisely all coefficients of f(X)− fi(X) tend to 0 as i →∞.

Since K is algebraically closed, each polynomial fi(X) has a root λi ∈ K. Using
that fi(X) → f(X) as i →∞ one can then show that |f(λi)| → 0 as i →∞. From
this it easily follows that λ1, λ2, . . . has a subsequence that converges to a root ξ
of f(X) in K̂alg. But since all terms of this subsequence lie in K ⊆ K̂ and K̂ is
complete, it follows that ξ ∈ K̂.

For more details see [Schikhof, §17]. ¤

2.3. Sequences and series. Let (K, | |) be a complete non-archimedean valued
field. In this section we prove some basic properties of sequences and series in K.

Lemma 2.4. Let x, y ∈ K. If |x| 6= |y| then |x + y| = max{|x|, |y|}.
Proof. Without loss of generality we can assume that |x| < |y|. We will show that
|x + y| ≤ max{|x|, |y|} and max{|x|, |y|} ≤ |x + y|.

The inequality |x + y| ≤ max{|x|, |y|} holds by definition. On the other hand we
have

|y| = |x + y − x| ≤ max{|x + y|, |−x|} = max{|x + y|, |x|},
but since |y| 6≤ |x| it follows that |y| ≤ |x+y|. Hence max{|x|, |y|} = |y| ≤ |x+y|. ¤

Lemma 2.5. Let a1, a2, a3, . . . be a convergent sequence in K and assume that
limi→∞ ai 6= 0. Then |limi→∞ ai| = |an| for all sufficiently large n.

Proof. Let a = limi→∞ ai. Since a 6= 0 by assumption, there exists an N ∈ N
such that |ai − a| < |a| for all i ≥ N . Using the previous lemma we find that
|ai| = |(ai − a) + a| = |a| for all i ≥ N . ¤

Let a1, a2, a3, · · · ∈ K. As usual we define
∑∞

i=1 ai to be limN→∞
∑N

i=1 ai if this
limit exists.

Lemma 2.6. Let a1, a2, a3, · · · ∈ K. The series
∑∞

i=1 ai converges in K if and only
if limi→∞ ai = 0. In this case we have

∣∣∣∣∣
∞∑

i=1

ai

∣∣∣∣∣ ≤ sup
i∈N

|ai|.
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If moreover there exists an index N ∈ N such that |aN | > |ai| for all i 6= N , then
∣∣∣∣∣
∞∑

i=1

ai

∣∣∣∣∣ = sup
i∈N

|ai| = |aN |.

Proof. It is clear that if the series converges then limi→∞ ai = 0. Conversely assume
that limi→∞ ai = 0. Let b1, b2, b3, . . . be the sequence of partial sums, i.e. bn =∑n

i=1 ai. Then for i > j we have

|bi − bj | = |aj+1 + aj+2 + · · ·+ ai| ≤ max{|aj+1|, |aj+2|, . . . , |ai|}
which is arbitrarily small for sufficiently large i, j. Hence b1, b2, b3, . . . is a Cauchy
sequence. Since K is complete it follows that

∑∞
i=1 ai = limn→∞ bn exists.

Now assume that the series converges. Clearly we have

|bn| ≤ max{|a1|, . . . , |an|} ≤ sup
i∈N

|ai|

for every n ∈ N, hence |∑∞
i=1 ai| = |limn→∞ bn| = limn→∞|bn| ≤ supi∈N|ai|.

Finally assume that |aN | > |ai| for all i 6= N . Then by Lemma 2.4 we have
|bi| = |aN | for all i ≥ N . Hence |∑∞

i=1 ai| = |limn→∞ bn| = limn→∞|bn| = |aN |. ¤

Exercise 2.7. Let (K, | |) be a complete non-archimedean valued field. Let a1, a2,
a3, · · · ∈ K, and let σ : N→ N be a bijective map. Show that

∞∑

i=1

ai =
∞∑

i=1

aσ(i),

i.e. if the series on the left hand side converges then the series on the right hand
side converges and has the same value.

Exercise 2.8. Let p be a prime number. Compute
∑∞

i=1 i · i! in Qp.

2.4. The residue class field. Let (K, | |) be a non-archimedean valued field (not
necessarily complete). Let R = {x ∈ K : |x| ≤ 1} and M = {x ∈ K : |x| < 1}.
Clearly there are inclusions {0} ⊆ M ⊂ R ⊆ K.

Lemma 2.9. R is a subring of K, and M is the unique maximal ideal of R. The
units R× of R are given by R× = R \M = {x ∈ K : |x| = 1}.
Proof. If x, y ∈ R then |−x| = |x| ≤ 1, |x + y| ≤ max{|x|, |y|} ≤ 1 and |xy| =
|x| · |y| ≤ 1, so −x ∈ R, x + y ∈ R and xy ∈ R. Furthermore |0| = 0 ≤ 1 and
|1| = 1 ≤ 1, so 0 ∈ R and 1 ∈ R. Therefore R is a subring of K.

Next we show that M is an ideal of R. It is an additive subgroup because
0 ∈ M and x, y ∈ M implies −x ∈ M and x + y ∈ M since |−x| = |x| < 1 and
|x + y| ≤ max{|x|, |y|} < 1 . Furthermore if x ∈ R and y ∈ M then |xy| < 1, so
xy ∈ M .

Suppose that x ∈ R is a unit. Then there exists y ∈ R such that xy = 1. It
follows that |x| · |y| = |xy| = |1| = 1, hence |x| = 1 (since |x| ≤ 1 and |y| ≤ 1).
Conversely suppose that x ∈ K with |x| = 1. Then x ∈ R and x−1 ∈ R (since
|x−1| = 1), hence x ∈ R×. We have shown that R× = {x ∈ K : |x| = 1}. Clearly
this set is equal to R \M .

Finally, assume that I is any proper ideal of R. Then I cannot contain any units,
so I ∩R× = ∅. Since R× = R \M this implies I ⊆ M . As M 6= R this shows that
M is the unique maximal ideal of R. ¤

The ring R is called the ring of integers of K, and the quotient field R/M is
called the residue class field of K.

Exercise 2.10. Let K be a non-archimedean valued field and K̂ its completion.
Let R and M be the ring of integers and maximal ideal of K, and let R̂ and M̂ be
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the ring of integers and maximal ideal of K̂. Show that R ⊆ R̂ and M ⊆ M̂ , and
that the induced map of residue class fields R/M → R̂/M̂ is an isomorphism.

Lemma 2.11. Let p be a prime number. For the valued field (Q, | |p) we have
R = {a

b ∈ Q : a, b ∈ Z, p - b} and M = {a
b ∈ Q : a, b ∈ Z, p - b, p | a} = pR. The

inclusion Z ⊂ R induces an isomorphism Z/pZ ∼= R/M .

Proof. If x = ±peqe1
1 qe2

2 · · · qer
r ∈ Q× then |x|p = p−e ≤ 1 if and only if e ≥ 0, and

|x|p = p−e < 1 if and only if e > 0. This immediately implies R = {a
b ∈ Q : a, b ∈

Z, p - b} and M = {a
b ∈ Q : a, b ∈ Z, p - b, p | a}, and from this description of R and

M it easily follows that M = pR.
Clearly Z ⊂ R and pZ ⊂ pR = M , so we obtain a natural homomorphism

f : Z/pZ → R/M , f(a + pZ) = a + M for a ∈ Z. We claim that f is bijective. It
is easy to see that M ∩ Z = pZ which implies that f is injective. To see that f is
surjective, let a

b ∈ R. Since p - b there exists c ∈ Z such that bc ≡ a (mod p). It
follows that f(c + pZ) = c + M = bc

b + M = a
b + M . ¤

The ring of integers of Qp is called the ring of p-adic integers and denoted by Zp,
so Zp = {x ∈ Qp : |x| ≤ 1}. Clearly Z ⊂ Zp.

