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Special families of models

Two general classes of models particularly relevant in theory and
practice are:

I exponential families

I transformation families
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Special families of models

Exponential Families

Suppose that Y depends on parameter ϕ = (ϕ1, . . . , ϕm)T , to be
called natural parameters, through a density of the form

fY (y ;ϕ) = h(y) exp{sTϕ− K (ϕ)}, y ∈ Y,

where Y is a set not depending on ϕ. Here
s ≡ s(y) = (s1(y), . . . , sm(y))

T , are called natural statistics.
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Special families of models

The value of m may be reduced if either s = (s1, . . . , sm)
T or

ϕ = (ϕ1, . . . , ϕm)T satisfies a linear constraint (with probability
one). Assume that representation is minimal, in that m is as small
as possible.
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Special families of models

Full Exponential Family

Provided the natural parameter space Ωϕ consists of all ϕ such that∫
h(y) exp{sTϕ}dy < ∞,

we refer to the family F as a full exponential model, or an (m,m)
exponential family.
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Special families of models

Moments of natural statistics

The moment generating function of the random variable S
corresponding to s is

M(S ; t, ϕ) = E{exp(ST t)}

=

∫
h(y) exp{sT (ϕ+ t)}dy exp{−K (ϕ)}

= exp{K (ϕ+ t)− K (ϕ)}.
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Special families of models

Then

E (Si ;ϕ) =
∂K (ϕ)

∂ϕi
,

Also,

cov(Si , Sj ;ϕ) =
∂2K (ϕ)

∂ϕi∂ϕj
.

To compute E (Si ) etc. it is only necessary to know the function
K (ϕ).
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Special families of models

Properties of exponential families

Let s(y) = (t(y), u(y)) be a partition of the vector of natural
statistics, where t has k components and u is m − k dimensional.
Consider the corresponding partition of the natural parameter
ϕ = (τ, ξ).

The density of a generic element of the family can be written as

fY (y ; τ, ξ) = exp{τT t(y) + ξTu(y)− K (τ, ξ)}h(y).

Two key results hold which allow inference about components of
the natural parameter, in the absence of knowledge about the
other components.
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Special families of models

Result 1

The family of marginal distributions of U = u(Y ) is an m − k
dimensional exponential family,

fU(u; τ, ξ) = exp{ξTu − Kτ (ξ)}hτ (u),

say.
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Special families of models

Result 2

The family of conditional distributions of T = t(Y ) given
u(Y ) = u is a k dimensional exponential family, and the
conditional densities are free of ξ, so that

fT |U=u(t | u; τ) = exp{τT t − Ku(τ)}hu(t),

say.
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Special families of models

Curved exponential families

In the above, both the natural statistic and the natural parameter
lie in m-dimensional regions.

Sometimes, ϕ may be restricted to lie in a d-dimensional subspace,
d < m.

This is most conveniently expressed by writing ϕ = ϕ(θ) where θ is
a d-dimensional parameter.
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We then have

fY (y ; θ) = h(y) exp[sTϕ(θ)− K{ϕ(θ)}]

where θ ∈ Ωθ ⊂ Rd .

We call this system an (m, d) exponential family, or curved
exponential family, noting that we required that (ϕ1, . . . , ϕm) does
not belong to a v -dimensional linear subspace of Rm with v < m.

Think of the case m = 2, d = 1: {ϕ1(θ), ϕ2(θ)} describes a curve
as θ varies.



Special families of models

Transformation families

A transformation family is defined by a group of transformations
acting on the sample space which generates a family of
distributions all of the same form, but with different values of the
parameters.
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Special families of models

A reminder

A group G is a mathematical structure having a binary operation ◦
such that

I if g , g ′ ∈ G , then g ◦ g ′ ∈ G ;

I if g , g ′, g ′′ ∈ G , then (g ◦ g ′) ◦ g ′′ = g ◦ (g ′ ◦ g ′′);

I G contains an identity element e such that e ◦ g = g ◦ e = g ,
for each g ∈ G ; and

I each g ∈ G possesses an inverse g−1 ∈ G such that
g ◦ g−1 = g−1 ◦ g = e.
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Special families of models

Present context

Concerned with group G of transformations acting on sample
space Y of random variable Y , binary operation ◦ is composition
of functions. Have e(x) = x , (g1 ◦ g2)(x) = g1(g2(x)).
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Special families of models

The group elements typically correspond to elements of a
parameter space Ωθ, transformation may be written as gθ. The
family of densities of gθ(Y ), for gθ ∈ G is called a (group)
transformation family.
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Special families of models

Discussion

Setting y ≈ y ′ iff there is a g ∈ G such that y = g(y ′) gives an
equivalence relation, which partitions Y into equivalence classes
called orbits. These may be labelled by an index a, say.

