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Fundamental ideas

In classical statistics Y is random, with a density given by f (y ; θ),
but θ is a fixed unknown parameter.

In Bayesian statistics Y and θ are both regarded as random
variables, with joint density given by π(θ)f (y ; θ) where π(θ)
represent the prior density of θ and f (y ; θ) is the conditional
density of Y given θ.
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Posterior density

The posterior density of θ, conditional on the observed value
Y = y , is derived by applying Bayes’ rule:

π(θ|y) = π(θ)f (y ; θ)∫
Ωθ

π(θ′)f (y ; θ′)dθ′
.

We write
π(θ|y) ∝ π(θ)f (y ; θ)

where the constant of proportionality does not depend on θ.
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So:
posterior ∝ prior × likelihood

since f (y ; θ), treated as a function of θ for fixed y , is called the
likelihood function.
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An example

Suppose Y ∼ Bin(n, θ) for known n and unknown θ. Suppose the
prior density is a Beta density on (0,1),

π(θ) =
θa−1(1− θ)b−1

B(a, b)
, 0 < θ < 1,

where a > 0, b > 0. For the density of Y , we have

f (y ; θ) =

(
n

y

)
θy (1− θ)n−y .
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Ignoring all components of π and f which do not depend on θ, we
have

π(θ|y) ∝ θa+y−1(1− θ)n−y+b−1.

This is also of Beta form, with the parameters a and b replaced by
a+ y and b + n − y , so the full posterior density is

π(θ|y) = θa+y−1(1− θ)n−y+b−1

B(a+ y , b + n − y)
.
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A general property

A very general property of Bayesian statistical procedures is that in
large samples they give answers which are very similar to the
answers provided by classical statistics.

Nevertheless, in small samples the procedures do lead to different
answers, and the Bayesian solution does depend on the prior
adopted.
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Conjugate Priors

In the example, by adopting a prior density of Beta form, we
obtained a posterior density which was also a member of the Beta
family, but with different parameters.

When this happens, the common parametric form of the prior and
posterior are called a conjugate prior family for the problem.

Often very convenient, because it avoids having to integrate to
find the normalising constant in the posterior density.
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Another example

Suppose Y1, ...,Yn are IID N(θ, σ2) where the mean θ is unknown
and the variance σ2 is known. Assume that the prior density for θ
is N(µ0, σ

2
0) with µ0, σ

2
0 known.

Denote by Y the vector (Y1, ...,Yn) and let its observed value be
y = (y1, ..., yn). Ignoring all quantities that do not depend on θ,
the prior × likelihood can be written in the form

π(θ)f (y ; θ) ∝ exp

{
−(θ − µ0)

2

2σ2
0

−
n∑

i=1

(yi − θ)2

2σ2

}
.
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Completing the square shows that

(θ−µ0)2

σ2
0

+
∑n

i=1
(yi−θ)2

σ2

= θ2
(

1
σ2
0
+ n

σ2

)
− 2θ

(
µ0

σ2
0
+ nȳ

σ2

)
+ Const

= 1
σ2
1
(θ − µ1)

2 + Const,

where ȳ =
∑

yi/n, “Const” denotes a quantity which does not
depend on θ.
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Here µ1 and σ2
1 are defined by

1

σ2
1

=
1

σ2
0

+
n

σ2
, µ1 = σ2

1

(
µ0

σ2
0

+
nȳ

σ2

)
.

Therefore the posterior density is the normal density with mean µ1

and variance σ2
1. Another example of a conjugate prior family.
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The general form of Bayes rule

How to solve Bayesian decision problems.
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Writing the joint density f (y ; θ)π(θ) in a different way as
f (y)π(θ|y), where f (y) =

∫
f (y ; θ)π(θ)dθ is the marginal density

of Y , we have

r(π, d) =

∫
Ωθ

R(θ, d)π(θ)dθ

=

∫
Ωθ

∫
Y
L(θ, d(y))f (y ; θ)π(θ)dydθ

=

∫
Ωθ

∫
Y
L(θ, d(y))f (y)π(θ|y)dydθ

=

∫
Y
f (y)

{∫
Ωθ

L(θ, d(y))π(θ|y)dθ
}
dy .
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Because f (y) ≥ 0 for all y , we see that to find the Bayes rule d(y)
for any y , it suffices to minimise the expression inside the brackets:
for each y we choose d(y) to minimise∫

Ωθ

L(θ, d(y))π(θ|y)dθ,

the expected posterior loss associated with the observed y .

Result highlights natural property of Bayesian procedures: in order
to decide what to do based on a particular observed y , only have
to think about the losses that follow from one value d(y). Don’t
have to worry (as with, say, minimax procedure) about all the
other values of y that might have occurred, but did not.
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Case 1: Hypothesis testing

Testing the hypothesis H0 : θ ∈ Θ0 against the hypothesis
H1 : θ ∈ Θ1 ≡ Ωθ \Θ0, the complement of Θ0. Now the action
space A = {a0, a1}, where a0 denotes ‘accept H0’ and a1 denotes
‘accept H1’.