Corollary 2.12. The inclusion Z ⊂ Zp induces an isomorphism from Z/pZ to the
residue class field of Qp.

Proof. This follows from Lemma 2.11 and Exercise 2.10. ¤
Example 2.13. One can show that the residue class field of Qalg

p (the algebraic
closure of Qp) is the algebraic closure of the finite field Z/pZ (see e.g. [Schikhof,
§16]). Hence by Exercise 2.10 the residue class field of Cp is the algebraic closure
of Z/pZ.

2.5. The value group. Let (K, | |) be a non-archimedean valued field (not neces-
sarily complete). In this section we will assume that | | is not the trivial absolute
value. Note that the restriction of | | to K× is a homomorphism K× → R>0. Let
Γ denote the image of this homomorphism, i.e. Γ = {|x| : x ∈ K×}. This is a (non-
trivial) subgroup of the multiplicative group R>0 which is called the value group of
K (or of | |).
Definition 2.14. An absolute value | | : K → R≥0 is called discrete if its value
group is a discrete subgroup of R>0.

Remark 2.15. Let Γ be a non-trivial discrete subgroup of R>0. We claim that
then there exists a unique γ ∈ Γ with 0 < γ < 1 such that Γ = γZ. To see this note
that the logarithm is an isomorphism log : R>0 → R. Under this isomorphism Γ is
mapped to a discrete subgroup of R. Hence log(Γ) = Z · δ for a unique δ ∈ log(Γ)
with δ < 0, and it follows that Γ = γZ with γ = exp(δ).

Lemma 2.16. Let R = {x ∈ K : |x| ≤ 1} and M = {x ∈ K : |x| < 1}. The
following are equivalent.

(1) The absolute value | | is discrete.
(2) The ideal M is principal.
(3) The ring R is a principal ideal domain.
(4) The ideal M is finitely generated.
(5) The ring R is noetherian.

Proof. The implications (3)⇒(2)⇒(4) and (3)⇒(5)⇒(4) are clear. It therefore
suffices to show (1)⇒(3) and (4)⇒(1).

(1)⇒(3): We assume that | | is non-trivial and discrete, so its value group Γ is
a non-trivial discrete subgroup of R>0. Let I 6= {0} be an ideal of R. Choose an
element a ∈ I with maximal absolute value |a| (the existence of such an a follows
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easily from the description of Γ in Remark 2.15). We claim that I is equal to
the principal ideal generated by a. The inclusion (a) ⊆ I is obvious. Conversely,
let x ∈ I. Then |x/a| = |x|/|a| ≤ 1 by the choice of a, so x/a ∈ R. Hence
x = x/a · a ∈ (a) as required.

(4)⇒(1): exercise ¤

Exercise 2.17. Prove the implication (4)⇒(1).

Exercise 2.18. Let K be a non-archimedean valued field and K̂ its completion.
Show that K and K̂ have the same value groups.

Example 2.19. By definition of the p-adic absolute value | |p on Q it is clear
that its value group is pZ. By the previous exercise Qp has the same value group,
so in particular it is a discrete absolute value. It easily follows from the proof of
the implication (1)⇒(3) in Lemma 2.16 that the maximal ideal of the ring of p-adic
integers Zp is generated by any element with absolute value p−1, e.g. by the element
p ∈ Z ⊂ Zp.

Example 2.20. One can show that the value group of Cp is pQ (see e.g. [Schikhof,
§16]), so the absolute value on Cp is not discrete.

2.6. The ring Zp. Recall that Zp denotes the ring of p-adic integers, so Zp = {x ∈
Qp : |x| ≤ 1}. The following lemma summarises some results about Zp which we
have shown in the previous two sections.

Lemma 2.21. The ring Zp is a principal ideal domain, pZp is the unique maximal
ideal of Zp, and the inclusion Z ⊂ Zp induces an isomorphism from Z/pZ to the
residue class field Zp/pZp.

We will now give a more concrete description of the elements of Zp.

Theorem 2.22. Every x ∈ Zp can be written uniquely in the form

x = a0 + a1p + a2p
2 + · · · =

∞∑

i=0

aip
i

with ai ∈ {0, 1, . . . , p− 1}.
Proof. Let x ∈ Zp. Then x + pZp ∈ Zp/pZp

∼= Z/pZ, hence there exists a unique
a0 ∈ {0, 1, . . . , p − 1} such that x + pZp = a0 + pZp. It follows that x − a0 ∈ pZp,
so x− a0 = x1p for some x1 ∈ Zp. Similarly we can find a1 ∈ {0, 1, . . . , p− 1} and
x2 ∈ Zp such that x1−a1 = x2p. Continuing like this gives sequences a0, a1, a2, · · · ∈
{0, 1, . . . , p− 1} and x1, x2, x3, · · · ∈ Zp such that

x = a0 + x1p = a0 + a1p + x2p
2 = · · · = a0 + a1p + · · ·+ anpn + xn+1p

n+1 = . . . .

This implies ∣∣∣∣∣x−
n∑

i=0

anpn

∣∣∣∣∣ = |xn+1p
n+1| ≤ p−n−1,

hence x =
∑∞

i=0 aip
i.

To see the uniqueness, assume that x =
∑∞

i=0 aip
i =

∑∞
i=0 bip

i with ai, bi ∈
{0, 1, . . . , p − 1}. Then x + pZp = a0 + pZp = b0 + pZp ∈ Zp/pZp. Using the
isomorphism Z/pZ ∼= Zp/pZp this gives a0 + pZ = b0 + pZ ∈ Z/pZ, hence a0 = b0.
It follows that

∑∞
i=1 aip

i−1 =
∑∞

i=1 bip
i−1, which implies that a1 = b1, etc. ¤

Exercise 2.23. Find a0, a1, a2, · · · ∈ {0, 1, . . . , p − 1} such that −1 = a0 + a1p +
a2p

2 + . . . in Zp.

Lemma 2.24. Z≥0 is dense in Zp.
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Proof. Let x ∈ Zp and ε > 0. We must show that there exists an n ∈ Z≥0 such
that |x − n| < ε. Write x = a0 + a1p + a2p

2 + . . . as in Theorem 2.22. Choose
i ∈ Z≥0 such that p−i−1 < ε. Let n = a0 + a1p + · · · + aip

i ∈ Z≥0. Then
|x− n| = |ai+1p

i+1 + ai+2p
i+2 + . . .| = |pi+1| · |ai+1 + ai+2p + . . .| ≤ p−i−1 < ε. ¤

Exercise 2.25. Show that Zp is compact. (Hint: Since Zp is a metric space,
compactness is equivalent to sequential compactness. Use Theorem 2.22 to show
that every sequence in Zp has a convergent subsequence.)

2.7. Topology of Qp and Cp. We discuss some topological properties of non-
archimedean valued fields in general and of the fields Qp and Cp in particular.

