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Fundamental characteristic

Explicit optimality criteria.

I Hypothesis testing: seek test which maximises power.

I Point estimation: seek estimator which minimises risk.
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Formulation, hypothesis testing

We have parameter space Ωθ, and consider hypotheses of the form

H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1

where Θ0 and Θ1 are two disjoint subsets of Ωθ, possibly satisfying
Θ0 ∪Θ1 = Ωθ.
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Simple/composite hypotheses

If a hypothesis consists of a single member of Ωθ, H0 : θ = θ0,
then it is a simple hypothesis. Otherwise it is composite.
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Nuisance parameters

Beware of nuisance parameters!

Y1, . . . ,Yn IID N(µ, σ2), µ and σ2 unknown. H0 : µ = 0 is
composite, because of nuisance parameter σ2.
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Classical approach

Adopt the following criterion: fix a small probability α (known as
the size) and seek a test for which

Pθ{Reject H0} ≤ α for all θ ∈ Θ0. (†)

H0 and H1 are treated asymmetrically. Usually H0 is called the null
hypothesis and H1 the alternative hypothesis.
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Test functions

Conventional formulation: choose a test statistic t(Y ) with
distribution depending on θ and a critical region Cα, reject H0

based on Y = y iff t(y) ∈ Cα. Critical region chosen to satisfy (†).
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Slight reformulation: define the test function ϕ(y) by

ϕ(y) =

{
1 if t(y) ∈ Cα,
0 otherwise.

If we observe ϕ(y) = 1, we reject H0, while if ϕ(y) = 0, we accept.
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Randomised Tests

To cope with the case when t(Y ) has a discrete distribution,
generalise concept of a test function to allow ϕ(y) to take on any
value in the interval [0, 1].

Having observed data y and evaluated ϕ(y), we use some
independent randomisation device to draw a random number
W ∈ {0, 1} which takes value 1 with probability ϕ(y) and 0
otherwise. We then reject H0 if and only if W = 1.

We interpret ϕ(y) to be the probability that H0 is rejected given
Y = y .
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Power

Criterion for deciding whether one test is better than another:
power.

The power function of a test ϕ is defined to be

w(θ) = Pθ{Reject H0} = Eθ{ϕ(Y )},

defined for all θ ∈ Ωθ.
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Idea

A good test of a given size α is one which makes w(θ) as large as
possible for θ ∈ Θ1 while satisfying the constraint w(θ) ≤ α for all
θ ∈ Θ0.
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Classes of problem

I (i) Simple H0 vs. simple H1. Complete theory, given by the
Neyman-Pearson Theorem.

I (ii) Simple H0 vs. composite H1. In some cases, but not all,
there is a uniformly most powerful test, with w(θ) largest over
all tests, uniformly for all θ ∈ Θ1. When the family of
distributions has the property of Monotone Likelihood ratio.

I (iii) Composite H0 vs. composite H1. How do we cope with
nuisance parameters? With certain distributions, we can use
conditional tests.
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The Neyman-Pearson Theorem

Test of simple null hypothesis H0 : θ = θ0 against simple
alternative hypothesis H1 : θ = θ1, where θ0 and θ1 are specified.

Let the pdf of Y be f (y ; θ) specialised to f0(y) = f (y ; θ0) and
f1(y) = f (y ; θ1).

Define the likelihood ratio Λ(y) by

Λ(y) =
f1(y)

f0(y)
.
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Best test of size α in terms of power is of the form: reject H0

when Λ(Y ) > kα where kα is chosen to guarantee test has size α.
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Randomised tests

In a generalised form of Neyman-Pearson Theorem, we allow for
the possibility of randomised tests.

The (randomised) test with test function ϕ0 is said to be a
likelihood ratio test (LRT for short) if it is of the form

ϕ0(y) =


1 if f1(y) > Kf0(y),
γ(y) if f1(y) = Kf0(y),
0 if f1(y) < Kf0(y),

where K ≥ 0 is a constant and γ(y) an arbitrary function
satisfying 0 ≤ γ(y) ≤ 1 for all y .
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Theorem

(a) (Optimality). For any K and γ(y), the test ϕ0 has maximum
power among all tests whose size is no greater than the size of ϕ0.

(b) (Existence). Given α (0 < α < 1) there exist constants K and
γ0 such that the LRT defined by this K and γ(y) = γ0 for all y
has size exactly α.

