D - the most popular optimality criterion

The criterion, introduced by Wald (1943), is

®p = det(M™").

Properties:

>

>

it minimises the generalised variance of the parameter
estimator,

it minimises the volume of the parameter confidence
ellipsoid,

it is invariant under linear transformations of the
parameters,

it is equivalent to G-optimality, which is given in the
so-called Equivalence Theorem,

it has at most p(p + 1)/2 + 1 points of support
(Carathéodory’s Theorem).



D - the most popular optimality criterion

Geometrical Interpretation - volume of confidence ellipsoid

Confidence Intervals for 8, and 6,
\ T

Estimator of 6 = (8, 8,)

a

A
/

Confidence ellipse for 6 = (8, 6,)

A 100(1 — )% confidence region for the parameters is
(6 —8)"™M(8 — 0) < ps*Fp 0,

where s? is an estimate of o2, and F,, ,, ,, is the upper 100a% point of
the F distribution on p and v degrees of freedom.

The volume of a p-dimensional ellipsoid is proportional to
{det(M—1)}1/2,



D - the most popular optimality criterion

Geometrical Interpretation - design locus

Locally optimum designs for non-linear models with p
parameters usually have p support points. Then the weights are
all equal to 1/p.

The design locus is derived on the basis that the volume of a
simplex in R?, formed by p points x; € R? and the origin, is
proportional to the determinant of the (p x p)-dimensional
matrix formed by these points.

So, to maximise det(M), we find p points in the space of
derivatives, which together with the origin, form a simplex of
largest volume.



D - the most popular optimality criterion

Geometrical Interpretation - design locus: pharmacokinetic model, p = 2
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D - the most popular optimality criterion

Geometrical Interpretation - design locus: pharmacokinetic model, p = 2
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Design locus, optimum points and the simplex



D - the most popular optimality criterion

Geometrical Interpretation - design locus: pharmacokinetic model, p = 2

£,(t,6°)

0.0 7

-0.5

-1.0

-1.5 7

2.0 T T T T T
o
0.0 0.2 0.4 0.6 08 10 f,(t,6°

Design locus, optimum and non-optimum solutions



D - the most popular optimality criterion

Geometrical Interpretation - parameter sensitivities
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We find 7; and #, such that det(X) = fi(11)f2(%2) — f2(01)f1(22) is
maximum.



D - the most popular optimality criterion

The Equivalence Theorem

Kiefer and Wolfowitz (1960)
A design ¢* is D-optimum if and only if it is G-optimum, that is,
the following conditions are equivalent:

det{M~!(¢")} = mgin det{M ()}

and
maxd(x,£*) = msin maxd(x, &),

where d(x, &) = f(x)TM~1(¢)f (x) is the variance of prediction at
a point x. The third equivalent condition says that

maxd(x,£*) < p,

where p is the number of parameters.
Equality is achieved at the support points of £*.



D - the most popular optimality criterion

The Equivalence Theorem, an lllustration
Let the model response be
n(x,9) = 9o + V1x + Ux* on [—1, 1].

Then the D-optimum design is

10 1
5*:{ [ 1}-
3 3 3

The design does not depend on n, but instead on the weights.

The information matrix can then be written as

111
M(E*, ) =X"WXx=| -1 0 1 |x
1 01

O O wi=
Owi— O
W= O



D - the most popular optimality criterion

The Equivalence Theorem, an lllustration

Hence,

and the variance function is

d(x,€") = f(x)"M ' f(x)

1 0 -1
=3(L,x,))x [ 0 05 0 |x
-1 0 15
=3 —4.5x% +4.5x*

Note that d(x,{*) =3 atx = —1,0, 1.



D - the most popular optimality criterion

The Equivalence Theorem, an lllustration

Recall that
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D - the most popular optimality criterion

The Equivalence Theorem - pharmacokinetic model

Here,
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Example 4

Enzyme Kinetics Model, p =2

In a typical enzyme kinetics reaction, enzymes bind substrates
and turn them into products. The binding step is reversible
while the catalytic step is irreversible:

S+E<+—ES—E+P,

where S, E and P denote the substrate, enzyme and product,
respectively.