Let (K, | |) be a non-archimedean valued field (not necessarily complete). Recall
that in §1.2 we defined open and closed balls in K. However in the case of a
non-archimedean valued field this terminology can be misleading.

Lemma 2.26. Let x ∈ K and ε > 0.

(1) The set B<ε(x) is open and closed in K.
(2) The set B≤ε(x) is open and closed in K.
(3) The sphere {y ∈ K : |y − x| = ε} is open and closed in K.

Proof. It is clear that B<ε(x) is open. Let y ∈ K \ B<ε(x). Then B<ε(y) ⊂ K \
B<ε(x) because z ∈ B<ε(x)∩B<ε(y) would imply |x−y| ≤ max{|x−z|, |z−y|} < ε.
This shows that K\B<ε(x) is open, i.e. B<ε(x) is closed. This proves statement (1).
The proof of (2) is similar, and (3) follows immediately from (1) and (2) because
{y ∈ K : |y − x| = ε} = B≤ε(x) \B<ε(x). ¤

Corollary 2.27. The topological space K is totally disconnected.

Exercise 2.28. Let B = B<ε(x) be an open ball in K. Show that every point in
B is a centre of B, i.e. B = B<ε(y) for all y ∈ B. Similarly for closed balls.

It follows from Exercise 2.25 that Qp is locally compact, because x + Zp is a
compact neighbourhood of x ∈ Qp. More generally one has the following theorem
(for a proof see e.g. [Cassels, Chapter 4, §1]).

Theorem 2.29. Let (K, | |) be a non-archimedean valued field. Then K is locally
compact if and only if K is complete, the residue class field of K is finite, and the
absolute value | | is discrete.

Recall that a topological space is called separable if it contains a countable dense
subset.

Theorem 2.30. The spaces Qp and Cp are separable.

Proof. Qp is separable because it contains Q as a countable dense subset.
To show that Cp is separable, one first shows that the countable set Qalg is dense

in Qalg
p and that therefore Qalg

p is separable (see e.g. [Robert, III.1.5]). Since Qalg
p

is dense in Cp it follows that Cp is separable. ¤

3. Normed spaces

Throughout this chapter we assume that (K, | |) is a complete non-archimedean
valued field and that | | is non-trivial. We define normed spaces and Banach spaces
over K, develop some of the basic properties of such spaces and of continuous linear
maps between such spaces, and discuss some standard examples.
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3.1. Basic definitions.

Definition 3.1. Let V be a vector space over K and let ‖ ‖ : V → R≥0 be a
function satisfying

(1) ‖x‖ = 0 if and only if x = 0
(2) ‖λx‖ = |λ| · ‖x‖ for all λ ∈ K, x ∈ V
(3) ‖x + y‖ ≤ max{‖x‖, ‖y‖} for all x, y ∈ V

Then ‖ ‖ is called a norm on V , and the pair (V, ‖ ‖) is called a normed space over
K.

A normed space (V, ‖ ‖) has a natural induced metric which is given by V ×V →
R≥0, (x, y) 7→ ‖x− y‖.
Definition 3.2. A normed space (V, ‖ ‖) is called a Banach space if V is complete
with respect to the induced metric.

Exercise 3.3. Let (V, ‖ ‖V ) and (W, ‖ ‖W ) be normed spaces over K. For (v, w) ∈
V ⊕W define ‖(v, w)‖ = max{‖v‖V , ‖w‖W }. Show that ‖ ‖ is a norm on V ⊕W ,
and that (with respect to this norm) V ⊕W is a Banach space if and only if both
V and W are Banach spaces.

Example 3.4. If we consider K as a vector space over itself then the absolute
value | | becomes a norm, and by assumption K is complete with respect to this
norm. Thus K is a 1-dimensional Banach space over K. The construction from
the previous exercise then gives the Banach space K2 = K ⊕ K with the norm
‖(x1, x2)‖ = max{|x1|, |x2|}. More generally, for every n ∈ N we obtain the Banach
space Kn with the norm ‖(x1, . . . , xn)‖ = max{|x1|, . . . , |xn|}.
Definition 3.5. Let V be a vector space over K. Two norms ‖ ‖1 and ‖ ‖2 on V
are called equivalent if they induce the same topology on V .

Lemma 3.6. Two norms ‖ ‖1 and ‖ ‖2 on a vector space V are equivalent if and
only if there exist constants c, d ∈ R>0 such that c‖v‖1 ≤ ‖v‖2 ≤ d‖v‖1 for all
v ∈ V .

Proof. Let T : V → V be the identity map, considered as a map from (V, ‖ ‖1) to
(V, ‖ ‖2). If the two norms are equivalent then T is continuous, hence bounded by
Lemma 3.11, so there exists d ∈ R>0 such that ‖v‖2 ≤ d‖v‖1 for all v ∈ V . By
considering the inverse of T we obtain c ∈ R>0 such that c‖v‖1 ≤ ‖v‖2.

Conversely, if there exist c, d ∈ R>0 such that c‖v‖1 ≤ ‖v‖2 ≤ d‖v‖1 for all
v ∈ V , then it is easy to see that every open ball with respect to ‖ ‖1 contains
an open ball with respect to ‖ ‖2, and that every open ball with respect to ‖ ‖2
contains an open ball with respect to ‖ ‖1. Hence we obtain the same induced
topology, i.e. ‖ ‖1 and ‖ ‖2 are equivalent. ¤

For a proof of the following theorem see e.g. [Schikhof, §13].

Theorem 3.7. Let V be a finite dimensional vector space over K. Then all norms
on V are equivalent, and V is complete with respect to each norm.

3.2. Bounded linear maps. Let V and W be normed spaces over K. We will
denote the norm on each of these spaces by ‖ ‖; it will always be clear from the
context which norm is meant.

Definition 3.8. Let T : V → W be a linear map. We call T bounded if there exists
a constant c ∈ R≥0 such that ‖Tv‖ ≤ c‖v‖ for all v ∈ V . If T is bounded then the
norm of T is defined by

‖T‖ = inf{c ∈ R≥0 : ‖Tv‖ ≤ c‖v‖ for all v ∈ V }.
Exercise 3.9. Let T : V → W be a bounded linear map.
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(1) Show that if V 6= {0} then

‖T‖ = sup
{‖Tv‖
‖v‖ : v ∈ V \ {0}

}
.

(2) Show that if the absolute value | | on K is not discrete (and hence |K×| is
dense in R>0) then

‖T‖ = sup{‖Tv‖ : ‖v‖ ≤ 1}.
It follows immediately from Exercise 3.9(1) (or directly from the definition) that

‖Tv‖ ≤ ‖T‖ · ‖v‖ for all v ∈ V .

Exercise 3.10. Let T : V → W and S : U → V be bounded linear maps. Show
that T ◦ S : U → W is bounded and ‖T ◦ S‖ ≤ ‖T‖ · ‖S‖.
Lemma 3.11. A linear map T : V → W is continuous if and only if it is bounded.

Proof. If T is continuous then it is continuous at 0 ∈ V . Therefore there exists a
δ > 0 such that ‖Tv‖ < 1 whenever ‖v‖ < δ. Fix any λ ∈ K with 0 < |λ| < 1. Now
if v ∈ V \ {0} then there exists a (unique) n ∈ Z such that δ|λ|n+1 ≤ ‖v‖ < δ|λ|n.
Then ‖v/λn‖ < δ and hence ‖T (v/λn)‖ < 1. It follows that

‖Tv‖ = ‖λnT (v/λn)‖ < |λ|n ≤ 1
δ|λ| ‖v‖.