(c) (Uniqueness). If the test ϕ has size α, and is of maximum
power amongst all possible tests of size α, then ϕ is necessarily a
LRT, except possibly on a set of values of y which has probability
0 under both H0 and H1.
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Monotone Likelihood Ratio and UMP Tests

A uniformly most powerful or UMP test of size α is a test ϕ0(·) for
which

I (i) Eθϕ0(Y ) ≤ α for all θ ∈ Θ0;

I (ii) Given any other test ϕ(·) for which Eθϕ(Y ) ≤ α for all
θ ∈ Θ0, we have Eθϕ0(Y ) ≥ Eθϕ(Y ) for all θ ∈ Θ1.
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Existence of UMP test

Asking that the Neyman-Pearson test for simple vs. simple
hypotheses should be the same for every pair of simple hypotheses
contained within H0 and H1.

For one-sided testing problems involving just a single parameter
(Ωθ ⊆ R), there is a wide class of parametric families for which
such a property holds. Such families are said to have monotone
likelihood ratio or MLR.
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Definition

The family of densities {f (y ; θ), θ ∈ Ωθ ⊆ R} with real scalar
parameter θ is said to be of monotone likelihood ratio (MLR) if
there exists a function t(y) such that the likelihood ratio

f (y ; θ2)

f (y ; θ1)

is a non-decreasing function of t(y) whenever θ1 ≤ θ2.
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Note that non-increasing as a function of t(y) ≡ non-decreasing in
−t(y).
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The main result

Suppose Y has a distribution from a family which is MLR with
respect to a statistic t(Y ), and that we wish to test H0 : θ ≤ θ0
against H1 : θ > θ0. Suppose the distribution function of t(Y ) is
continuous.
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(a) The test

ϕ0(y) =

{
1 if t(y) > t0,
0 if t(y) < t0,

is UMP among all tests of size ≤ Eθ0{ϕ0(Y )}.

(b) Given some α, where 0 < α < 1, there exists some t0 such that
the test in (a) has size exactly α.
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Two-sided tests and conditional inference

Revisit hypothesis testing to consider:

I two-sided hypotheses of the form H0 : θ ∈ [θ1, θ2] (with
θ1 < θ2) or H0 : θ = θ0 with the alternative H1 including all θ
not part of H0. Cannot find a UMP test of a given size α.
Introduce concept of unbiasedness, define uniformly most
powerful unbiased, or UMPU, tests. Focus on exponential
families.

I Extension to multiparameter exponential families, using notion
of conditional tests. Discuss two situations where conditional
tests arise, when there are ancillary statistics, and where
conditional procedures are used to construct similar tests.
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Two-sided hypotheses and two-sided tests

Consider a one-dimensional parameter θ ∈ Ωθ ⊆ R. Consider the
case where the null hypothesis is H0 : θ ∈ Θ0 where Θ0 is either
the interval [θ1, θ2] for some θ1 < θ2, or else the single point
Θ0 = {θ0}, and Θ1 = Ωθ −Θ0.

We cannot in general expect to find a UMP test. If we construct a
best test of say θ = θ0 against θ = θ1 for some θ1 ̸= θ0, the test
takes quite a different form when θ1 > θ0 from when θ1 < θ0.
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Two-sided tests

For an exponential or MLR family with natural statistic S = s(Y ),
might expect tests of the form

ϕ(y) =


1 if s(y) > t2 or s(y) < t1,
γ(y) if s(y) = t2 or s(y) = t1,
0 if t1 < s(y) < t2,

where t1 < t2 and 0 ≤ γ(y) ≤ 1, to have good properties.

Such tests are called two-sided tests.
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Unbiasedness and UMPU tests

A test ϕ of H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1 is unbiased of size α
if

sup
θ∈Θ0

Eθ{ϕ(Y )} = α

and
Eθ{ϕ(Y )} ≥ α for all θ ∈ Θ1.

A test which is uniformly most powerful amongst the class of all
unbiased tests is uniformly most powerful unbiased, abbreviated
UMPU.
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Discussion

Unbiasedness is not by itself an optimality criterion.

There is no reason why the optimal decision procedure should turn
out to be unbiased.

The principal role of unbiasedness is to restrict the class of possible
decision procedures and hence to make the problem of determining
an optimal procedure more manageable.
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UMPU tests for one-parameter exponential families

Consider an exponential family for a random variable Y , with
real-valued parameter θ ∈ R and density of form

f (y ; θ) = c(θ)h(y)eθs(y),

where S = s(Y ) is a real-valued natural statistic.

