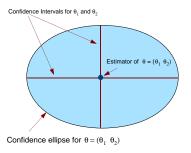
The criterion, introduced by Wald (1943), is

$$\Phi_D = \det(M^{-1}).$$

Properties:

- it minimises the generalised variance of the parameter estimator,
- it minimises the volume of the parameter confidence ellipsoid,
- ▶ it is invariant under linear transformations of the parameters,
- it is equivalent to G-optimality, which is given in the so-called Equivalence Theorem,
- it has at most p(p+1)/2 + 1 points of support (Carathéodory's Theorem).

Geometrical Interpretation - volume of confidence ellipsoid



A $100(1-\alpha)\%$ confidence region for the parameters is

$$(\theta - \widehat{\theta})^{\mathrm{T}} M(\theta - \widehat{\theta}) \leq p s^2 F_{p,\nu,\alpha},$$

where s^2 is an estimate of σ^2 , and $F_{p,\nu,\alpha}$ is the upper $100\alpha\%$ point of the F distribution on p and ν degrees of freedom.

The volume of a p-dimensional ellipsoid is proportional to $\{\det(M^{-1})\}^{1/2}$.

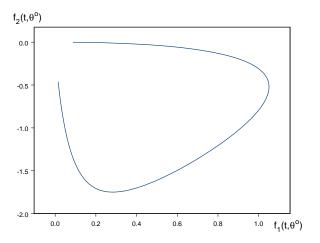
Geometrical Interpretation - design locus

Locally optimum designs for non-linear models with p parameters usually have p support points. Then the weights are all equal to 1/p.

The **design locus** is derived on the basis that the volume of a simplex in \mathbb{R}^p , formed by p points $x_i \in \mathbb{R}^p$ and the origin, is proportional to the determinant of the $(p \times p)$ -dimensional matrix formed by these points.

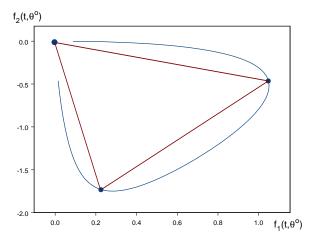
So, to maximise $\det(M)$, we find p points in the space of derivatives, which together with the origin, form a simplex of largest volume.

Geometrical Interpretation - design locus: pharmacokinetic model, p=2



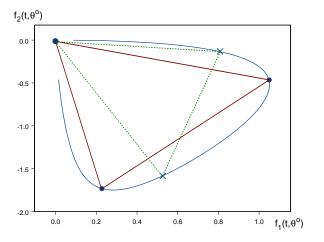
Design locus

Geometrical Interpretation - design locus: pharmacokinetic model, p=2



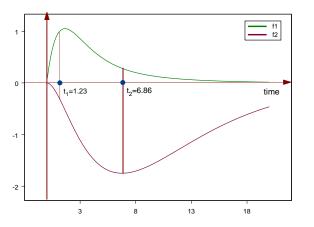
Design locus, optimum points and the simplex

Geometrical Interpretation - design locus: pharmacokinetic model, p=2



Design locus, optimum and non-optimum solutions

Geometrical Interpretation - parameter sensitivities



We find t_1 and t_2 such that $det(X) = f_1(t_1)f_2(t_2) - f_2(t_1)f_1(t_2)$ is maximum.

The Equivalence Theorem

Kiefer and Wolfowitz (1960)

A design ξ^* is D-optimum if and only if it is G-optimum, that is, the following conditions are equivalent:

$$\det\{M^{-1}(\xi^*)\} = \min_{\xi} \det\{M^{-1}(\xi)\}$$

and

$$\max_{x} d(x, \xi^*) = \min_{\xi} \max_{x} d(x, \xi),$$

where $d(x,\xi) = f(x)^{\mathrm{T}} M^{-1}(\xi) f(x)$ is the variance of prediction at a point x. The third equivalent condition says that

$$\max_{x} d(x, \xi^*) \le p,$$

where p is the number of parameters. Equality is achieved at the support points of \mathcal{E}^* .

The Equivalence Theorem, an Illustration

Let the model response be

$$\eta(x,\vartheta) = \vartheta_0 + \vartheta_1 x + \vartheta_2 x^2$$
 on $[-1, 1]$.

Then the D-optimum design is

$$\xi^* = \left\{ \begin{array}{rrr} -1 & 0 & 1\\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{array} \right\}.$$

The design does not depend on n, but instead on the weights.

