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Model - Design - Analysis
Model

Model for the observation y is

y = η(x, ϑ) + ε,

where x denotes a set of experimental conditions,
ϑ = (ϑ1, . . . , ϑp)T denotes a vector of unknown parameters
and ε denotes an observational error, a random variable.

Design tells us what experimental conditions x (what levels) we
should use in the study.

Analysis is based on the observations y.
Hence, it depends on
I the design (x),
I the properties of the errors (ε),
I the structure of the model function (η).



Linear Models
Write

η(x, ϑ) = f1(x)ϑ1 + . . .+ fp(x)ϑp.

Then
y = f (x)Tϑ+ ε,

where

f (x)T =
(
f1(x), . . . , fp(x)

)
, ϑ =

 ϑ1
...
ϑp

 ,

or, in matrix notation,
Y = Xϑ+ ε,

where

Y =

 y1
...

yn

 , X =

 f1(x1) . . . fp(x1)
...

f1(xn) . . . fp(xn)

 , ε =

 ε1
...
εn

 .



Linear Models

Assume that ε ∼ Nn(0,V).

Then the maximum likelihood estimator of ϑ is normally
distributed:

ϑ̂ ∼ Np{ϑ, (XTV−1X)−1}.

The model assumption about the errors and the form of the
matrix X (design) are involved in the analysis.



Example 1
Growth Rate

Ten experimental rats were fed with various doses of a dietary
supplement and a growth rate was observed. The data are
given in the table below.

Amount of Supplement (g) Growth Rate (coded)
10 73
10 78
15 85
20 90
20 91
25 87
25 86
25 91
30 75
35 65



Example 1
Growth Rate

The data and the fitted quadratic polynomial are shown in the
figure below.
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Figure: Growths Rates



Example 1
Growth Rate

A few design questions:

1. Why were these particular doses used?

2. What was known about the plausible response before the
experiment was performed?

3. Could the doses be selected in a better way?

4. How should we decide what doses to select and apply?



Example 1
Growth Rate - Quadratic Regression

Here,
η(x, ϑ) = ϑ1 + ϑ2x + ϑ3x2 = f (x)Tϑ,

where

f (x)T = (1, x, x2), ϑ =

 ϑ1
ϑ2
ϑ3

 .

Then the matrix X is

X =


f (x1)T

f (x2)T

...
f (xn)T

 =


1 x1 x2

1
1 x2 x2

2
...

...
...

1 xn x2
n

 .



Example 1
Growth Rate - Quadratic Regression

Assuming that ε ∼ Nn(0, σ2In), the covariance matrix of the
maximum likelihood estimator of ϑ is

Var(ϑ̂) =σ2(XTX)−1

=σ2


 1 . . . 1

x1 . . . xn

x2
1 . . . x2

n

×
 1 x1 x2

1
...

...
...

1 xn x2
n




−1

=σ2

 n
∑n

i=1 xi
∑n

i=1 x2
i∑n

i=1 xi
∑n

i=1 x2
i
∑n

i=1 x3
i∑n

i=1 x2
i
∑n

i=1 x3
i
∑n

i=1 x4
i

−1

.

We would like to make it “somehow small”.

Note that the matrix depends on the design variable x.



Consequently, X is the so-called design matrix. The design is
the set of x values

ξ = {x1 x2 . . . xn} =

{
x1 x2 . . . xs
r1
n

r2
n . . . rs

n

}
,

where the ri are the replications of the support points xi of
the design. Here,

s∑
i=1

ri = n, ri > 0.



Example 2
A linear model for an experiment with 5 treatments and 3 blocks of size 4

Let the allocation of treatments to blocks be as follows:

block 1 1 2 3 5
block 2 1 4 3 2
block 3 5 1 4 2

Then the linear model may be written as

yij = µ+ τi + βj + εij,

where
µ denotes the overall mean,
τi denotes the effect of the ith treatment, i = 1, 2, . . . , 5, and
βj denotes the effect of the jth block, j = 1, 2, 3.