This implies that S also has an exponential family distribution,
with density of form

fS(s; θ) = c(θ)hS(t)e
θs .
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Assume that S is a continuous random variable with hS(s) > 0 on
the open set which defines the range of S , to avoid the need for
randomised tests.
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The set-up

Consider the case

Θ0 = [θ1, θ2], Θ1 = (−∞, θ1) ∪ (θ2,∞),

where θ1 < θ2.
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Theorem

Let ϕ be any test function. Then there exists a unique two-sided
test ϕ′ which is a function of S such that

Eθjϕ
′(Y ) = Eθjϕ(Y ), j = 1, 2.

Also,

Eθϕ′(Y )− Eθϕ(Y )

{
≤ 0 for θ1 < θ < θ2,
≥ 0 for θ < θ1 or θ > θ2.
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Corollary

For any 0 < α < 1, there exists a UMPU test of size α, which is of
two-sided form in S .
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Testing a point null hypothesis

Consider the case H0 : θ = θ0 against H1 : θ ̸= θ0 for a given
value of θ0. By the previous case, letting θ2 − θ1 → 0, there exists
a two-sided test ϕ′ for which

Eθ0{ϕ
′(Y )} = α,

d

dθ
Eθ{ϕ′(Y )}

∣∣∣∣
θ=θ0

= 0.

Existence of derivative follows from assumption of exponential
family.

Such a test is UMPU.
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Conditional inference: a story

An experiment is conducted to measure the carbon monoxide level
in the exhaust of a car. A sample of exhaust gas is collected, and
taken to the laboratory for analysis. Inside the laboratory are two
machines, one of which is expensive and very accurate, the other
an older model which is much less accurate. We will use the
accurate machine if we can, but this may be out of service or
already in use for another analysis. We do not have time to wait
for this machine to become available, so if we cannot use the more
accurate machine we use the other one instead (which is always
available). Before arriving at the laboratory we have no idea
whether the accurate machine will be available, but we do know
that the probability that it is available is 1

2 (independently from
one visit to the next).
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Formulation

We observe (δ,Y ), where δ (=1 or 2) represents the machine used
and Y the subsequent observation. The distributions are
P{δ = 1} = P{δ = 2} = 1

2 and, given δ, Y ∼ N(θ, σ2δ ) where θ is
unknown and σ1, σ2 are known, with σ1 < σ2.

We want to test H0 : θ ≤ θ0 against H1 : θ > θ0.
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Two possible tests

Consider the following tests:

I Procedure 1. Reject H0 if Y > c , where c is chosen so that
the test has prescribed size α, i.e.

1

2

{
1− Φ

(
c − θ0
σ1

)}
+

1

2

{
1− Φ

(
c − θ0
σ2

)}
= α.

I Procedure 2. Reject H0 if Y > zασδ + θ0, zα is upper
α-quantile of N(0, 1).
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Comparison

Procedure 1 sets a single critical level c, regardless of which
machine is used, while Procedure 2 determines its critical level
solely on the standard deviation for the machine that was actually
used without taking the other machine into account at all.

Procedure 2 is a conditional test because it conditions on the
observed value of δ. The distribution of δ itself does not depend
on the unknown parameter θ, so we are not losing any information
by doing this.
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Power comparison

We might expect Procedure 2 to be more reasonable, but if we
compare the two in terms of power it is not so clear-cut. The
diagram shows the power curves of the two tests in the case
σ1 = 1, σ2 = 3, α = 0.05, for which zα = 1.645 and
c = 3.8457 + θ0. When the difference in means, θ1 − θ0, is small,
procedure 2 is much more powerful, but for larger values when
θ1 > θ0 + 4.9, procedure 1 is better.
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The power functions

Difference in means
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Smith and Jones

Smith and Jones are two statisticians. Smith works for the
environmental health department of Cambridge City Council and
Jones is retained as a consultant by a large haulage firm which
operates in the Cambridge area.

Smith carries out a test of the exhaust fumes emitted by one of the
lorries belonging to the haulage firm. He has to use machine 2 and
the observation is X = θ0 + 4.0, where θ0 is the permitted
standard.
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It has been agreed in advance that all statistical tests will be
carried out at the 5% level and therefore, following procedure 1, he
reports that the company is in violation of the standard.
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Send for Jones!