The information matrix can then be written as

$$M(\xi^{\star}, \vartheta^{o}) = X^{\mathrm{T}}WX = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} \frac{1}{3} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{3} \end{pmatrix} \times \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}.$$

The Equivalence Theorem, an Illustration

Hence,

$$M = \frac{1}{3} \left(\begin{array}{ccc} 3 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 2 \end{array} \right)$$

and the variance function is

$$d(x,\xi^*) = f(x)^{\mathrm{T}} M^{-1} f(x)$$

$$= 3(1, x, x^2) \times \begin{pmatrix} 1 & 0 & -1 \\ 0 & 0.5 & 0 \\ -1 & 0 & 1.5 \end{pmatrix} \times \begin{pmatrix} 1 \\ x \\ x^2 \end{pmatrix}$$

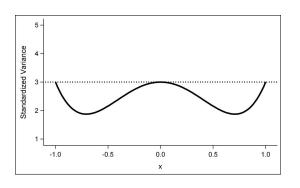
$$= 3 - 4.5x^2 + 4.5x^4.$$

Note that $d(x, \xi^*) = 3$ at x = -1, 0, 1.

The Equivalence Theorem, an Illustration

Recall that

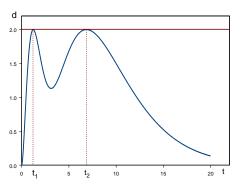
$$\xi^* = \left\{ \begin{array}{rrr} -1 & 0 & 1\\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{array} \right\}.$$



The Equivalence Theorem - pharmacokinetic model

Here,

$$\xi^* = \left\{ \begin{array}{cc} 1.23 & 6.86 \\ \frac{1}{2} & \frac{1}{2} \end{array} \right\}.$$



Example 4

Enzyme Kinetics Model, p=2

In a typical enzyme kinetics reaction, enzymes bind substrates and turn them into products. The binding step is reversible while the catalytic step is irreversible:

$$S + E \longleftrightarrow ES \to E + P$$
,

where S, E and P denote the substrate, enzyme and product, respectively.

Example 4

Enzyme Kinetics Model, p = 2

The reaction rate is represented by the Michaelis-Menten model

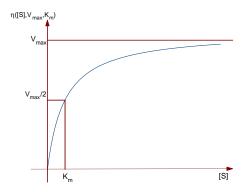
$$\eta([S]; V_{max}, K_m) = \frac{V_{max}[S]}{K_m + [S]},$$

where [S] is the concentration of the substrate, and V_{max} and K_m are the model parameters:

- \triangleright V_{max} denotes the maximum velocity of the reaction and
- $ightharpoonup K_m$ is the Michaelis-Menten constant, the value of [S] at which one half of the maximum velocity V_{max} is reached.

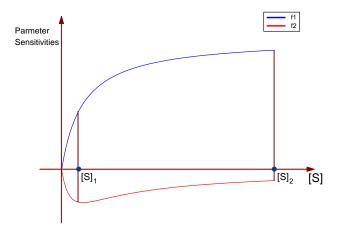
Example 4

Enzyme Kinetics Model, p = 2



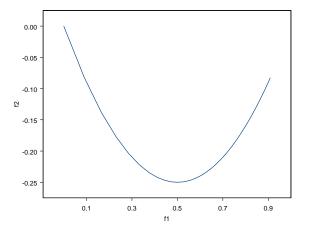
The Michaelis-Menten model response function $\eta([S]; V_{max}, K_m)$ for the point priors $V_{max}^o = 1$ and $K_m^o = 1$.

Enzyme Kinetics Model, p = 2, parameter sensitivities



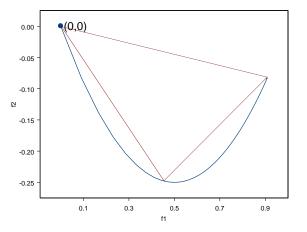
Note that f_1 does not have a proper maximum; the largest value is at the boundary of the design region.

D optimality Enzyme Kinetics Model, p = 2, design locus



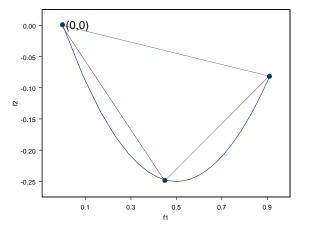
The design locus does not form a loop.

Enzyme Kinetics Model, p = 2, design locus



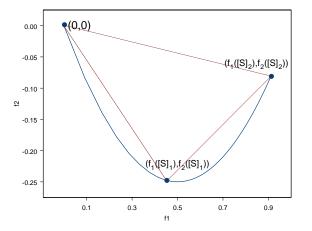
Design locus: one vertex must be at the end of the locus.