Thus if we take c = (δ|λ|)−1 then ‖Tv‖ ≤ c‖v‖ for all v ∈ V , i.e. T is bounded.
Conversely assume that T is bounded, i.e. there exists a c > 0 such that ‖Tv‖ ≤

c‖v‖ for all v ∈ V . If ε > 0 then

‖Tv − Tw‖ = ‖T (v − w)‖ ≤ c‖v − w‖ < ε

for all v, w ∈ V with ‖v − w‖ < ε/c. This shows that T is continuous. ¤

We write L(V,W ) for the set of all bounded linear maps V → W . Clearly this
is a vector space over K.

Lemma 3.12. The function ‖ ‖ : L(V,W ) → R≥0 is a norm on L(V,W ). If W is
complete then L(V, W ) is a Banach space.

Proof. It is straightforward to verify that ‖ ‖ is a norm on L(V,W ).
Now assume that W is complete. Let T1, T2, T3, . . . be a Cauchy sequence in

L(V, W ). For every v ∈ V we have ‖Tnv − Tmv‖ ≤ ‖Tn − Tm‖ · ‖v‖, hence the
sequence T1v, T2v, T3v, . . . is a Cauchy sequence in W and therefore has a limit Tv.
This defines a map T : V → W . It is easy to see that T is linear. Now let ε > 0 and
choose N ∈ N such that ‖Tn − Tm‖ < ε for all m,n ≥ N . Then for every m ≥ N
and every v ∈ V we obtain (by choosing a sufficiently large n)

‖Tv − Tmv‖ ≤ max{‖Tv − Tnv‖, ‖Tnv − Tmv‖}
≤ max{‖Tv − Tnv‖, ‖Tn − Tm‖ · ‖v‖}
≤ ε‖v‖.

This proves that T−Tm is bounded, hence T is bounded. Furthermore ‖T−Tm‖ ≤ ε
for all m ≥ N , hence Tm → T as m →∞. ¤

If V is a normed space we define its topological dual V ′ to be V ′ = L(V, K). The
previous lemma shows that V ′ is always a Banach space.
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3.3. Examples.

Example 3.13. Let l∞(K) be the space of bounded sequences in K, i.e.

l∞(K) = {(xi)i∈N ∈ KN : there exists a c ∈ R≥0 such that |xi| ≤ c for all i ∈ N}.
This is a vector space over K. We define a function ‖ ‖ : l∞(K) → R≥0 by

‖(xi)i∈N‖ = sup
i∈N

|xi|.

We claim that (l∞(K), ‖ ‖) is a Banach space.
It is easy to check that ‖ ‖ is a norm on l∞(K). Let x(1), x(2), x(3), . . . be a

Cauchy sequence in l∞(K). We write x(m) = (x(m)
i )i∈N. Then for every i ∈ N we

have |x(m)
i − x

(n)
i | ≤ supj∈N|x(m)

j − x
(n)
j | = ‖x(m) − x(n)‖, hence x

(1)
i , x

(2)
i , x

(3)
i , . . .

is a Cauchy sequence in K, and we can define yi = limm→∞ x
(m)
i ∈ K and y =

(yi)i∈N ∈ KN. Now let ε > 0 and choose N ∈ N such that ‖x(n) − x(m)‖ < ε for
all n,m ≥ N . Then for every m ≥ N and every i ∈ N we obtain (by choosing a
sufficiently large n)

|yi − x
(m)
i | ≤ max{|yi − x

(n)
i |, |x(n)

i − x
(m)
i |} ≤ max{|yi − x

(n)
i |, ‖x(n) − x(m)‖} < ε.

Hence |yi| ≤ max{|yi−x
(m)
i |, |x(m)

i |} ≤ max{ε, ‖x(m)‖}, so the sequence y = (yi)i∈N
is bounded. Furthermore ‖y−x(m)‖ ≤ ε for all m ≥ N , hence x(m) → y as m →∞.
This shows that every Cauchy sequence in l∞(K) has a limit, i.e. l∞(K) is complete.

Example 3.14. We define c0(K) to be the complete subspace of l∞(K) consisting
of the sequences in K that converge to 0, i.e.

c0(K) = {(xi)i∈N ∈ KN : lim
i→∞

xi = 0} ⊂ l∞(K).

To see the completeness, we only need to show that if x(1), x(2), x(3), . . . is a sequence
in c0(K) that converges to y ∈ l∞(K), then y ∈ c0(K). Let ε > 0 and choose N ∈ N
such that ‖y − x(N)‖ < ε. Let I ∈ N be such that |x(N)

i | < ε for all i ≥ I. Then for
all i ≥ I we have |yi| ≤ max{|yi − x

(N)
i |, |x(N)

i |} < ε, so limi→∞ yi = 0 as required.

Definition 3.15. Two normed spaces V and W are called isometrically isomorphic
if there exists a bijective linear map T : V → W such that ‖Tv‖ = ‖v‖ for all v ∈ V .

Exercise 3.16. Show that the topological dual of c0(K) is isometrically isomorphic
to l∞(K).

Exercise 3.17. Let X be a non-empty compact topological space and C(X,K) the
set of all continuous functions X → K. Note that since X is compact every contin-
uous function f : X → K is bounded so that we can define ‖f‖ = supx∈X |f(x)| ∈
R≥0. Show that (C(X, K), ‖ ‖) is a Banach space over K.

4. Continuous functions on Zp

Let p be a prime number and let (K, | |) be a complete extension of (Qp, | |)
(e.g. K = Qp or K = Cp). In this chapter we first discuss the Mahler expansion of
continuous functions Zp → K. As specific examples of such continuous functions
we then consider the function x 7→ ax and the p-adic gamma function Γp.

4.1. Mahler expansion: statement of main result. Recall that C(Zp,K) de-
notes the K-Banach space of continuous functions Zp → K with the supremum
norm (cf. Exercise 3.17). For an integer n ∈ Z≥0 we define

(
x
n

)
by

(
x

n

)
=

{
1 if n = 0
x(x−1)···(x−n+1)

n! if n ≥ 1.
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Clearly x 7→ (
x
n

)
is a continuous function Zp → Qp ⊆ K. In the following we write(

.
n

)
for this function considered as an element of C(Zp, K).

For a continuous function f : Zp → K we define a new function ∆f : Zp → K by

(∆f)(x) = f(x + 1)− f(x).

Clearly ∆f is continuous and the map ∆ : C(Zp,K) → C(Zp,K) is linear. We call
∆ the difference operator on C(Zp, K). We let ∆0 = id : C(Zp,K) → C(Zp,K)
and define ∆n = ∆ ◦∆n−1 for n ∈ N.

Exercise 4.1. What is the kernel of ∆ : C(Zp,K) → C(Zp,K)?

Recall that c0(K) denotes the K-Banach space of sequences in K that converge to
0 with the supremum norm (cf. Example 3.14). In this section it will be convenient
to index all sequences by Z≥0 instead of N.

Theorem 4.2 (Mahler). The map

(an)n≥0 7→
∞∑

n=0

an

(
.

n

)

is an isometric isomorphism of Banach spaces c0(K) → C(Zp,K). The inverse of
this map is given by

f 7→ (
(∆nf)(0)

)
n≥0

.