Example 2
A linear model for an experiment with 5 treatments and 3 blocks of size 4

block 1 1 2 3 5
block 2 1 4 3 2
block 3 5 1 4 2

The matrix X and the vector ϑ are of the form

Y =



y11
y12
y13
y21
y22
y23
y31
y32
y42
y43
y51
y53



, X =



1 | 1 0 0 0 0 | 1 0 0
1 | 1 0 0 0 0 | 0 1 0
1 | 1 0 0 0 0 | 0 0 1
1 | 0 1 0 0 0 | 1 0 0
1 | 0 1 0 0 0 | 0 1 0
1 | 0 1 0 0 0 | 0 0 1
1 | 0 0 1 0 0 | 1 0 0
1 | 0 0 1 0 0 | 0 1 0
1 | 0 0 0 1 0 | 0 1 0
1 | 0 0 0 1 0 | 0 0 1
1 | 0 0 0 0 1 | 1 0 0
1 | 0 0 0 0 1 | 0 0 1



, ϑ =



µ
τ1
τ2
τ3
τ4
τ5
β1
β2
β3


.



Example 2
A linear model for an experiment with 5 treatments and 3 blocks of size 4

block 1 1 2 3 5
block 2 1 4 3 2
block 3 5 1 4 2

The so-called incidence matrix N indicates the design as well:

N =


1 1 1
1 1 1
1 1 0
0 1 1
1 0 1

 .

Another way of presenting the design is

ξ =


(

1
1

) (
1
2

) (
1
3

) (
2
1

) (
2
2

) (
2
3

) (
3
1

) (
3
2

) (
4
2

) (
4
3

) (
5
1

) (
5
3

)
1
12

1
12

1
12

1
12

1
12

1
12

1
12

1
12

1
12

1
12

1
12

1
12

 .



Non-linear models
Suppose that

yi = η(xi, ϑ) + εi.

Then a Taylor series expansion about the prior ϑo yields

η(x, ϑ) = η(x, ϑo)+f (x, ϑo)T(ϑ−ϑo)+
1
2

(ϑ−ϑo)Tf ..(x, ϑo)(ϑ−ϑo)+. . . ,

where

f (x, ϑo)T =

(
∂η(x, ϑ)

∂ϑ1
,
∂η(x, ϑ)

∂ϑ2
, . . . ,

∂η(x, ϑ)

∂ϑp

) ∣∣
ϑ=ϑo

and f ..(x, ϑo) is the matrix of second derivatives with respect to
the parameters evaluated at ϑo.
Thus, a linear approximation to the model is

η(x, ϑ)− η(x, ϑo) = f (x, ϑo)T(ϑ− ϑo)

or
η(x, ϑ) = const + f (x, ϑo)Tϑ.



Non-linear models
Differences between linear models and linearised non-linear models

1. We have ϑ̂ ∼ Np{ϑ, (XTV−1X)−1} asymptotically.

2. Matrix X =


f (x1, ϑ

o)T

f (x2, ϑ
o)T

...
f (xn, ϑ

o)T

 depends on ϑo and on x.

3. The non-linearity of the model is ignored.



Example 3
One-compartment pharmacokinetic model

The concentration of a drug in the blood is often expressed in
the form

y =
ka

ka − ke

(
e−ket − e−kat)︸ ︷︷ ︸
η(x,ϑ)

+ ε,

where ka and ke denote the rates of absorption and elimination
of the drug. Here, x = t and ϑ = (ka, ke)T.
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Example 3
One-compartment pharmacokinetic model

In our example, we have

f (t, ϑo) =

 ∂η
∂ka

∂η
∂ke

∣∣
ϑ=ϑo =

 − 1
(ko

a−ko
e )

{
ko

e
ko

a−ko
e
e−ko

e t − (tko
a +

ko
e

ko
a−ko

e
)e−ko

a t
}

− ko
a

(ko
a−ko

e )

{
1

ko
a−ko

e
e−ko

a t − (t + 1
ko

a−ko
e
)e−ko

e t
}

 .
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Partial derivatives of η with respect to the parameters ka and ke at
ko

a = 0.7 and ko
e = 0.2.



Example 3
One-compartment pharmacokinetic model

Hence, after linearisation and adjusting for a constant, the
model can be written as

y = ka f1(t, ϑo) + ke f2(t, ϑo) + ε,

where

f1(t, ϑo) =
∂η

∂ka

∣∣
ϑ=ϑo and f2(t, ϑo) =

∂η

∂ke

∣∣
ϑ=ϑo .

Compare it with the simple linear regression model

y = ϑ1 + ϑ2t + ε

in which
f1 = 1, f2 = t.

What would be a good design for such a model?
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Well-designed experimental data for fitting a simple linear
regression model.



