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Examples of CTMC Poisson Process

The Poisson process with rate λ

Let {N(t) : t ≥ 0} be a Markov process, where N(t) represents the number of
events (or births) in the interval (0, t], for example claim times to an insurance
company, arrival times of customers in a shop,. . .
Let the transition probabilities of {N(t)} be:

the probability of one occurrence in the time interval (t, t + h) is λh + o(h):

pi i+1(h) = λh + o(h)

the probability of more than one occurrence is o(h):

pi j(h) = o(h), for j 6= i , i + 1

This implies that the probability of no events in (t, h + t) is 1− λh + o(h):

pi i (h) = 1− λh + o(h)

the number of occurrences in (t, t + h) is independent of the occurrences in

(0, t].
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Examples of CTMC Poisson Process

The state space is S = {0, 1, 2, . . .}. Then

P(N(t + h) = k | N(t) = i) = λh + o(h), k = i + 1

P(N(t + h) = k | N(t) = i) = o(h), k > i + 1

P(N(t + h) = k | N(t) = i) = 0, k < i

The Poisson process has generator

Q =


−λ λ 0 0 . . .
0 −λ λ 0 . . .
0 0 −λ λ . . .
...

...
...

...

 .
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Examples of CTMC Poisson Process

A Poisson process N(t) describes the number of occurrences of some
event up to time t, i.e. in the interval (0, t].

We assume N(0) = 0, so that the process stays in state 0 for a random
time τ1, before jumping to state 1 and staying there a random time τ2,
then jumping to state 2, etc.

The intervals τ1, τ1, . . . are independent, identically distributed (i.i.d. )
exponential variables with common parameter λ.

Corollary 1 (holding times)

Poisson process, rate λ has holding times
iid∼ Expon(λ)

Proof From Theorem on Holding Times , Ti ∼ Expon(−qii ). Want
λ = −qii .

5 / 42



Examples of CTMC Poisson Process

This property provides an alternative definition of the Poisson process
as a sequence of point events where the intervals between successive
events are i.i.d. exponential variables.

It follows that the time Tr =
∑r

i=1 τi to the rth event has a gamma
distribution, Gamma(r , λ).

By the Central Limit Theorem, for large r , this can be approximated by
the normal distribution N(r/λ, r/λ2).
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Examples of CTMC Poisson Process

The Poisson process has the property of independent increments, that
numbers of events in non-overlapping intervals (and, more generally,
disjoint sets) are independent.

It follows that the interval from an arbitrary time point until the next
event also has an exponential distribution with parameter λ.

The chain is not irreducible, since, e.g., pij(t) ≡ 0 if j < i .

Each state is in a separate transient class.

There is no invariant distribution; the only solution of πQ = 0 is
π0 = π1 = . . . = 0.
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Examples of CTMC Poisson Process

Recall Forward equations: P′(t) = P(t)Q

We are interested in p0j(t) = P(j events in (0, t] | N(0) = 0).
The forward equations are

p′00(t) = −λp00(t), p′0j(t) = λp0,j−1(t)− λp0j(t) for j = 1, 2, . . .

which are most easily solved using generating functions.
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Examples of CTMC Poisson Process

Let
G (s, t) = E(sN(t) | N(0) = 0) =

∑
j=0

s jp0j(t)

be the probability generating function of N(t) ( |s| ≤ 1). Then

∂G (s, t)

∂t
=

∂

∂t

∞∑
j=0

s jp0j(t)

=
∞∑
j=0

p′0j(t)s j

= −λp00(t) + λ

∞∑
j=1

p0,j−1(t)s j − λ
∞∑
j=1

p0j(t)s j

= −λG (s, t) + λsG (s, t)

= −λ(1− s)G (s, t).

The initial condition is G (s, 0) ≡ 1, so the solution of this equation is
G (s, t) = e−λ(1−s)t , which is the probability generating function of a
Poisson variable with mean λt.
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Examples of CTMC Poisson Process

It follows that

p0j(t) = e−λt(λt)j/j! for j = 0, 1, 2, . . . .

This result provides another means of defining the Poisson process, as a
point process for which,

for all t and τ , N(t) has a Poisson distribution with mean λt,

Corollary 2 (EN(t) = var N(t) = λt)

the ‘rate’ at which events occur is
dEN(t)

dt
= λ

and the numbers of events in (0, t] and (t, t + τ ] are independent
variables.

