
Example 5. Two Consecutive Chemical Reactions
D-optimum Designs for the Rates of Reaction

If the orders of reaction λ1 and λ2 are known, it makes sense to
find D-optimum designs for estimating the rates k1 and k2.

Such designs maximise

log |M11(ξ, ko
1, k

o
2)|,

and they have two design points, with weight 0.5 at each point.

They are listed in Table 2. The optimum points when λT = (1, 1)
were originally calculated by Box and Lucas (1959).



Example 5. Two Consecutive Chemical Reactions
D-optimum Designs for the Rates of Reaction

Orders of Reaction Times
λT = (λ1, λ2) t∗1 t∗2

(1,1) 1.23 6.85
(2,1) 1.01 7.70
(1,2) 1.19 7.52
(2,2) 1.06 10.09

Table 2. D-optimum designs for the rates, taking prior (ko
1, k

o
2) =

(0.7, 0.2) when the orders are assumed known. The weights
are 0.5 at each design point.

It is NOT surprising that the designs depend so little on the
assumed values of λ1 and λ2.

The large values of time in Table 1 are not present in the
optimum designs for the rates only.



Ds-optimum Designs
Example 5. Two Consecutive Chemical Reactions

If only a subset of s of the parameters, ϑ(2), is of interest, we
can calculate so-called Ds-optimum designs.

Let the parameters be partitioned as

ϑ = (ϑ(1), ϑ(2))
T

with the information matrix M(ξ, ϑ) partitioned so that the
information for ϑ(1) is M11(ξ, ϑ).

Then the Ds-optimum design for ϑ(2) maximises

log

{
|M(ξ, ϑ)|
|M11(ξ, ϑ)|

}
.



Ds-optimum Designs
Example 5. Two Consecutive Chemical Reactions

The Equivalence Theorem for Ds-optimum designs states that,
for the optimum measure ξ∗, the analogue of the standardised
variance of prediction is

d(t, ξ∗, ϑ) = f (t, ϑ)TM−1(ξ∗, ϑ)f (t, ϑ)−f(1)(t, ϑ)TM−1
11 (ξ∗, ϑ)f(1)(t, ϑ) ≤ s,

where f(1)(t, ϑ)T is the vector of sensitivities for the p− s
parameters ϑ(1).



Ds-optimum Designs
Example 5. Two Consecutive Chemical Reactions

Prior Orders Times and Weights
of Reaction t∗1 t∗2 t∗3 t∗4

(λo
1, λ

o
2) w∗1 w∗2 w∗3 w∗4

(1,1) 0.54 3.13 7.48 17.61
0.16 0.25 0.18 0.41

(2,1) 0.36 2.57 7.49 20.91
0.22 0.22 0.17 0.39

(1,2) 0.55 3.15 8.57 50.00
0.14 0.26 0.18 0.42

(2,2) 0.40 2.93 9.49 50.00
0.21 0.24 0.18 0.37

Table 3. Ds-optimum designs for estimating the orders of the
reaction, assuming (ko

1, k
o
2) = (0.7, 0.2). Both weights and

design points have to be found numerically.



Compound Optimum Designs

Each of the three designs of the previous section is tailor-made
for solving one aspect of the design problem.

We now consider the use of compound optimum designs by
which the experimenter can find a single design which strikes a
balance between the three objectives.

The compound design criterion used here is a linear
combination of the previous criteria

Φ(ξ, ϑ) = (1− α) log |M11(ξ, ϑ)|+ α log{|M(ξ, ϑ)|/|M11(ξ, ϑ)|}
= (1− 2α) log |M11(ξ, ϑ)|+ α log |M(ξ, ϑ)|.



Compound Optimum Designs
Example 5. Two Consecutive Chemical Reactions

Recall that

Φ(ξ, ϑ) = (1− α) log |M11(ξ, ϑ)|+ α log{|M(ξ, ϑ)|/|M11(ξ, ϑ)|}
= (1− 2α) log |M11(ξ, ϑ)|+ α log |M(ξ, ϑ)|.

Here, 0 ≤ α ≤ 1 expresses the experimenter’s relative interest
in determination of the parameters of the reaction:
I When α = 1, interest is solely in order determination.
I When α = 0.5, the criterion becomes a multiple of that for

D-optimality for both orders and rates.
I When α = 0, the criterion becomes that of D-optimality

when it is assumed that the orders of reaction are known.



Compound Optimum Designs

The variance function is then the weighted linear combination of the
variances for the individual criteria with the same weights.