The company is not satisfied with the conclusion and sends the
results to Jones for comment. The information available to Jones
is that a test was conducted on a machine for which the standard
deviation of all measurements is 3 units, that the observed
measurement exceeded the standard by 4 units, and that therefore
the null hypothesis (that the lorry is meeting the standard) is
rejected at the 5% level.
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Jones calculates that the critical level should be
θ0 + 3z0.05 = θ0 + 3× 1.645 = θ0 + 4.935 and therefore queries
why the null hypothesis was rejected.
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Back to Smith

The query is referred back to Smith who now describes the details
of the test including the existence of the other machine and
Smith’s preference for procedure 1 over procedure 2 on the
grounds that procedure 1 is of higher power when |θ1 − θ0| is large.

This however is all news to Jones who was not previously aware
that the other machine even existed.
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Call in the lawyers!

The question facing Jones now is: should she revise her opinion on
the basis of the new information provided by Smith?

She does not see why she should. There is no new information
about either the sample that was collected or the way that it was
analysed. All that is new is that there was another machine which
might have been used for the test, but which in the event was not.
Jones cannot see why this is relevant and therefore advises the
company to challenge the test in court.
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The Conditionality Principle, revisited

The minimal sufficient statistic for θ is (Y , δ), and δ has a
distribution not depending on θ.

The Conditionality Principle argues that inference about θ should
be based on the conditional distribution of Y given δ.
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Similar tests

Suppose we have θ = (ψ, λ), with ψ the interest parameter and λ
a nuisance parameter. Suppose the minimal sufficient statistic
T = (S ,C ), where the conditional distribution of S given C = c
depends on ψ, but not λ, for each c .

Test using the conditional distribution of S given C . This
eliminates the nuisance parameter: the test is similar.
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Similarity: definition

Suppose θ = (ψ, λ) and the parameter space is of the form
Θ = Ψ× Λ. Suppose we wish to test the null hypothesis
H0 : ψ = ψ0 against the alternative H1 : ψ ̸= ψ0, with λ treated
as a nuisance parameter.

Suppose ϕ(y), y ∈ Y is a test of size α for which

Eψ0,λ{ϕ(X )} = α for all λ ∈ Λ.

Then ϕ is called a similar test of size α.
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Some discussion

More generally, if the parameter space is θ ∈ Ωθ and the null
hypothesis is of the form θ ∈ Θ0, where Θ0 is a subset of Ωθ, then
a similar test is one for which Eθ{ϕ(X )} = α on the boundary of
Θ0.

By analogy with UMPU tests, if a test is uniformly most powerful
among the class of all similar tests, we call it UMP similar.
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If the power function is continuous in θ then any unbiased test of
size α must have power exactly α on the boundary between Θ0

and Θ1, i.e. it is similar.

In such cases, if we can find a UMP similar test, and if this test
turns out also to be unbiased, then it is necessarily UMPU.
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Some further discussion

In many cases we can show that a test which is UMP among all
tests based on the conditional distribution of S given C , is UMP
amongst all similar tests. In particular, this is valid when C is a
complete sufficient statistic for λ.

In summary, there are many cases when a test which is UMP
(one-sided) or UMPU (two-sided), based on the conditional
distribution of S given C , is in fact UMP similar or UMPU among
the class of all tests.
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Reasons for conditioning

So, there are two quite distinct arguments for conditioning.

I When the conditioning statistic is ancillary, failure to
condition may lead to paradoxical situations in which two
analysts may form completely different viewpoints of the same
data, even though conditioning may run counter to the strict
viewpoint of maximising power.

I Under certain circumstances a conditional test may satisfy the
conditions needed to be UMP similar or UMPU. This
argument is explicitly based on power considerations.
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Multiparameter exponential families

Consider a full exponential family model in its natural
parametrisation,

f (y ; θ) = c(θ)h(y) exp

(
m∑
i=1

ti (y)θ
i

)
,

where y represents the value of a data vector Y and
ti (Y ), i = 1, ...,m are the natural statistics. Write Ti in place of
ti (Y ).
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Suppose interest is in one particular parameter, θ1. Consider the
test H0 : θ

1 ≤ θ1∗ against H1 : θ
1 > θ1∗, where θ1∗ is prescribed.
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Take S = T1 and C = (T2, ...,Tm). Then the conditional
distribution of S given C is also of exponential family form and
does not depend on θ2, ..., θm. Therefore, C is sufficient for
λ = (θ2, ..., θm) and since it is also complete, arguments
concerning similar tests suggest that we ought to construct tests
for θ1 based on the conditional distribution of S given C .