Example 4

Enzyme Kinetics Model, p =2

The reaction rate is represented by the Michaelis-Menten
model

77([5], Vinax, Km) = Im’

where [S] is the concentration of the substrate, and V., and K,,,
are the model parameters:
> V... denotes the maximum velocity of the reaction and

> K, is the Michaelis-Menten constant, the value of [S] at
which one half of the maximum velocity V,,.. is reached.



Example 4
Enzyme Kinetics Model, p =2

n(slv max.K‘m)

V,

max|

The Michaelis-Menten model response function ([S] Vinaxs m)
for the point priors V¢, = 1 and K9 = 1.

max



D optimality

Enzyme Kinetics Model, p = 2, parameter sensitivities
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Note that f; does not have a proper maximum; the largest value
is at the boundary of the design region.



D optimality

Enzyme Kinetics Model, p = 2, design locus
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The design locus does not form a loop.



D optimality

Enzyme Kinetics Model, p = 2, design locus
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Design locus: one vertex must be at the end of the locus.



D optimality

Enzyme Kinetics Model, p = 2, design locus
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Design locus: the triangle of maximum area.



D optimality

Enzyme Kinetics Model, p = 2, design locus
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Design locus: optimum design points.




D optimality

Enzyme Kinetics Model, p = 2, The Equivalence Theorem

The variance function has only one proper maximum; it also
reaches p = 2 at the boundary of the design region.



Example 5. Two Consecutive Chemical Reactions
Model

Atkinson and Bogacka (2002)
Suppose that
AbBSC
Then the kinetic differential equations for [A], [B] and [C], the

concentrations of the chemical compounds A, B and C as
functions of time ¢, are

dg;] = —k[A]M,
= - e,
ﬂg::bm&

Interest is in estimation of the orders A\; and \,, as well as of
the rates k; and k.



Example 5. Two Consecutive Chemical Reactions
Model

The first equation can be solved analytically to give the
concentration of chemical A at time ¢ as

[A] = {1 — (1 = A\kyr} /020 A kit > 0,0 # 1,

if it is assumed that the initial concentration of A is 1.

This gives the following differential equation for the
concentration of the compound B:

A

which has to be solved numerically.



Example 5. Two Consecutive Chemical Reactions
Model

General Consecutive Reaction

0.6

response
04

0.2

0.0

time

Concentration of B. Reading upwards at r = 20:
(A3, A9) = (1,1),(2,1),(1,2) and (2,2), (k. k8) = (0.7,0.2).



Example 5. Two Consecutive Chemical Reactions

Parameter sensitivities

General Consecutive Reaction

Parameter sensitivities as a function of time. Reading upwards
atr=10: f»,f1,/3 and f4 for ky, k1, Ay and \,, respectively. Here,
(A, A9) = (1,1) and (k{,k9) = (0.7,0.2).



Example 5. Two Consecutive Chemical Reactions

D-optimum designs

These designs were found by searching over the values of time,
but with the weights held known at 0.25. The design region is 7

= [0,50].
Prior Rates and Orders Time
(K, K3, X8, 29) R S S
(0.7,0.2,1,1) 0.80 2.85 7.05 15.90
(0.7,0.2,2,1) 051 2.36 7.30 18.26
(0.7,0.2,1,2) 0.83 2.91 8.05 40.39
(0.7,0.2,2,2) 0.57 2.65 9.68 50.00

Table 1. D-optimum designs for both rate and order. The
weights are 0.25 at each design point.



Example 5. Two Consecutive Chemical Reactions

D-optimum designs

A ->B ->C: lambda = (1,1)

variance
2

time

The variance of prediction d(z, £*, ) for prior
(k9,k5,A7,A9) = (0.7,0.2,1,1).



Example 5. Two Consecutive Chemical Reactions

D-optimum designs

A ->B ->C: lambda = (2,2)

variance
2

time

The variance of prediction d(z, £*, ) for prior
(k9,k5,A7,A9) = (0.7,0.2,2,2).
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