There are many further characterisations of the Poisson process.
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Examples of CTMC Poisson Process

An important property of the Poisson process is that, given the number of
events in an interval, these events are independently and uniformly
distributed over the interval.

Theorem 3

{N(t)} Poisson. Given N(t) = n, the arrival times

Θ1 < . . . < Θn
iid∼Unif (0, t).

11 / 42



Examples of CTMC Poisson Process

Sketch Proof The joint density of the arrival times Θ1:n := Θ1, . . . ,Θn with
n arrivals at t can be written in terms of the (iid Expon) inter-arrival
(holding) times T0:n := T0, . . . ,Tn, namely (see figure on board):

{Θ1:n = θ1:n,N(t) = n} = {Θ1 = θ1, . . . ,Θn = θn,N(t) = n}
= {T0 = θ1,T1 = θ2 − θ1, . . . ,Tn−1 = θn − θn−1,Tn > t − θn} .

Now f (Θ1:n = θ1:n|N(t) = n)

=
f (Θ1:n = θ1:n,N(t) = n)

P(N(t) = n)

=
f (T0 = θ1,T1 = θ2 − θ1, . . . ,Tn−1 = θn − θn−1,Tn > t − θn)

P(N(t) = n)

=
n!

(λt)n
eλt︸ ︷︷ ︸

1/P(N(t)=n)

e−λ(t−θn)︸ ︷︷ ︸
f (Tn>t−θn)

n−1∏
i=0

λe−λ(θi+1−θi )︸ ︷︷ ︸
f (Ti=θi+1−θi ) ,with θ0:=0

=
n!

tn︸︷︷︸
joint pdf of ordered unif r.v.s

which is the joint density of the order statistics of n independent variables,
each uniformly distributed on (0, t).
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Examples of CTMC Poisson Process

We have reviewed homogeneous Poisson Processes where the intensity,
λ, is constant across time.

In practice we often meet inhomogeneous Poisson Processes where the
intensity, λ(t), varies with time. This may be due to covariates which
vary with time.

In that case, the number of events that occur in (t1, t2] will have a
Poisson distribution with mean Λ(t2)− Λ(t1) where

Λ(ti ) =

∫ ti

0
λ(t)dt
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Examples of CTMC Birth Process

Birth Process

A birth process with intensities λ0, λ1, . . . is a process {N(t), t ≥ 0} taking
values in S = {0, 1, 2, . . .} such that

N(0) = 0; if s < t then N(s) ≤ N(t)

P
(
N(t + h) = n + m | N(t) = n) =


λnh + o(h) if m = 1
o(h) if m > 1
1− λnh + o(h) if m = 0

if s < t then N(t)− N(s) is independent of all arrivals prior to s.
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Examples of CTMC Birth Process

From the definition of the process it is clear that :

qii = −λi , qi ,i+1 = λi , qij = 0 if j < i or j > i

The generator is then given

Q =


−λ0 λ0 0 0 0 · · ·

0 −λ1 λ1 0 0 · · ·
0 0 −λ2 λ2 0 · · ·
...

...
...

...
...


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Examples of CTMC Birth Process

Special Cases

Poisson Process: λn = λ for all n

Simple birth: λn = nλ. This models the growth of a population in which
each living individual may give birth to a new individual with probability
λh + o(h) in the interval (t, t + h). No individuals may die.
The number M of births in the interval (t, t + h) satisfies

P(M = m | N(t) = n) =

(
n

m

)
(λh)m(1− λh)n−m + o(h)

=


1− nhλ+ o(h) if m = 0
nhλ+ o(h) if m = 1
o(h) if m > 1

Simple birth with immigration: λn = nλ+ ν. This models a simple birth
process which experiences immigration at constant rate ν from elsewhere.
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Time reversibility

Consider a stochastic process {X (t)} (−∞ < t <∞ or
t = . . . ,−2,−1, 0, 1, 2, . . .). The process X (t) is reversible if its stochastic
behaviour remains the same when the direction of time is reversed.

Definition 4

A Markov chain is reversible if(
X (t1), . . . ,X (tn)

) d
=
(
X (τ − t1), . . . ,X (τ − tn)

)
∀ t1, . . . , tn, τ, n

Setting τ equal to 0, it follows that (X (t1), ...,X (tn)) and
(X (−t1), ...,X (−tn)) have the same joint distribution.

