
Decision Theory

Fundamental Theory of Statistical Inference

G. Alastair Young

Department of Mathematics
Imperial College London

LTCC, 2017

G. Alastair Young Fundamental Theory of Statistical Inference



Decision Theory

Formulation

Elements of a formal decision problem:

(1) Parameter space Ωθ. Represents the set of possible unknown
states of nature.

(2) Sample space Y. Typically have n observations, so a generic
element of the sample space is y = (y1, ..., yn) ∈ Rn.

(3) Family of distributions. {Pθ(y), y ∈ Y, θ ∈ Ωθ}. Generally
consists of a family f (y ; θ) of probability mass functions or
density functions of Y .
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(4) Action space A. Set of all actions or decisions available.

Example 1. Hypothesis testing problem, two hypotheses H0

and H1, A = {a0, a1}, a0 represents accepting H0, a1
represents accepting H1.

Example 2. In point estimation typically have A ≡ Ωθ.
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(5) Loss function L. Function L : Ωθ ×A → R links the action to
the unknown parameter: if we take action a ∈ A when the
true state of nature is θ ∈ Ωθ, then we incur a loss L(θ, a).
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(6) Decision rule d . Function d : Y → A. Each point y ∈ Y is
associated with a specific action d(y) ∈ A.

Example 1. If ȳ ≤ 5.7, accept H0, otherwise accept H1. So,
d(y) = a0 if ȳ ≤ 5.7, d(y) = a1 otherwise.

Example 2. Estimate θ by d(y) = y31 + 27sin(
√
y2).
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The Risk Function

Risk associated with decision rule d based on random data Y given
by

R(θ, d) = EθL(θ, d(Y )) =

∫
Y
L(θ, d(y))f (y ; θ)dy .

Expectation of loss with respect to distribution on Y , for the
particular θ.

Different decision rules compared by comparing their risk functions,
as functions of θ. Repeated sampling principle explicitly invoked.
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Utility and loss

Utility theory: measure of loss in terms of utility to individual.

If behave rationally, act as if maximising the expected value of a
utility function.

Adopt instead various artificial loss functions, such as

L(θ, a) = (θ − a)2,

the squared error loss function. When estimating a parameter θ,
we seek a decision rule d(y) which minimises the mean squared
error Eθ{θ − d(Y )}2.
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Other loss functions

Can consider other loss functions, such as absolute error loss,

L(θ, a) = |θ − a|.
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In hypothesis testing, where we have two hypotheses H0, H1, and
corresponding action space A = {a0, a1}, the most familiar loss
function is

L(θ, a) =


1 if θ ∈ H0 and a = a1
1 if θ ∈ H1 and a = a0
0 otherwise.

In this case the risk function is the probability of making a wrong
decision:

R(θ, d) =

{
Pθ{d(Y ) = a1} if θ ∈ H0

Pθ{d(Y ) = a0} if θ ∈ H1.
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Criteria for a good decision rule

Ideally, find a decision rule d which makes the risk function R(θ, d)
uniformly small for all values of θ.

Rarely possible, so consider a number of criteria which help to
narrow down the class of decision rules we consider.
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Admissible decision rules

Given two decision rules d and d ′, we say d strictly dominates d ′ if
R(θ, d) ≤ R(θ, d ′) for all values of θ, and R(θ, d) < R(θ, d ′) for at
least one θ.

Any decision rule which is strictly dominated by another decision
rule is said to be inadmissible. If a decision rule d is not strictly
dominated by any other decision rule, then it is admissible.

Admissibility: absence of a negative attribute.
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Minimax decision rules

The maximum risk of a decision rule d is defined by

MR(d) = sup
θ

R(θ, d).

A decision rule d is minimax if it minimises the maximum risk:

MR(d) ≤ MR(d ′) for all decision rules d ′.
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So, d must satisfy

sup
θ

R(θ, d) = inf
d ′

sup
θ

R(θ, d ′).

In most problems we encounter, the maxima and minima are
actually attained.
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Minimax principle

The minimax principle says we should use the minimax decision
rule.

Protects against worst case, may lead to counterintuitive result.

If minimax rule is not admissible, can find another which is.
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Unbiased decision rules

A decision rule d is said to be unbiased if

Eθ{L(θ′, d(Y ))} ≥ Eθ{L(θ, d(Y ))} for all θ, θ′.