So in particular every continuous function f : Zp → K can be written as f =∑∞
n=0 an

(
.
n

)
for unique a0, a1, a2, · · · ∈ K with limn→∞ an = 0. We call

∑∞
n=0 an

(
.
n

)
the Mahler expansion of f and a0, a1, a2, . . . the Mahler coefficients.

4.2. Mahler expansion: proof. We first show some preliminary results on bino-
mial coefficients and on the difference operator ∆.

Lemma 4.3. Let n ≥ 0. Then ‖( .
n

)‖ = 1.

Proof. This is obvious for n = 0, so assume that n ≥ 1. We have |(n
n

)| = |1| = 1,
hence ‖( .

n

)‖ ≥ 1. If x ∈ Z≥0 then
(

x
n

)
is an integer (because if 0 ≤ x ≤ n − 1

then
(

x
n

)
= 0, and if x ≥ n then

(
x
n

)
is the usual binomial coefficient “x choose

n”). Hence |(x
n

)| ≤ 1 for all x ∈ Z≥0. But since Z≥0 is dense in Zp, it follows that
|(x

n

)| ≤ 1 for all x ∈ Zp, i.e. ‖( .
n

)‖ ≤ 1. ¤

Lemma 4.4. (1) Let n ≥ 0. Then

∆
(

.

n

)
=

{
0 if n = 0(

.
n−1

)
if n ≥ 1.

(2) Let f ∈ C(Zp,K) and n ≥ 0. Then

(∆nf)(x) =
n∑

k=0

(−1)n−k

(
n

k

)
f(x + k).

Proof. The first statement follows by a direct computation: if n ≥ 1 then(
∆

(
.

n

))
(x) =

(
x + 1

n

)
−

(
x

n

)

=
(x + 1)x · · · (x− n + 2)

n!
− x(x− 1) · · · (x− n + 1)

n!

=
(
(x + 1)− (x− n + 1)

) · x(x− 1) · · · (x− n + 2)
n · (n− 1)!

=
(

x

n− 1

)
.
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The second statement follows by induction on n. If n = 0 then both sides of the
equation are equal to f(x). If n ≥ 1, then

(∆nf)(x) = (∆(∆n−1f))(x) = (∆n−1f)(x + 1)− (∆n−1f)(x)

=
n−1∑

k=0

(−1)n−1−k

(
n− 1

k

)
f(x + 1 + k)−

n−1∑

k=0

(−1)n−1−k

(
n− 1

k

)
f(x + k)

= (−1)0f(x + n) +
n−1∑

k=1

(−1)n−k

((
n− 1
k − 1

)
+

(
n− 1

k

))
f(x + k)

+ (−1)nf(x)

=
n∑

k=0

(−1)n−k

(
n

k

)
f(x + k)

as required. ¤

Lemma 4.5. The difference operator ∆ : C(Zp,K) → C(Zp, K) has the following
properties.

(1) For all f ∈ C(Zp,K) we have ‖∆f‖ ≤ ‖f‖. In particular, the map ∆ :
C(Zp,K) → C(Zp, K) is bounded and hence continuous.

(2) Let f ∈ C(Zp,K). Then there exists an n ∈ N (depending on f) such that
‖∆nf‖ ≤ p−1‖f‖.

Proof. The first statement is clear because

|(∆f)(x)| = |f(x + 1)− f(x)| ≤ max{|f(x + 1)|, |f(x)|} ≤ ‖f‖
for all x ∈ Zp. To prove the second statement, we first note that f is uniformly
continuous because f is continuous on the compact space Zp. Hence there exists
a t ∈ N such that |f(x) − f(y)| ≤ p−1‖f‖ whenever |x − y| ≤ p−t. Then for any
x ∈ Zp we have

(∆pt

f)(x) =
pt∑

k=0

(−1)pt−k

(
pt

k

)
f(x + k)

= f(x + pt) + (−1)pt

f(x) +
pt−1∑

k=1

(−1)pt−k

(
pt

k

)
f(x + k).

Now ∣∣∣f(x + pt) + (−1)pt

f(x)
∣∣∣ ≤ p−1‖f‖

because if p is odd then |f(x+pt)+(−1)pt

f(x)| = |f(x+pt)−f(x)| ≤ p−1‖f‖ by the
choice of t, and if p = 2 then |f(x+pt)+(−1)pt

f(x)| = |f(x+pt)−f(x)+2f(x)| ≤
max{|f(x + pt) − f(x)|, |2f(x)|} ≤ p−1‖f‖ by the choice of t and since |2| = 2−1.
Furthermore for 1 ≤ k ≤ pt − 1 we have p | (pt

k

)
and hence

∣∣∣∣(−1)pt−k

(
pt

k

)
f(x + k)

∣∣∣∣ ≤ p−1‖f‖.

Thus we obtain |(∆pt

f)(x)| ≤ p−1‖f‖ for all x ∈ Zp. Hence ‖∆nf‖ ≤ p−1‖f‖
where n = pt. ¤

Proof of Theorem 4.2. Let F : c0(K) → C(Zp,K), (an)n≥0 7→
∑∞

n=0 an

(
.
n

)
, and

G : C(Zp,K) → c0(K), f 7→ (
(∆nf)(0)

)
n≥0

, be the two maps from the statement
of the theorem.

Claim 1: The map F is well defined and linear. Furthermore ‖Fa‖ ≤ ‖a‖ for all
a ∈ c0(K).
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Let a = (an)n≥0 ∈ c0(K). Then ‖an

(
.
n

)‖ = |an| → 0 as n →∞, hence the series∑∞
n=0 an

(
.
n

)
converges in C(Zp,K). This shows that the map F is well defined, and

clearly it is linear. Furthermore

‖Fa‖ =

∥∥∥∥∥
∞∑

n=0

an

(
.

n

)∥∥∥∥∥

≤ sup
{∥∥∥∥an

(
.

n

)∥∥∥∥ : n ≥ 0
}

= sup{|an| : n ≥ 0} = ‖a‖.

Claim 2: The map G is well defined and linear. Furthermore ‖Gf‖ ≤ ‖f‖ for all
f ∈ C(Zp,K).

Let f ∈ C(Zp,K) and let an = (∆nf)(0) for n ≥ 0. By Lemma 4.5(2) applied
to f there exists n1 ∈ N such that ‖∆n1f‖ ≤ p−1‖f‖. Then for all n ≥ n1 we have

|an| = |(∆nf)(0)| ≤ ‖∆nf‖ = ‖∆n−n1(∆n1f)‖ ≤ ‖∆n1f‖ ≤ p−1‖f‖.
Next by Lemma 4.5(2) applied to ∆n1f there exists n2 ∈ N such that

‖∆n1+n2f‖ = ‖∆n2(∆n1f)‖ ≤ p−1‖∆n1f‖ ≤ p−2‖f‖.
Then for all n ≥ n1 + n2 we have

|an| = |(∆nf)(0)| ≤ ‖∆nf‖ = ‖∆n−n1−n2(∆n1+n2f)‖ ≤ ‖∆n1+n2f‖ ≤ p−2‖f‖.
Continuing like this, we see that for every ε > 0 there exists an N ∈ N such that
|an| ≤ ε for all n ≥ N , i.e. limn→∞ an = 0. This shows that (an)n≥0 ∈ c0(K), so
the map G is well defined. It is easy to see that G is linear. Furthermore

|an| = |(∆nf)(0)| ≤ ‖∆nf‖ ≤ ‖f‖
for every n ≥ 0, i.e. ‖Gf‖ = ‖(an)n≥0‖ ≤ ‖f‖.
Claim 3: G ◦ F is the identity on c0(K).