Enzyme Kinetics Model, p = 2, design locus



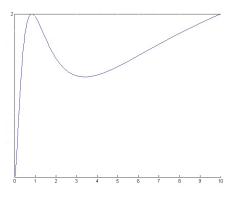
Design locus: the triangle of maximum area.

Enzyme Kinetics Model, p = 2, design locus



Design locus: optimum design points.

Enzyme Kinetics Model, p = 2, The Equivalence Theorem



The variance function has only one proper maximum; it also reaches p=2 at the boundary of the design region.

Atkinson and Bogacka (2002)

Suppose that

$$A \stackrel{k_1}{\rightarrow} B \stackrel{k_2}{\rightarrow} C.$$

Then the kinetic differential equations for [A], [B] and [C], the concentrations of the chemical compounds A, B and C as functions of time t, are

$$\frac{d[A]}{dt} = -k_1[A]^{\lambda_1},$$

$$\frac{d[B]}{dt} = k_1[A]^{\lambda_1} - k_2[B]^{\lambda_2},$$

$$\frac{d[C]}{dt} = k_2[B]^{\lambda_2}.$$

Interest is in estimation of the orders λ_1 and λ_2 , as well as of the rates k_1 and k_2 .

The first equation can be solved analytically to give the concentration of chemical A at time t as

$$[A] = \{1 - (1 - \lambda_1)k_1t\}^{1/(1-\lambda_1)}, \qquad \lambda_1, k_1, t \ge 0, \lambda_1 \ne 1,$$

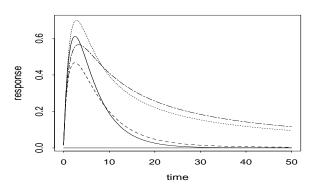
if it is assumed that the initial concentration of A is 1.

This gives the following differential equation for the concentration of the compound *B*:

$$\frac{d[B]}{dt} = k_1 \{1 - (1 - \lambda_1)k_1t\}^{\frac{\lambda_1}{1 - \lambda_1}} - k_2[B]^{\lambda_2},$$

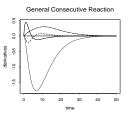
which has to be solved numerically.

General Consecutive Reaction



Concentration of *B*. Reading upwards at t = 20: $(\lambda_1^o, \lambda_2^o) = (1, 1), (2, 1), (1, 2)$ and $(2, 2), (k_1^o, k_2^o) = (0.7, 0.2)$.

Parameter sensitivities



Parameter sensitivities as a function of time. Reading upwards at t=10: f_2, f_1, f_3 and f_4 for k_2, k_1, λ_1 and λ_2 , respectively. Here, $(\lambda_1^o, \lambda_2^o) = (1, 1)$ and $(k_1^o, k_2^o) = (0.7, 0.2)$.

D-optimum designs

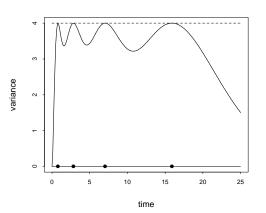
These designs were found by searching over the values of time, but with the weights held known at 0.25. The design region is $\mathcal{T} = [0,50]$.

Prior Rates and Orders	Time			
$(k_1^o,k_2^o,\lambda_1^o,\lambda_2^o)$	t_1^*	t_2^*	t_3^*	t_4^*
(0.7, 0.2, 1,1)	0.80	2.85	7.05	15.90
(0.7, 0.2, 2, 1)	0.51	2.36	7.30	18.26
(0.7, 0.2, 1, 2)	0.83	2.91	8.05	40.39
(0.7, 0.2, 2, 2)	0.57	2.65	9.68	50.00

Table 1. D-optimum designs for both rate and order. The weights are 0.25 at each design point.

D-optimum designs

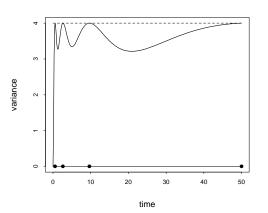
$$A -> B -> C$$
: lambda = (1,1)



The variance of prediction $d(t, \xi^*, \vartheta)$ for prior $(k_1^o, k_2^o, \lambda_1^o, \lambda_2^o) = (0.7, 0.2, 1, 1).$

D-optimum designs

$$A -> B -> C$$
: lambda = (2,2)



The variance of prediction $d(t, \xi^*, \vartheta)$ for prior $(k_1^o, k_2^o, \lambda_1^o, \lambda_2^o) = (0.7, 0.2, 2, 2).$