Suppose the loss function is squared error L(θ, d) = (θ − d)2. For
d to be an unbiased decision rule, we require d(Y ) to be an
unbiased estimator in the classical sense.
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Discussion

Role of unbiasedness is ambiguous.

As criterion, doesn’t depend solely on risk function.
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Bayes decision rules

In addition to loss function, specify a prior distribution which
represents our prior knowledge of the parameter θ, and is
represented by a function π(θ), θ ∈ Ωθ.

If Ωθ is a continuous parameter space, such as an open subset of
Rk for some k ≥ 1, usually assume that the prior distribution is
absolutely continuous and take π(θ) to be some probability density
on Ωθ. In the case of a discrete parameter space, π(θ) is a
probability mass function.
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Bayes risk

In the continuous case, the Bayes risk of a decision rule d is
defined to be

r(π, d) =

∫
θ∈Ωθ

R(θ, d)π(θ)dθ.

In the discrete case, integral is replaced by a summation.
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Bayes rule

A decision rule d is said to be the Bayes rule (with respect to a
given prior π(·)) if it minimises the Bayes risk: if

r(π, d) = inf
d ′

r(π, d ′) = mπ say.

The Bayes principle says we should use the Bayes decision rule.
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Some other definitions

Sometimes the Bayes rule is not defined because the infimum is
not attained for any decision rule d . However, in such cases, for
any ϵ > 0 we can find a decision rule dϵ for which

r(π, dϵ) < mπ + ϵ

and in this case dϵ is said to be ϵ-Bayes (with respect to the prior
distribution π(·)).

A decision rule d is said to be extended Bayes if, for every ϵ > 0,
we have that d is ϵ-Bayes with respect to some prior (which need
not be the same for different ϵ).
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Randomised Decision Rules

Suppose we have I decision rules d1, ..., dI and associated
probability weights p1, ..., pI (pi ≥ 0 for 1 ≤ i ≤ I ,

∑
i pi = 1).

Define d∗ =
∑

i pidi to be the decision rule “select di with
probability pi”: imagine using some randomisation mechanism to
select among the decision rules d1, ..., dI with probabilities
p1, ..., pI , and then, having decided in favour of some di , carry out
the action di (y) when y is observed.

d∗ is a randomised decision rule.
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Risk of randomised rule

For a randomised decision rule d∗, the risk function is defined by
averaging across possible risks associated with the component
decision rules:

R(θ, d∗) =
I∑

i=1

piR(θ, di ).

Randomised decision rules may appear to be artificial, but minimax
solutions may well be of this form.

G. Alastair Young Fundamental Theory of Statistical Inference



Decision Theory

Finite Decision Problems

Suppose parameter space is a finite set, Ωθ = {θ1, ..., θt} for some
finite t, with θ1, . . . , θt specified..

Notions of admissible, minimax and Bayes decision rules can be
given a geometric interpretation.

Define the risk set to be a subset S of Rt , generic point consists of
the t-vector (R(θ1, d), ...,R(θt , d)) associated with a decision rule
d .
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Assume the space of decision rules includes all randomised rules.

The risk set S is a convex set. Minimax rules etc. can often be
identified by drawing S as subset of Rt
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Finding minimax rules in general

Theorem 2.1 If δn is Bayes with respect to prior πn(·), and
r(πn, δn) → C as n → ∞, and if R(θ, δ0) ≤ C for all θ ∈ Ωθ, then
δ0 is minimax.

[This includes the case where δn = δ0 for all n and the Bayes risk
of δ0 is exactly C .]

G. Alastair Young Fundamental Theory of Statistical Inference



Decision Theory

A decision rule d is an equaliser decision rule is R(θ, d) is the same
for every value of θ.

Theorem 2.2 An equaliser decision rule δ0 which is extended Bayes
must be minimax.
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Admissibility of Bayes rules

Bayes rules are nearly always admissible.

Theorem 2.3 Assume that Ωθ is discrete, Ωθ = {θ1, . . . , θt} and
that the prior π gives positive probability to each θi . A Bayes rule
with respect to π is admissible.

Theorem 2.4 If a Bayes rule is unique, it is admissible.

Theorem 2.5 Let Ωθ be a subset of the real line. Assume that the
risk functions R(θ, d) are continuous in θ for all decision rules d .
Suppose that for any ϵ > 0 and any θ the interval (θ− ϵ, θ+ ϵ) has
positive probability under the prior π. Then a Bayes rule with
respect to π is admissible.
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