Let a = (an)n≥0 ∈ c0(K), and f = F (a) =
∑∞

i=0 ai

(
.
i

) ∈ C(Zp,K). Since the
map ∆ : C(Zp,K) → C(Zp,K) is linear and continuous, it follows that ∆nf =∑∞

i=0 ai∆n
(

.
i

)
=

∑∞
i=n ai

(
.

i−n

)
. Hence (∆nf)(0) =

∑∞
i=n ai

(
0

i−n

)
= an. This shows

that G(F (a)) = a as required.

Claim 4: G is injective.

Suppose that f ∈ C(Zp, K) and G(f) = 0 in c0(K). This means that (∆nf)(0) =
0 for all n ≥ 0, i.e.

∑n
k=0(−1)n−k

(
n
k

)
f(k) = 0 for all n ≥ 0. From this it easily

follows that f(k) = 0 for all k ∈ Z≥0. Since f is continuous and Z≥0 is dense in Zp,
it follows that f = 0. This shows that G is injective.

Completion of the proof:

G is bijective because it is injective by Claim 4 and surjective by Claim 3. Claim
3 then implies that F is the inverse of G. If a ∈ c0(K) then by Claims 1 and 2 we
have

‖a‖ = ‖G(F (a))‖ ≤ ‖F (a)‖ ≤ ‖a‖,
hence ‖F (a)‖ = ‖a‖, i.e. F is an isometry. ¤

Exercise 4.6. Show that for every function f ∈ C(Zp,K) there exists a unique
function Sf ∈ C(Zp, K) satisfying ∆(Sf) = f and (Sf)(0) = 0. The function Sf
is called the indefinite sum of f .
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4.3. The function x 7→ ax. We write M for the maximal ideal of the ring of
integers of K, i.e. M = {x ∈ K : |x| < 1}. Note that 1 + M ⊂ K× since −1 6∈ M .

Lemma 4.7. The set 1 + M is a subgroup of the multiplicative group K×.

Proof. Clearly 1 ∈ 1+M . If 1+x, 1+y ∈ 1+M then (1+x)(1+y) = 1+x+y+xy ∈
1 + M because |x + y + xy| ≤ max{|x|, |y|, |xy|} < 1. Finally we claim that if
1 + x ∈ 1 + M then (1 + x)−1 ∈ 1 + M . To see this first note that the series
1 − x + x2 − x3 + . . . converges since |(−1)ixi| → 0 as i → ∞. Then clearly
(1 + x)(1− x + x2 − x3 + . . . ) = 1, so (1 + x)−1 = 1− x + x2 − x3 + . . . , and this
lies in 1 + M because |−x + x2 − x3 + . . .| ≤ supi≥1|(−1)ixi| = |x| < 1. ¤

Theorem 4.8. Let a ∈ 1 + M . Then there exists a unique continuous function
fa : Zp → K such that fa(x) = ax for all x ∈ Z≥0.

Proof. Since |a − 1| < 1, we have limn→∞(a − 1)n = 0. Therefore the series∑∞
n=0(a − 1)n

(
.
n

)
converges in C(Zp,K), i.e. there exists a continuous function

fa : Zp → K such that

fa(x) =
∞∑

n=0

(a− 1)n

(
x

n

)

for all x ∈ Zp (and the convergence is uniform). Now if x ∈ Z≥0 then

fa(x) =
∞∑

n=0

(a− 1)n

(
x

n

)
=

x∑
n=0

(a− 1)n

(
x

n

)
= ((a− 1) + 1)x = ax.

This shows the existence of a continuous function fa : Zp → K such that fa(x) =
ax for all x ∈ Z≥0. This is the unique function with this property because any
continuous function Zp → K is already uniquely determined by its values on the
dense subset Z≥0 of Zp. ¤

If a ∈ 1 + M and x ∈ Zp then one usually writes ax instead of fa(x). Note that
ax ∈ 1 + M for all x ∈ Zp because this is true for x ∈ Z≥0 and 1 + M is closed in
K.

Exercise 4.9. Show that the abelian group 1 + M becomes a Zp-module with
respect to the operation Zp × (1 + M) → 1 + M , (x, a) 7→ ax.

4.4. The p-adic gamma function. Recall that the classical gamma function is
a meromorphic function Γ : C → C satisfying Γ(n) = (n − 1)! for all n ∈ N. It
is easy to see that there is no continuous function f : Zp → Qp satisfying f(n) =
(n − 1)! for all n ∈ N (because for any a ∈ N we have limi→∞(a + pi) = a, but
limi→∞((a + pi) − 1)! = 0 6= (a − 1)!). However we will show that by slightly
modifying (n − 1)! we can find a p-adic analogue of the classical gamma function.
For simplicity we assume in this section that the prime number p is odd.

Theorem 4.10. There exists a unique continuous function Γp : Zp → Qp such that

Γp(n) = (−1)n
∏

1≤j<n
p-j

j

for all integers n ≥ 2.

We first show a general result on the existence of continuous functions on Zp that
take specified values on certain subsets of Z. Let K be any complete extension of
Qp. Suppose we are given a function f : Z≥b → K (for some b ∈ Z). We say that a
continuous function f̃ : Zp → K interpolates f if f̃(n) = f(n) for all n ∈ Z≥b.
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Proposition 4.11. Let b ∈ Z and let f : Z≥b → K be a function. Then there exists
a continuous function f̃ : Zp → K interpolating f if and only if for every ε > 0
there exists an s ∈ N such that |f(n)− f(n + ps)| < ε for all n ∈ Z≥b. Furthermore
the function f̃ is unique if it exists.

Proof. Using that Z≥0 is dense in Zp we easily deduce that Z≥b is dense in Zp. This
implies the uniqueness of the function f̃ if it exists.

Now suppose that a continuous function f̃ interpolating f exists. Since f̃ is
continuous and Zp is compact, it follows that f̃ is uniformly continuous, i.e. for
every ε > 0 there exists δ > 0 such that |x−y| < δ implies |f̃(x)− f̃(y)| < ε. Hence
if p−s < δ then |f(n)− f(n + ps)| < ε for all n ∈ Z≥b as required.

Conversely assume that for every ε > 0 there exists an s ∈ N such that |f(n)−
f(n + ps)| < ε for all n ∈ Z≥b. We claim that this assumption already implies
that f : Z≥b → K is uniformly continuous (where we consider the p-adic metric on
Z≥b). Let ε > 0 and choose s as above. Now if x, y ∈ Z≥b satisfy |x − y| ≤ p−s

then (assuming without loss of generality that y ≥ x) we have y = x+ kps for some
k ∈ Z≥0. Hence

|f(x)− f(y)| ≤ max
{|f(x)− f(x + ps)|, |f(x + ps)− f(x + 2ps)|,

. . . , |f(x + (k − 1)ps)− f(y)|} < ε.