Assume the following form of loss function:

L(θ, a0) =

{
0 if θ ∈ Θ0,
1 if θ ∈ Θ1,

and

L(θ, a1) =

{
1 if θ ∈ Θ0,
0 if θ ∈ Θ1.
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The Bayes decision rule is: accept H0 if

Pr(θ ∈ Θ0|y) > Pr(θ ∈ Θ1|y).

Since Pr(θ ∈ Θ1|y) = 1− Pr(θ ∈ Θ0|y), this is equivalent to
accepting H0 if Pr(θ ∈ Θ0|y) > 1/2.
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Case 2: Point estimation

Squared error: L(θ, d) = (θ − d)2. For observed Y = y , the Bayes
estimator chooses d = d(y) to minimise∫

Ωθ

(θ − d)2π(θ|y)dθ.
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Differentiating with respect to d , we find∫
Ωθ

(θ − d)π(θ|y)dθ = 0.

The posterior density integrates to 1, so this becomes

d =

∫
Ωθ

θπ(θ|y)dθ,

the posterior mean of θ. Bayes estimator is the mean of the
posterior distribution.
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Case 3: Point estimation

Suppose L(θ, d) = |θ − d |. The Bayes rule will minimise∫ d

−∞
(d − θ)π(θ|y)dθ +

∫ ∞

d
(θ − d)π(θ|y)dθ.
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Differentiating with respect to d , we must have∫ d

−∞
π(θ|y)dθ −

∫ ∞

d
π(θ|y)dθ = 0

or ∫ d

−∞
π(θ|y)dθ =

∫ ∞

d
π(θ|y)dθ =

1

2
.

The Bayes rule is the posterior median of θ.
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Case 4: Interval estimation

Suppose

L(θ, d) =

{
0 if |θ − d | ≤ δ,
1 if |θ − d | > δ,

for prescribed δ > 0.

The expected posterior loss is the posterior probability that
|θ − d | > δ.
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Motivated as a Bayesian version of interval estimation: we want to
find the best interval of the form (d − δ, d + δ) (of predetermined
length 2δ). Best here means the interval that maximises the
posterior probability that θ is within the interval specified.

The resulting interval is often called the HPD (for highest posterior
density) interval.
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Shrinkage and Stein’s Paradox

Let Y have a p-dimensional (p ≥ 3) normal distribution with mean
vector µ and known covariance matrix equal to the identity I , so
that Yi ∼ N(µi , 1), independently, i = 1, . . . , p.

Consider estimation of µ, with loss function
L(µ, d) = ∥µ− d∥2 =

∑p
i=1(µi − di )

2 equal to the sum of squared
errors.
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James-Stein estimator

Consider the class of estimators of the form

da(Y ) =
(
1− a

Y TY

)
Y ,

indexed by a ≥ 0, which shrink Y towards 0
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Risks

Y ≡ d0(Y ) has risk

R
(
µ, d0(Y )

)
= E∥µ− Y ∥2

=

p∑
i=1

E (µi − Yi )
2 =

p∑
i=1

varYi

= p,

for all µ.
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Stein’s lemma

Integration by parts shows that, for each i , for suitably behaved
real-valued functions h,

E{(Yi − µi )h(Y )} = E

{
∂h(Y )

∂Yi

}
.
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Then

R
(
µ, da(Y )

)
= E∥µ− da(Y )∥2

= E∥µ− Y ∥2 − 2aE

[
Y T (Y − µ)

Y TY

]
+a2E

[
1

Y TY

]
.
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We have

E

[
Y T (Y − µ)

Y TY

]
= E

[
p∑

i=1

Yi (Yi − µi )

ΣjY 2
j

]

=

p∑
i=1

E

[
∂

∂Yi

{
Yi

ΣjY 2
j

}]

=

p∑
i=1

E

[
ΣjY

2
j − 2Y 2

i

(ΣjY 2
j )

2

]

= E

[
p − 2

Y TY

]
,

so

R
(
µ, da(Y )

)
= p −

[
2a(p − 2)− a2

]
E

(
1

Y TY

)
.
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Discussion

The obvious estimator of µ is Y . But we then note that
R(µ, da(Y )) < p = R(µ, d0(Y )) provided 2a(p − 2)− a2 > 0. For
such a, da(Y ) strictly dominates d0(Y ), so that the obvious
estimator Y is inadmissible!

Note also that the risk of da(Y ) is minimised for a = p − 2. When
µ = 0, Y TY ∼ χ2

p, so that E [1/(Y TY )] = 1/(p − 2), by direct
calculation. Hence dp−2(Y ) has risk p − [(p − 2)2/(p − 2)] = 2
when µ = 0.
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The result seems incredible. The components of the vector Y are
independent, and the loss function is ordinary squared error loss:
there is no apparent tying together of the losses in different
components yet the obvious estimator is not admissible.