17 / 42



Time reversibility

Definition 5

{X (t)} is stationary if(
X (t1), . . . ,X (tn)

) d
=
(
X (t1 + τ), . . . ,X (tn + τ)

)
∀ t1, . . . , tn, τ, n

Theorem 6

A reversible process is stationary

Proof (
X (t1), . . . ,X (tn)

) d
=

(
X (τ − t1), . . . ,X (τ − tn)

)
reversib.

Set τ = 0
d
=

(
X (−t1), . . . ,X (−tn)

)
Replace ti by ti + τ in the def.(

X (t1 + τ), . . . ,X (tn + τ)
) d

= X (−t1), . . . ,X (−tn)

⇓ putting 2 eq together(
X (t1), . . . ,X (tn)

) d
=

(
X (t1 + τ), . . . ,X (tn + τ)

)
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Time reversibility

Note that if a Markov chain is reversible it must be stationary.
In other words, the chain must be in equilibrium, i.e. not only must an
equilibrium distribution π exist, but the marginal distribution of Xn must be
given by π for all n.

Remark 7

X stationary ⇒ ∃ equilibrium distribution π, i.e. P
(
X (tn) = j

)
= πj ∀ n
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Time reversibility

Discrete-time Markov Chain

Theorem 8

Let {Xn : n = . . . ,−2,−1−, 0, 1, 2, . . .} be irreducible, stationary, discrete
time Markov chain with transitions P = (pij)ij∈S and unique equilibrium
distribution π. Then the time reversed process, defined as {X ∗n := X−n} is
also a stationary, irreducible, Markov chain with unique equilibrium
distribution π and transition matrix P∗ = (p∗ij)ij∈S given by

p∗ij =
πjpji

πi

Sketch of Proof – Plan:

X ∗ Markov

p∗ij = πjpji/πi

X ∗ stationary

πP∗ = π
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Time reversibility

Simplify proof: fix a large time N > 0 and let {X0:N} be irreducible,
stationary, discrete time Markov chain and define the time reversed process
as {X ∗n := XN−n}Nn=0
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Time reversibility

Then for n < N

P
(
X ∗n+1 = j

∣∣X ∗0:n)
= P

(
XN−(n+1) = j

∣∣XN−n:N
)

=
P
(
XN−(n+1):N

)
P
(
XN−n:N

)
=

P
(
XN−(n+1)

)
P
(
XN−n

∣∣XN−(n+1)

)∏n
k=0 P

(
XN−(n−k−1)

∣∣XN−(n−k)
)

P
(
XN−n

)∏n
k=0 P

(
XN−(n−k−1)

∣∣XN−(n−k)
)

=
P
(
XN−(n+1) = j

)
P
(
XN−n = i

∣∣XN−(n+1) = j
)

P
(
XN−n = i

) [= πjpji/πi ]

=
P
(
XN−n = i ,XN−(n+1) = j

)
P
(
XN−n = i

) =
P
(
X ∗n = i ,X ∗n+1 = j

)
P
(
X ∗n = i

)
= P

(
X ∗n+1 = j

∣∣X ∗n = i
)

= p∗ij

Hence X ∗ Markov.
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Time reversibility

The transition matrix P∗ = (p∗ij) is given by

p∗ij =
P(X ∗n = i ,X ∗n+1 = j)

P(X ∗n = i)
=

P(X−n = i ,X−n−1 = j)

πi
=
πjpji

πi
.

We have p∗ij = πjpji/πi . Sum both sides over i to get:∑
i∈S

πip
∗
ij = πj

∑
i∈S

pji

= πj

⇒ πP∗ = π

i.e., π is the equilibrium distribution of X ∗. Also,

P
(
X ∗n = j

)
= P

(
X−n = j

)
= πj for all n, j = πj

Hence, X ∗ is stationary.
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Time reversibility

Corollary 9

If X is reversible then P∗ = P.

Proof X reversible ⇒
(
X0,X1

) d
=
(
X1,X0

)
, i.e.