This proves the uniform continuity of f : Z≥b → K.
For x ∈ Zp we then define f̃(x) = limi→∞ f(ni) where n1, n2, n3, . . . is a sequence

in Z≥b that converges to x (such a sequence exists since Z≥b is dense in Zp). Using
the uniform continuity of f , it is not difficult to verify that f̃ is well defined (i.e. the
limit in the definition of f̃(x) exists and is independent of the choice of sequence
(ni)i∈N) and continuous. Furthermore it is obvious that f̃(n) = f(n) for all n ∈ Z≥b.
This shows the existence of f̃ with the required properties. ¤

Lemma 4.12. Let n ∈ Z and s ∈ N. Then
∏

n≤j<n+ps

p-j

j ≡ −1 (mod ps).

Proof. Let π : Z → Z/psZ be the canonical homomorphism. The numbers j with
n ≤ j < n + ps form a complete set of residues modulo ps, and we have p - j if and
only if π(j) ∈ (Z/psZ)×. Therefore

π

( ∏

n≤j<n+ps

p-j

j

)
=

∏

g∈(Z/psZ)×
g.

Every factor g ∈ (Z/psZ)× cancels with its inverse g−1, except for those g where
g = g−1. But g = g−1 if and only if g2 = 1, i.e. (g − 1)(g + 1) = 0. This is the case
if and only if g = 1 or g = −1 (here we use that p is odd). Hence

∏

g∈(Z/psZ)×
g =

∏

g∈(Z/psZ)×
g=g−1

g = 1 · (−1) = −1.

We have shown that

π

( ∏

n≤j<n+ps

p-j

j

)
= −1
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in Z/psZ, hence ∏

n≤j<n+ps

p-j

j ≡ −1 (mod ps)

as required. ¤

Proof of Theorem 4.10. Let f(n) = (−1)n
∏

1≤j<n
p-j

j for n ∈ Z≥2. By Proposition

4.11 it suffices to show that for every ε > 0 there exists an s ∈ N such that
|f(n)− f(n + ps)| < ε for all n ∈ Z≥2. But using the lemma we find that

f(n)− f(n + ps) = (−1)n
∏

1≤j<n
p-j

j − (−1)n+ps ∏

1≤j<n+ps

p-j

j

= (−1)n
∏

1≤j<n
p-j

j ·
(

1 +
∏

n≤j<n+ps

p-j

j

)

≡ 0 (mod ps).

Hence if p−s < ε then |f(n)− f(n + ps)| ≤ p−s < ε for all n ∈ Z≥2 as required. ¤

Exercise 4.13. Define hp : Zp → Qp by

hp(x) =

{
−x if |x| = 1
−1 if |x| < 1.

Show that Γp(x + 1) = hp(x)Γp(x) for all x ∈ Zp. Use this to compute Γp(1) and
Γp(0).

For a description of Γ2, the Mahler coefficients of Γp, and many other properties
of the p-adic gamma function see [Robert, §7.1] and [Schikhof, §35–39 and §52].

5. Differentiation

Let p be a prime number and let (K, | |) be a complete extension of (Qp, | |)
(e.g. K = Qp or K = Cp). In this chapter we discuss the definition and some basic
properties of (strictly) differentiable functions X → K where X ⊆ K.

5.1. Differentiability and strict differentiability. We say that a non-empty
subset X of K has no isolated points if for every a ∈ X and every neighbourhood
U of a in X the set U \ {a} is non-empty.

Definition 5.1. Let X be a non-empty subset of K without isolated points, and
let f : X → K be a function.

(1) We say that f is differentiable at a point a ∈ X (with derivative f ′(a)) if
the limit f ′(a) = limx→a

f(x)−f(a)
x−a exists.

(2) We say that f is differentiable (on X) if f is differentiable at every point
a ∈ X. In this case the derivative f ′ is again a function X → K.

Exercise 5.2. Show that if f : X → K is differentiable at a point a ∈ X then f is
continuous at a.

A function f : X → K is called locally constant if every point a ∈ X has a neigh-
bourhood U in X such that the restriction of f to U is a constant function. Clearly
every locally constant function is differentiable with derivative 0. The following
example shows that the converse of this statement is not true.
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Example 5.3. For every n ∈ N let Bn = {x ∈ Zp : |x − pn| < p−2n} ⊂ Zp. Note
that the balls Bn are pairwise disjoint. Define a function f : Zp → Zp (⊂ Qp) by

f(x) =

{
p2n if x ∈ Bn,

0 if x ∈ Zp \
⋃

n∈NBn.

We claim that
(1) f is differentiable with f ′ = 0,
(2) f is not locally constant.

It is easy to see that on Zp \ {0} the function f is locally constant. Hence if
a ∈ Zp \ {0} then f is differentiable at a with derivative f ′(a) = 0. Furthermore f
is differentiable at the point 0 with derivative f ′(0) = 0, because for x 6= 0 we have

∣∣∣∣
f(x)− f(0)

x− 0

∣∣∣∣ =

{
|p2n|/|pn| = p−n if x ∈ Bn,

0 if x ∈ Zp \
⋃

n∈NBn

and hence limx→0
f(x)−f(0)

x−0 = 0. Finally, f is not locally constant on Zp because
f(0) = 0 but in every neighbourhood of 0 there exists a point x with f(x) 6= 0.

Definition 5.4. Let X be a non-empty subset of K without isolated points, and
let f : X → K be a function.

(1) We say that f is strictly differentiable at a point a ∈ X if the difference
quotient

Φf(x, y) =
f(x)− f(y)

x− y

has a limit as (x, y) → (a, a), x 6= y.
(2) We say that f is strictly differentiable (on X) if f is strictly differentiable

at every point a ∈ X.

Some authors (e.g. [Schikhof]) use the expression continuously differentiable in-
stead of strictly differentiable.

Lemma 5.5. (1) If f is strictly differentiable at a point a ∈ X then f is dif-
ferentiable at a and f ′(a) = lim(x,y)→(a,a) Φf(x, y).

(2) If f is strictly differentiable on X then f is differentiable on X and the
function f ′ : X → K is continuous.

Proof. Everything is clear except for the continuity of f ′. Let a ∈ X and ε > 0.
We must show that there exists a neighbourhood U of a in X such that |f ′(a) −
f ′(b)| < ε for all b ∈ U . Since f is strictly differentiable in a, there exists an open
neighbourhood U of a in X such that |f ′(a)− Φf(x, y)| < ε for all (x, y) ∈ U × U
with x 6= y. Now let b ∈ U . Then since f is strictly differentiable in b, the point b
has a neighbourhood V ⊆ U such that |f ′(b)− Φf(x, y)| < ε for all (x, y) ∈ V × V
with x 6= y. Fix y ∈ V \ {b}. Then

|f ′(a)− f ′(b)| = |f ′(a)− Φf(b, y) + Φf(b, y)− f ′(b)|
≤ max{|f ′(a)− Φf(b, y)|, |Φf(b, y)− f ′(b)|}
< ε

as required. ¤

By Lemma 5.5(2), every strictly differentiable function is differentiable with con-
tinuous derivative. However the following example shows that the converse of this
statement is false.

Example 5.6. Let f : Zp → Zp be the function from Example 5.3. We have
already seen that f is differentiable and f ′ is continuous (because f ′ = 0). However
f ′ is not strictly differentiable at the point 0, i.e. the limit lim(x,y)→(0,0) Φf(x, y)
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does not exist. Indeed, taking the sequence (xn, yn) = (pn, 0) (which converges to
(0, 0)) gives the limit limn→∞ Φf(xn, yn) = 0 (as seen in Example 5.3), but taking
the sequence (xn, yn) = (pn, pn−p2n) (which also converges to (0, 0)) gives the limit

lim
n→∞

Φf(xn, yn) = lim
n→∞

p2n − 0
pn − (pn − p2n)

= 1.