It is now known that this is a very general phenomenon when
comparing three or more populations.
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Further discussion

I d(Y ) = Y is admissible if p = 1 or 2.

I Estimator dp−2(Y ) is actually inadmissible!

G. Alastair Young Fundamental Theory of Statistical Inference



Bayesian methods

Empirical Bayes

In a standard Bayesian analysis, there will usually be parameters in
the prior distribution that have to be specified.

For example, consider the model in which Y | θ ∼ N(θ, 1) and θ
has the prior distribution θ | τ2 ∼ N(0, τ2). If a value is specified
for the parameter τ2 of the prior, a standard Bayesian analysis can
be carried out.

What if τ2 is not specified?
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It is readily shown that the marginal distribution of Y is
N(0, τ2 + 1), and can therefore provide information on τ2.

Empirical Bayes analysis is characterised by the estimation of prior
parameter values from marginal distributions of data. Having
estimated prior parameter values, proceed as if these values are
fixed.
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Stein’s paradox revisited

The estimator dp−2(Y ) may be viewed as an empirical Bayes
estimator of µ: the Bayes rule with prior parameter values replaced
by estimates constructed from the marginal distribution of the Yi .

Let Yi | µi be distributed as N(µi , 1), independently i = 1, . . . , p,
and suppose µ1, . . . , µp are IID N(0, τ2). If τ2 is known, the Bayes
estimator, for the given squared errors loss, of µ = (µ1, . . . , µp)

T is

the posterior mean τ2

τ2+1
Y .
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Empirical Bayes interpretation

Marginally the Yi are IID N(0, τ2 + 1), so that

E

[
1− (p − 2)

Y TY

]
=

τ2

τ2 + 1
,

if p ≥ 3. Estimating τ2/(τ2 + 1) by 1− (p − 2)/(Y TY ) yields the
Stein estimator dp−2(Y ).
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Hierarchical Modelling

An alternative way of dealing with the specification of prior
parameter values is with a hierarchical specification. The prior
parameter values are themselves given a (second-stage) prior.

For example, in the normal model we might specify
Y | θ ∼ N(θ, 1), θ | τ2 ∼ N(0, τ2) and τ2 ∼ uniform(0,∞), an
‘improper’ prior.
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Inference on θ is based on the marginal posterior of θ, after
integrating out τ2 from the joint posterior of θ and τ2:

π(θ | y) =
∫

π(θ, τ2 | y)dτ2,

where the joint posterior π(θ, τ2 | y) ∝ f (y ; θ)π(θ | τ2)π(τ2).
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Very effective practical tool and usually yields answers that are
reasonably robust to misspecification of the model. Often, answers
from a hierarchical analysis are quite similar to those obtained from
an empirical Bayes analysis.
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Predictive distributions

We may not be interested directly in parameter θ, but in some
independent future observation depending on θ.
Possible to obtain the conditional distribution of the value of a
future observation Y †, given the data y , from the posterior
π(θ | y).
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Details

Suppose that y = (y1, . . . , yn), with the yi independent from
f (y ; θ). Since, given θ, Y † and y are independent and Y † has
density f (y †; θ), the posterior joint distribution of Y † and θ is
f (y †; θ)π(θ | y). Integrating out θ gives the posterior predictive
distribution as

g(Y † | y) =
∫

f (Y †; θ)π(θ | y)dθ.

If a point prediction of Y † is required, we might use the mean,
median or other function of this distribution, depending on our loss
function.
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Discussion

In Bayesian inference, predictive inference is (in principle)
straightforward: future observation Y † and parameter θ have same
logical status, as random variables.
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Choice of prior distributions

Main approaches to the selection of prior distributions:

(a) physical reasoning (Bayes) – too restrictive for most practical
purposes;

(b) flat or uniform priors, including improper priors (Laplace,
Jeffreys) – the most widely used method in practice, but
theoretical justification is source of argument;
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(c) subjective priors (de Finetti, Savage) – used in certain specific
situations such as weather forecasting and for certain kinds of
business application where it is worthwhile to go to the
trouble of trying to elicit the client’s true subjective opinions,
but hardly used at all for routine statistical analysis;

(d) prior distributions for convenience, e.g. conjugate priors – in
practice these are very often used just to simplify the
calculations.
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Computational techniques

Bayesian methods often applied in very complicated situations
where both Y and θ are very high-dimensional. Main
computational problem is to compute numerically the normalising
constant that is required to make the posterior density a proper
density function.
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Monte Carlo algorithms

Simulate samples from posterior distribution.

Main algorithms:

I Gibbs sampler;

I Hastings-Metropolis.
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