Problem I Solutions

1) This is a long computation - see klein.py which is attached, but if one cums the computation we see then

$$
\operatorname{rk}\left(H_{1}\left(x ; A_{2}\right)\right)=2 ; \operatorname{rk}\left(H_{1}\left(x_{;} \mathbb{Z}_{3}\right)\right)=1
$$

This is because the Klein bottle has torsion, so it depends which field we use. An open question is: can torsion appear in natural data.
2) The general formula for the expected Euler characteristic is

$$
\begin{aligned}
\mathbb{E}(X) & =\mathbb{E}\left(\sum_{i=0}^{d}(-1)^{i}(\mathbb{H} \text { of } i \text {-simplices })\right) \\
& =\sum_{i=0}^{d}(-1)^{i} \mathbb{E}(\mathbb{H} \text { of } \text { i-simplices })
\end{aligned}
$$

(1) In the Lineal - Meshulem model (LM), the expected number of simplices is deterministic for ice? is the number af k-simplices times the probability P. With n-vertices there are $\binom{n}{i+1} i$-simplices So

$$
\mathbb{E}(\chi)=\sum_{i=0}^{k-1}(-1)^{i}\binom{n}{i+1}+P\binom{n}{k+1}
$$

(2) The situation is slightly more complicated here

- there are n vertices 0 -simplicos
- p times $\frac{n(n-1)}{2}$ edges
- a k-simplex corresponds to a $k+1$ clique which has $\frac{k(k+1)}{2}$ edges, all of which must be present. So the probabily a k simplex is included is

$$
\mathbb{P}(k-\text { simplex })=p^{\frac{k(k+1)}{2}}
$$

Hence

$$
\begin{aligned}
& \mathbb{E}(\chi)=n-\frac{n(n-1)}{2} \cdot p+\sum_{i=2}^{n-1}(-1)^{i}\binom{n}{i+1} p^{\frac{i(i+1)}{2}} \\
& \uparrow \\
& \text { \#efk-simplices }
\end{aligned}
$$

3) The computation can be big but we can do it dineusion by dimension

$b b_{c}$ ae	$b f$	$c e$	$e f$	$b e$	$b d$	$d f$	$d e$
c	1		1	1		1	1
c							
e	1	1		1	1	1	
a		1	1		1		
f		1	1				
d						1	1

$2 \quad 3{ }_{i}^{\text {bftcetbc cetbc }}{ }_{4}$ bdtbf 5 $\quad b^{b c}$ ae $\frac{b f c e ~ e f ~ b e ~ b d ~ d d^{r} f}{l} d e \rightarrow b d+c e+b c$
$\left.2 \begin{array}{r}c \\ n_{c}^{c} \\ a \\ d\end{array} \right\rvert\,$

		1	x	x
x		\square	x	x
1		x		

(1) | | x | x |
| :---: | :---: | :---: |
| x | x | |
| x | | |

The barcode for H_{s} is $[1, \infty]$ [1,3]

$$
\begin{array}{ll}
{[1,2]} & {[2,4]} \\
{[2,2]} \\
{[2,3]} &
\end{array}
$$

The 1 dimensional cycles are

$$
\begin{array}{ll}
e f+b f+c e+b c & d f+b d+b f \\
b e+c e+b c & d e+b d+c e+b c
\end{array}
$$

We can just consider the lending terms for computing H^{\prime},

	che		
	bed	def	
bf			$\boxed{11}$

b) Checking for H_{1}, here we are assuming closedinterals 3450
 Checking inclusion exclusion we see that we get the same answer.