Exercise 5.7. Let X and Y be non-empty subsets of K without isolated points.
Let f : X → K and g : Y → K be functions such that f(X) ⊆ Y . Show that if
f is strictly differentiable at a point a ∈ X and g is strictly differentiable at the
point f(a), then g ◦ f is strictly differentiable at a with derivative (g ◦ f)′(a) =
g′(f(a))f ′(a).

5.2. Local invertibility of strictly differentiable functions.

Lemma 5.8. Let X be a non-empty subset of K without isolated points. Let f :
X → K be strictly differentiable at a point a ∈ X. If f ′(a) 6= 0 then there exists a
neighbourhood U of a in X such that

|f(x)− f(y)| = |f ′(a)| · |x− y|
for all x, y ∈ U . In particular, f is injective on U .

Proof. Since f ′(a) 6= 0 and Φf(x, y) → f ′(a) as (x, y) → (a, a) (with x 6= y), there
exists a neighbourhood U of a in X such that |Φf(x, y)−f ′(a)| < |f ′(a)| for all x, y ∈
U with x 6= y. But this implies that |Φf(x, y)| = |f ′(a)| (because otherwise Lemma
2.4 would give the contradiction max{|Φf(x, y)|, |f ′(a)|} = |Φf(x, y) − f ′(a)| <
|f ′(a)|). After multiplying by |x−y| we obtain |f(x)−f(y)| = |f ′(a)| · |x−y| for all
x, y ∈ U with x 6= y. But clearly this equality is also true if x, y ∈ U and x = y. ¤

Example 5.9. The lemma is not true if strictly differentiable is replaced by dif-
ferentiable. For example, if g : Zp → Zp is defined by g(x) = f(x) + x where
f : Zp → Zp is the function from Example 5.3, then g is differentiable at 0 with
derivative g′(0) = 1 6= 0. However g is not injective on any neighbourhood of 0
because g(pn) = pn + p2n = g(pn + p2n) for all n ∈ N.

Theorem 5.10. Let X be a non-empty and open subset of K. Let f : X → K
be strictly differentiable at a point a ∈ X. If f ′(a) 6= 0 then for all sufficiently
small r > 0 the function f maps the closed ball B≤r(a) bijectively onto the closed
ball B≤|f ′(a)|r(f(a)), and the local inverse g : B≤|f ′(a)|r(f(a)) → B≤r(a) is strictly
differentiable at f(a) with g′(f(a)) = f ′(a)−1.

Before proving Theorem 5.10 we recall Banach’s contraction theorem.

Theorem 5.11 (Banach’s contraction theorem). Let (X, d) be a non-empty com-
plete metric space. Let F : X → X be a contraction (i.e. there exists a constant
0 < τ < 1 such that d(F (x), F (y)) ≤ τd(x, y) for all x, y ∈ X). Then F has
precisely one fixed point (i.e. there exists precisely one b ∈ X such that F (b) = b).

For a proof of Banach’s contraction theorem see e.g. [Schikhof, Appendix A.1].

Proof of Theorem 5.10. Fix a constant τ with 0 < τ < 1. Since Φf(x, y) → f ′(a)
as (x, y) → (a, a) (with x 6= y), there exists a neighbourhood U of a in X such that∣∣∣∣

f(x)− f(y)
x− y

− f ′(a)
∣∣∣∣ ≤ τ |f ′(a)|

for all x, y ∈ U with x 6= y. For all sufficiently small r > 0 we have B≤r(a) ⊆ U .
We claim that for such r the map f maps B≤r(a) bijectively onto B≤|f ′(a)|r(f(a)).

As in the proof of Lemma 5.8 we have
∣∣∣ f(x)−f(y)

x−y

∣∣∣ = |f ′(a)| for all x, y ∈ B≤r(a)
with x 6= y. By choosing y = a this implies that |f(x) − f(a)| = |f ′(a)| · |x − a|
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for all x ∈ B≤r(a). Hence f(x) ∈ B≤|f ′(a)|r(f(a)) for all x ∈ B≤r(a) as required.
Furthermore the equality |f(x) − f(y)| = |f ′(a)| · |x − y| also implies that f is
injective on B≤r(a).

Now let c ∈ B≤|f ′(a)|r(f(a)). Define a function F by F (x) = x−(f(x)−c)/f ′(a).
If x ∈ B≤r(a) then |f(x)− c| ≤ max{|f(x)− f(a)|, |f(a)− c|} ≤ |f ′(a)|r and hence

|F (x)− a| = |x− a− (f(x)− c)/f ′(a)| ≤ max{|x− a|, |f(x)− c|/|f ′(a)|} ≤ r.

This shows that F is a map B≤r(a) → B≤r(a). Furthermore F is a contraction
because for any x, y ∈ B≤r(a) we have

|F (x)− F (y)| =
∣∣∣∣x− y − f(x)− f(y)

f ′(a)

∣∣∣∣

=
|x− y|
|f ′(a)| ·

∣∣∣∣f ′(a)− f(x)− f(y)
x− y

∣∣∣∣

≤ |x− y|
|f ′(a)| · τ |f

′(a)| = τ |x− y|.

Now the space B≤r(a) is complete because it is closed in the complete space K.
Hence by Banach’s contraction theorem the map F has a fixed point b ∈ B≤r(a).
But clearly F (b) = b implies f(b) = c. This shows that B≤|f ′(a)|r(f(a)) ⊆ f(B≤r(a))
as required.

Let g : B≤|f ′(a)|r(f(a)) → B≤r(a) be the inverse of f . From |f(x) − f(y)| =
|f ′(a)| · |x− y| for all x, y ∈ B≤r(a) we obtain |f ′(a)|−1 · |t− u| = |g(t) − g(u)| for
all t, u ∈ B≤|f ′(a)|r(f(a)). This implies that g is continuous. Now

Φg(t, u) =
g(t)− g(u)

f(g(t))− f(g(u))
=

(
Φf(g(t), g(u))

)−1
.

If (t, u) → (f(a), f(a)) with t 6= u, then (g(t), g(u)) → (g(f(a)), g(f(a)) = (a, a).
Hence we see that lim(t,u)→(f(a),f(a)) Φg(t, u) exists and is equal to f ′(a)−1. ¤
5.3. Further results on strictly differentiable functions. Finally we mention
some further results without proof.

Theorem 5.12. Let f : Zp → K be a continuous function with Mahler expansion
f =

∑∞
n=0 an

(
.
n

)
. Then f is strictly differentiable if and only if limn→∞ n|an| = 0.

For a proof see [Schikhof, §53]. Recall that if a ∈ 1 + M ⊂ K, i.e. |a − 1| < 1,
and x ∈ Zp then ax is given by the Mahler series

ax =
∞∑

n=0

(a− 1)n

(
x

n

)

(cf. §4.3). Since limn→∞ n|a−1|n = 0, it follows from the theorem that the function
x 7→ ax is strictly differentiable.

Theorem 5.13. Let X be a non-empty subset of K without isolated points, and
let f : X → K be a continuous function. Then there exists a strictly differentiable
function F : X → K such that F ′ = f .

For a proof of this theorem and many more results on (strictly) differentiable
functions see [Schikhof].
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