Big Question

What is the best choice of the design points when the model is
non-linear?



Purpose of an experiment - statistical point of view

I estimation of the parameters and their functions (e.g.
contrasts) and further testing of statistical hypotheses (we
know the family of models),

I model building (no information about the family of models),
I model discrimination (there are two or more plausible

families of models),
I a combination of estimation and model discrimination,
I other.



What is a Design of an Experiment?

A plan showing where/when to take observations during an
experiment.
I Classical (combinatorial) design

I way of allocating treatments to experimental units,
I usually applied to linear models,
I treatment structure and unit structure have to be defined

and matched.



What is a Design of an Experiment?

I Continuous (approximate) design
Here,

ξ =

{
x1 x2 . . . xs

w1 w2 . . . ws

}
,

where
s∑

i=1

wi = 1, wi > 0.

I probability measure on a discrete set of points,
I usually applied to regression models, linear or non-linear,
I treatments and units may not be so clear as they are in the

combinatorial design.



Optimum Design of Experiments

I A criterion for design optimality has to be specified.

I The criterion will depend on the purpose of the
experiment and on the model.

I When a general form of the model is known, then

I Purpose: estimation of unknown parameters or their
functions, or hypothesis testing.

I Design: to maximise precision of estimation.

How can we measure the precision of estimation?
I via variance and bias of the estimator



Optimum Design of Experiments

I When there are several competing models, then
I Purpose:

I discrimination between the models,
I estimation of the parameters and discrimination.

I Design: to optimise for most powerful discrimination and for
precise estimation.

I When there is no information about the model at all,
then
I Purpose: to identify the model or some specific values of

interest,
I Design: to optimise for the specific objective.



Optimum Design of Experiments
Problems

I In linear models, a combinatorial optimum design for
particular treatment and unit structures may not exist.

I In non-linear models, it is possible to find an approximate
(continuous) optimum design, but it depends on

I prior values of the unknown parameters,

I curvature of the assumed model,

I usually there are no closed-form solutions.

I In any case, the optimum design depends on the
assumptions regarding the variability and correlation of the
observed response.



Criteria for design optimality
For parameter estimation

Most of the criteria for parameter estimation were introduced for
linear models and are functions of the Fisher information matrix

M =

{
E
(
∂l
∂ϑi

∂l
∂ϑj

)}
i,j=1,2,...,p

,

where l = log L(ϑ; y) and L(ϑ; y) is the likelihood function for ϑ
given y.

This comes from the (asymptotic) properties of maximum
likelihood estimators:

ϑ̂ ∼
approx.

Np
(
ϑ,M−1).



Criteria for design optimality
For parameter estimation

For a normal linear model for the observations

Y ∼ Nn(Xϑ,V),

the likelihood function is

L(ϑ; y) =
1

(2π)n/2
√
|V|

exp

{
−1

2
(y− Xϑ)TV−1(y− Xϑ)

}
.

Hence,

l = const− 1
2

(y− Xϑ)TV−1(y− Xϑ),

∂l
∂ϑ

= XTV−1(y− Xϑ)

and

M = E
{

XTV−1(Y − Xϑ)(Y − Xϑ)TV−1X
}

= XTV−1X.



Criteria for design optimality
For parameter estimation

For a non-linear model for the observations, we have

X =

 f (x1, ϑ
o)T

...
f (xn, ϑ

o)T

 , f (xi, ϑ
o)T =

(
∂η(xi,ϑ

o)
∂ϑ1

, . . . , ∂η(xi,ϑ
o)

∂ϑp

)
.

The quantity

∂η(xi, ϑ)

∂ϑj
for j = 1, 2, . . . , p and i = 1, 2, . . . , n

is called the parameter sensitivity.



Criteria for design optimality
For parameter estimation

Common criteria (functions of the Fisher information matrix)
introduced by Wald (1943), Elving (1952), Kiefer (1959), Kiefer
(1975) are
I A - minimises the average variance of contrasts of

treatment effects,
I D - minimises the volume of the confidence ellipsoid for the

unknown model parameters,
I E - minimises the widest confidence interval among

confidence intervals for all parameters,
I G - minimises the variance of prediction of the model

function,
I c - minimises the variance of a function of the parameters

(i.e. area under the curve),
I Φp - a general class of criteria, which includes A, D and E,
I Universal - a very general convex function, which includes

an even wider class of criteria.
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