P
(
Xn = i ,Xn+1 = j

)
= P

(
Xn+1 = i ,Xn = j

)
πipij = πjpji ∀ i , j

Now, from Theorem 8

p∗ij = πjpji/πi = πipij/πi = pij (∗∗)

so that P∗ = P and the chain has an identical probabilistic structure in
both forward and reversed time.
The equations (**) are called the detailed balance equations; in words, they
say that, for all pairs of states, the rate at which transitions occur from
state i to state j (πi pij) balances the rate at which transitions occur from j
to i (πj pji ). The converse of this result also holds.
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Time reversibility

Recall that reversibility ⇒ stationarity. The reverse comes with extra
conditions attached.

Theorem 10

An irreducible, stationary Markov chain is reversible iff ∃ probability row
vector π s.t. the following ‘detailed balance equations’ hold

πipij = πjpji ∀ i , j ∈ S
Furthermore, if π exists then it is an equilibrium distribution.

Proof (partial) (⇐=) If π (above) exists then

πipij = πjpji

πi
∑
j∈S

pij =
∑
j∈S

πjpij

πi =
∑
j∈S

πjpij

π = πP

I.e. if π exists it is an equilibrium distribution.
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Time reversibility

(=⇒) Now show detailed balance equations imply irreducible, stationary X
is reversible. Since X is Markov we have

P
(
Xn = j0, . . . ,Xn+N = jN

)
= πj0

N∏
n=1

pjn−1, jn (1)

P
(
Xm = jN , . . . ,Xm+N = j0

)
= πjN

N∏
n=1

pjn, jn−1 (2)

where stationarity has been used above to write πj = P
(
Xn = j

)
.

RHS Eq (2) is

πjN

N∏
n=1

pjn, jn−1 = πjN

N∏
n=1

πjn−1

πjn
pjn−1, jn [from dbe]

cancel out

= πj0

N∏
n=1

pjn−1, jn [= RHS Eq (1)]

I.e.
(
Xn, . . . ,Xn+N

) d
=
(
Xm, . . . ,Xm+N

)
. Now put m = k − n to get(

Xn, . . . ,Xn+N

) d
=
(
Xk−n, . . . ,Xk−n−N

)
. Hence, X is reversible. 26 / 42



Time reversibility

Remark 11

The detailed balance equations of a (stationary) Makov chain X

πipij = πjpji ∀ i , j ∈ S
imply, in particular that

P
(
X0 = i

)
P
(
X1 = j

∣∣X0 = i
)

= P
(
X0 = j

)
P
(
X1 = i

∣∣X0 = j
)

P
(
X1 = j ,X0 = i

)
= P

(
X1 = i ,X0 = j

)
P
(
observing i → j

)
= P

(
observing j → i

)
I.e. probability of observing transition from i to j is the same as observing

a transition from j to i . If, furthermore i ↔ j (chain is irreducible) then
time reversed process has the same distribution as the original process.

The detailed balance equations provide a useful way of finding the
equilibrium distributions of reversible chains.
However, in general, if a chain is stationary, solving the detailed balance
equations only determines the equilibrium distribution if a solution exists.
If a chain is stationary, i.e. has an equilibrium distribution, but there is no
solution to the detailed balance equations, then the chain is not reversible.
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Time reversibility

Example 12 (urn model)

Consider 2 urns. Urn A contains N white balls. Urn B contains N black
balls. At each turn (time index n = 1, 2, . . .) a ball is chosen at random
from each urn and the two balls are interchanged. Denote the # of black
balls in urn A, after nth interchange, by {Xn, n ∈ N}.

X is Markov. X0 = 0 (urn A starts out with 0 black balls.) State space:
S = {0, . . . ,N}. Transition probabilities:

one more black ball in A: qi∗ := pi ,i+1 = P
(
Xn+1 = i + 1

∣∣Xn = i
)

one less black ball in A: qi := pi ,i−1 = P
(
Xn+1 = i − 1

∣∣Xn = i
)

no change in # black balls in A: pi ,i = P
(
Xn+1 = i

∣∣Xn = i
)

= 1− qi − q∗i
The urn model is irreducible, positive recurrent (and aperiodic), with a
unique invariant distribution.
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Time reversibility

P =



0 1
q1 1− q1 − q∗1 q∗1

q2 1− q2 − q∗2 q∗2
. . .