Such tests do turn out to be UMPU.
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Sometimes C is an ancillary statistic for θ1: then there is the
stronger argument based on the Conditionality Principle for
conditioning on C .
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The form of test: one-sided case

If the distribution of T1 is continuous, the optimal one-sided test
will then be of the following form. Suppose we observe
T1 = t1, ...,Tm = tm. Then we reject H0 if and only if t1 > t∗1 ,
where t∗1 is calculated from

Pθ1∗{T1 > t∗1 |T2 = t2, ...,Tm = tm} = α.

It can be shown that this test is UMPU of size α.
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The form of test: two-sided case

If we want to construct a two-sided test H0 : θ
1∗ ≤ θ1 ≤ θ1∗∗

against the alternative, H1 : θ
1 < θ1∗ or θ1 > θ1∗∗, where

θ1∗ < θ1∗∗ are given, we proceed by defining the conditional power
function based on T1 as

wθ1(ϕ; t2, ..., tm) = Eθ1{ϕ(T1)|T2 = t2, ...,Tm = tm}.

This quantity depends only on θ1 and not on θ2, .., θm.
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We can then consider a two-sided conditional test of the form

ϕ′(t1) =

{
1 if t1 < t∗1 or t1 > t∗∗1 ,
0 if t∗1 ≤ t1 ≤ t∗∗1 ,

where t∗1 and t∗∗1 are chosen such that

wθ1(ϕ
′; t2, ..., tm) = α when θ1 = θ1∗ and θ1 = θ1∗∗. (P)
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A Useful Result

Suppose C = (T2, . . . ,Tm), and suppose that V ≡ V (T1,C ) is a
statistic independent of C , with V (t1, c) increasing in t1 for each c .

The UMPU test is equivalent to that based on the marginal
distribution of V : the conditional test is the same as that obtained
by testing H0 against H1 using V as test statistic.
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An Example

Normal distribution N(µ, σ2): given an independent sample
X1, . . . ,Xn, to test a hypothesis about σ2, the conditional test is
based on the conditional distribution of T1 ≡

∑n
i=1 X

2
i , given the

observed value of C ≡ X̄ .
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Let V = T1 − nC 2 ≡
∑n

i=1(Xi − X̄ )2.

We know that V is independent of C (from general properties of
the normal distribution), so the optimal conditional test is
equivalent to that based on the marginal distribution of V .

We have that V /σ2 is chi-squared, χ2
n−1.
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The form of test: two-sided case, point hypothesis

If the hypotheses are of the form H0 : θ
1 = θ1∗ against

H1 : θ
1 ̸= θ1∗, then the test is of the same form but with (P)

replaced by
wθ1∗(ϕ

′; t2, ..., tm) = α,

d

dθ1

{
wθ1(ϕ

′; t2, ..., tm)

}∣∣∣∣
θ1=θ1∗

= 0.
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Optimal point estimation

Optimal point estimation of (scalar) parameter θ.

I Minimum variance unbiased estimator.

I More generally, unbiased estimator minimising convex loss
function.
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Jensen’s inequality

If g : R → R is a convex function and X is a real-valued random
variable, then E{g(X )} ≥ g(E{X}).

Convex: g(αx1 + (1− α)x2) ≤ αg(x1) + (1− α)g(x2), for any
x1, x2, α ∈ [0, 1]
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Theorem

To estimate a real-valued parameter θ with an estimator d(Y ) say.
The loss function L(θ, d) is a convex function of d for each θ.

Let d1(Y ) be an unbiased estimator for θ and suppose T is a
sufficient statistic. Then the estimator

χ(T ) = E{d1(Y )|T}

is also unbiased and has risk not exceeding that of d1.
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Remarks

I The inequality above will be strict unless L is a linear function
of d , or the conditional distribution of d1(Y ) given T is
degenerate. In all other cases, χ(T ) strictly dominates d1(Y ).

I If T is also complete, then χ(T ) is the unique unbiased
estimator minimising the risk.

I If L(θ, d) = (θ − d)2 then this is the Rao-Blackwell Theorem.
Now risk of an unbiased estimator ≡ variance, so there is a
unique minimum variance unbiased estimator which is a
function of the complete sufficient statistic.
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