Each y belongs to precisely one orbit, and can be represented by a
(which identifies the orbit) and its position on the orbit.
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Special families of models

Maximal invariant

We say that the statistic t is invariant to the action of the group G
if its value does not depend on whether y or g(y) was observed,
for any g ∈ G : t(y) = t(g(y)).

The statistic t is maximal invariant if every other invariant statistic
is a function of it, or equivalently, t(y) = t(y ′) implies that
y ′ = g(y) for some g ∈ G .
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Special families of models

Group action on Ωθ

Typically, there is a one-to-one correspondence between the
elements of G and the parameter space Ωθ.

Assume this.
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Special families of models

Then the action of G on Y requires that Ωθ itself constitutes a
group, with binary operation ∗ say: we must have gθ ◦ gϕ = gθ∗ϕ.

Group action on Y induces group action on Ωθ. If Ḡ denotes
induced group, associated with each gθ ∈ G is a ḡθ ∈ Ḡ , satisfying
ḡθ(ϕ) = θ ∗ ϕ.
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Special families of models

Distribution constant statistic

If t is an invariant statistic, the distribution of t(Y ) is the same as
that of t(g(Y )) for all g . If, as we assume, elements of G are
identified with parameter values, this means distribution of
T = t(Y ) does not depend on the parameter and is known in
principle.

T is said to be distribution constant.
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Special families of models

Equivariant statistic

A statistic S = s(Y ) defined on Y and taking values in the
parameter space Ωθ is said to be equivariant if s(gθ(y)) = ḡθ(s(y))
for all gθ ∈ G and y ∈ Y.
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Special families of models

Equivariant estimator

Often S is chosen to be an estimator of θ, and it is then called an
equivariant estimator. An equivariant estimator can be used to
construct a maximal invariant.
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Special families of models

A maximal invariant

Consider t(Y ) = g−1
s(Y )(Y ).

This is invariant, since

t(gθ(y)) = g−1
s(gθ(y))

(gθ(y)) = g−1
ḡθ(s(y))

(gθ(y)) = g−1
θ∗s(y)(gθ(y))

= g−1
s(y){g

−1
θ (gθ(y))} = g−1

s(y)(y) = t(y).

If t(y) = t(y ′), then g−1
s(y)(y) = g−1

s(y ′)(y
′), and it follows that

y ′ = gs(y ′) ◦ g−1
s(y)(y), which shows that t(Y ) is maximal invariant.
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Special families of models

Location-scale model

Let Y = η+ τϵ, where ϵ has a known density f , and the parameter
θ = (η, τ) ∈ Ωθ = R× R+. Define a group action by
gθ(y) = g(η,τ)(y) = η + τy , so

g(η,τ) ◦ g(µ,σ)(y) = η + τµ+ τσy = g(η+τµ,τσ)(y).

The set of such transformations is closed with identity g(0,1). It is
easy to check that g(η,τ) has inverse g(−η/τ,τ−1). Hence,
G = {g(η,τ) : (η, τ) ∈ R× R+} constitutes a group under the
composition of functions operation ◦.
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Special families of models

The action of g(η,τ) on a random sample Y = (Y1, . . . ,Yn) is
g(η,τ)(Y ) = η + τY , with η ≡ η1n, where 1n denotes the n × 1
vector of 1’s, and Y is written as an n × 1 vector.

The induced group action on Ωθ is given by
ḡ(η,τ)((µ, σ)) ≡ (η, τ) ∗ (µ, σ) = (η + τµ, τσ).
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Special families of models

The sample mean and standard deviation are equivariant, because
with s(Y ) = (Ȳ ,V 1/2), where V = (n − 1)−1

∑
(Yj − Ȳ )2, we

have

s(g(η,τ)(Y )) =

(
η + τY ,

{
(n − 1)−1

∑
(η + τYj − (η + τY ))2

}1/2
)

=

(
η + τ Ȳ ,

{
(n − 1)−1

∑
(η + τYj − η − τ Ȳ )2

}1/2
)

=
(
η + τ Ȳ , τV 1/2

)
= ḡ(η,τ)(s(Y )).
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Special families of models

Maximal invariant

A maximal invariant is A = g−1
s(Y )(Y ), and the parameter

corresponding to g−1
s(Y ) is (−Ȳ /V 1/2,V−1/2).

Hence a maximal invariant is the vector of residuals

A = (Y − Ȳ )/V 1/2 =

(
Y1 − Ȳ

V 1/2
, . . . ,

Yn − Ȳ

V 1/2

)T

,

called the configuration.
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