. . .
. . .

qN−1 1− qN−1 − q∗N−1 q∗N−1
0


Solving (to see what happens!) π = πP for π = [π0, . . . , πN−1].

��πi = q∗i−1πi−1 + (�1− q∗i − qi )πi + qi+1πi+1, i = 1, . . . ,N − 1

and π0 = q1π1 and πN = q∗N−1πN−1. We set
q∗0 = 1, q0 = 0, q∗N = 0, qN = 1.
Now define

g(i) := qiπi − q∗i−1πi−1

= qi+1πi+1 − q∗i πi = g(i + 1) i = 1, . . . ,N − 1

Boundary Conditions:

g(1) = q1π1 − q∗0π0 = q1π1 − π0 = q1π1 − q1π1 = 0

g(N) = qNπN−q∗N−1πN−1 = πN−q∗N−1πN−1 = q∗N−1πN−1−q∗N−1πN−1 = 0
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Time reversibility

Hence g(1) = 0, g(i + 1) = g(i)⇒ g(i) = 0, i = 1, . . .N and we have

qiπi = q∗i−1πi−1 which is the detailed balance eq.

πi =
q∗i−1

qi
πi−1

Now recall from Lecture 1 that{
q∗i = (1− i/N)2

qi = (i/N)2

i.e.

πi =

(
1− i−1

N

)2
(i/N)2

πi−1

=

(
N − i + 1

i

)2

πi−1
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Time reversibility

Hence π1 = N2π0

π2 =

(
N − 1

2

)2

π1 = N2

(
N − 1

2

)2

π0

π3 =

(
N(N − 1)(N − 2)

3 · 2 · 1

)2

π0

...
...

...

πi =

(
N!

(N − i)! i !

)2

π0 =

(
N

i

)2
π0

Summing both sides over i :

1 =
∑
i∈S

πi =
∑
i∈S

(
N

i

)2
π0

and we have that π0 =
(∑

i∈S
(N
i

)2)−1
which gives us invariant (and

equilibrium) distribution of the urn chain (and urn is reversible):

πi =

(
N

i

)2(∑
i∈S

(
N

i

)2)−1
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Time reversibility

In summary:

The detailed balance equations provide a useful way of finding the
equilibrium distributions of reversible (and therefore irreducible) chains.

if the chain is reversible, then the detailed balance equations determine
the equilibrium distribution, if it exists;

if the chain is stationary and the detailed balance equations hold, then
these equations determine the equilibrium distribution, if it exists;

if the chain is stationary and the detailed balance equations do not
hold, then the chain is not reversible.
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Time reversibility

Now, finally back to ctMc. Perhaps unsurprisingly, the detailed balance
equations can be written in terms of the generator (transition rate) matrix.

Theorem 13

{X (t)} stationary, irreducible, ctMc. Then X is reversible iff ∃ probability
row vector π s.t. the detailed balance equations

πiqij = πjqji ∀ i , j ∈ S
hold. If ∃π. Then π is equilibrium distribution.

Proof Omitted (see Ross, Section 5.6.1).

We know that, for an irreducible continuous-time Markov chain, if an
invariant distribution can be found then it is the equilibrium distribution.
Assuming stationarity, if the process is reversible, we can solve the detailed
balance equations to find the equilibrium distribution.
If there is no solution of the detailed balance equations then the process is
not stationary.
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Birth-death process

Example 14 (reversible ctMc process)

Consider the birth-death process {X (t), t ∈ R+} with S = N.
X (t) denotes the number of individuals alive at time t in some population.
X (t) evolves continuously in the following way:

(a) {X (t)} is a Markov chain taking values in S = (0, 1, 2, . . .).

(b) For small δ the transition probabilities are given by:

P
(
X (t + δ) = n + 1

∣∣X (t) = n
)

= λnδ + o(δ), n ∈ {0, 1, 2, . . .} (3)

P
(
X (t + δ) = n − 1

∣∣X (t) = n
)

= µnδ + o(δ), n ∈ N∗ = {1, 2, . . .}(4)

P
(
X (t + δ) = n + m

∣∣X (t) = n
)

= o(δ), n ∈ N, |m| > 1 (5)

Eq. (3): births occur has a rate of λn in a population of size n

Eq. (4): deaths occur has a rate of µn in a population of size n

Eq. (5): prob. more than one birth or death is order δ

We assume µ0 = 0, λ0 > 0 and λn > 0, µn > 0 for n > 0.
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Birth-death process

The generator is

Q =


−λ0 λ0 0 0 · · ·
µ1 −(λ1 + µ1) λ1 0 · · ·
0 µ2 −(λ2 + µ2) λ2 · · ·

. . .
. . .

. . .
. . .


All jumps are between adjacent states and all rates of transitions between
adjacent states are positive, so the chain is irreducible.
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Birth-death process

Assuming the process is in equilibrium, the Markov process is reversible and
the detailed balance equations hold:

πiqij = πjqji

This implies:

πiqi ,i−1 = πi−1qi−1,i =⇒ πiµi = πi−1λi−1

Thus

[i = 0, j = 1] : π0λ0 = π1µ1 =⇒ π1 =
π0λ0
µ1

[i = 1, j = 2] : π1λ1 = π2µ2
π1λ1
µ2

=⇒ π2 =
π0λ0λ1
µ1µ2

...
...

...

πj =
λj−1
µj

πj = π0

j∏
k=1

λk−1
µk

(6)

where π0 is determined by the requirement that the πjs sum to 1. If no
such π0 exists then our assumption is false, i.e. the process cannot be in
equilibrium.
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Birth-death process

The case λn = λ, µn = µ gives the M/M/1 process. From Eq (6)

πj =

(
λ

µ

)j

π0

Summing over j (and assuming µ > λ):

1 =
∞∑
j=0

πj = π0

∞∑
j=0

(
λ

µ

)j

= π0(1− λ/µ)−1 ⇒ π0 = 1− λ

µ

πj =

(
λ

µ

)j

(1− λ/µ), j = 0, 1, 2, . . .

i.e. equilibrium distribution is geo(λ/µ).
If λ ≥ µ the process does not have an equilibrium (in the long term the
population will explode).
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Birth-death process

N.b., q‘Kendall notation’ M/M/n above comes from interpretation of
birth/death processes as a queue.
This birth-death process is used as a model for the number of customers in
a single server queue (known as the M/M/1) , in which

arrivals occur in a Poisson process of rate λ:

M = arrivals is Markov (Poisson)

the service times of the customers are i.i.d exponentially-distributed
variables with mean 1/µ that are independent of the arrival sequence.

M = service times is Markov (i.e. ∼ Expon)

Then X (t) is the total number of customers in the system at time t
including the customer being served, if any

n = # of servers
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Birth-death process

Remark 15

Recall, from Theorem 10: for an irreducible, stationary Markov chain:

reversibility ⇔ d.b.e

⇓
π is e.d.

An iff statement can be achieved with a weaker version of d.b.e
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Birth-death process

Consider irreducible, ctMc {X (t)} with equilibrium distribution π. I.e.
πQ = 0, or: ∑

j∈S
πjqji = 0 ∀ i ∈ S

then
∑

j∈S\{i} πjqji = −πiqii . But, (recall)∑
j∈S

qij = 0 ⇔
∑

j∈S\{i}

qij = −qii

then ∑
j∈S\{i}

πjqji = πi
∑

j∈S\{i}

qij [full balance eqns.] =⇒

For each state i , rate of transitions out of i = rate of transitions into i .
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Birth-death process

In discrete time we have a similar situation. The equilibrium distribution
satisfies π = πP. For every i :

πi = πi
∑
j∈S

pij

since
∑

j∈S pij = 1. We have

π = πP⇔ πi =
∑
j∈S

πjpji

i.e.

πi
∑
j∈S

pij =
∑
j∈S

πjpji

πi
∑

j∈S\{i}

pij =
∑

j∈S\{i}

πjpji [full balance eqns.]

This shows that the probability of leaving state i exactly balances the
probability of entering state i .
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Birth-death process

The solutions of the detailed balance equations (πi qij = πj qji or
πi pij = πj pji ) necessarily satisfy the full balance equations;

these follow immediately by summing over j .

The connections between the properties of an irreducible Markov chain can
be summarised as follows:

Theorem 16 (balance equations, equilibrium, and reversibility)

π is e.d ⇔ f.b.e

⇑ ⇑
X is rev. ⇔ d.b.e.

In discrete time, an equilibrium distribution may not exist, even if the
system is reversible. However, if it does, then the dbes determine it.
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