Therefore, the optimum design ξ∗c is such that

dc(t, ξ∗c , ϑ)

= (1− 2α)f(1)(t, ϑ)TM−1
11 (ξ∗c , ϑ)f(1)(t, ϑ) + αf (t, ϑ)TM−1(ξ∗c , ϑ)f (t, ϑ)

≤ (1− 2α)r + α(r + s) = r + α(s− r),

where r = p− s.

I The bound on the variance then depends on α unless
s = r = p/2.

I In many kinetic models, there are fewer rate constants than
orders of reaction, and so we may have r < s.

I But, in our example, r = s = 2, so that the variance does not
depend on α.



Compound Optimum Designs
Example 5. Two Consecutive Chemical Reactions
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Support points and the weights of the compound optimum design for
λo

1 = λo
2 = 1 as a function of α.

I These figures show the behaviour of the compound designs as
α changes.

I To choose a value of α which yields a design reflecting the
experimenter’s interests requires calculation of the efficiency of a
proposed design for the three specific aspects of interest.



Design Efficiency

The design efficiency is defined as

E(ξ) =
Φ(ξ, ϑo)

Φ(ξ?, ϑo)
,

where Φ is an optimality criterion.

For D-optimality, we use

E(ξ) =

{
|M(ξ, ϑo)|
|M(ξ?, ϑo)|

} 1
p

.



Design Efficiency
Example 5. Two Consecutive Chemical Reactions

Let the D-optimum design for estimating k1 and k2 be ξ∗k . Then
the efficiency of the compound design if only the rates of
reaction are of interest is

Ek = 100{|M11(ξ∗c , ϑ
o)|/|M11(ξ∗k , ϑ

o)|}1/r.

Likewise, if the Ds-optimum design for estimating λ1 and λ2 is
ξ∗λ, the relevant efficiency is

Eλ = 100
{
|M(ξ∗c , ϑ

o)|/|M11(ξ∗c , ϑ
o)|

|M(ξ∗λ, ϑ
o)|/|M11(ξ∗λ, ϑ

o)|

}1/s

.

Finally, if the D-optimum design for the k s and λs is ξ∗D, the
efficiency is

ED = 100{|M(ξ∗c , ϑ
o)|/|M(ξ∗D, ϑ

o)|}1/p.



Design Efficiency
Example 5. Two Consecutive Chemical Reactions
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Efficiencies of the compound optimum design for λo
1 = λo

2 = 1 as
a function of α. Reading upwards at α = 1: Ek, ED and Eλ.



Design Efficiency
Example 5. Two Consecutive Chemical Reactions

I At the boundaries of the range of α, the compound design
is good for only one of the aspects of the problem:
I either estimation of the rates of reaction, when α is close to

zero, or
I the estimation of orders with rates as nuisance parameters,

when α is close to one.
I When α = 0.5, the compound design is 100% efficient for

estimation of both sets of parameters: it is D-optimum for ϑ
and λ.

I An interesting choice of α is 0.73 where the curves for ED

and Eλ intersect and the efficiencies are approximately
96%.



Optimum design for a function of model parameters
c-optimality

To optimise a design for estimation of a linear combination of
the parameters

cTϑ̂,

where c is a p-dimensional vector of coefficients, we optimise
the variance of the combination, that is,

var(cTϑ̂) = cTM−1(ξ)c.

Non-linear functions of the parameters, g(ϑ), are linearised to
obtain

g(ϑ) ∼= const + cTϑ.

Then the variance is as above with

cT =

(
∂g(ϑ)

∂ϑ1
, . . . ,

∂g(ϑ)

∂ϑp

)
.



c-optimality
Example 6. Three-Parameter Compartmental Model

Atkinson, Donev and Tobias (2007)
The model

η(t, ϑ) = ϑ3{exp(−ϑ2t)− exp(−ϑ1t)}, t ≥ 0,

where ϑ1 > ϑ2 and all three parameters are positive, was used
by Fresen (1984) to analyse the data on the concentration of
theophylline in the blood of a horse. Fresen used an 18-point
design.

The focus here is not whether it is possible to do better than
this 18-point design.

We shall be concerned with how the optimum design depends
on the aspect of the model that is of interest.



c-optimality
Example 6. Three-Parameter Compartmental Model

The least squares estimates of the parameters are used as
prior values:

ϑ0
1 = 4.29, ϑ0

2 = 0.0589, ϑ0
3 = 21.80.
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The concentration of theophylline in the blood of a horse.



c-optimality
Example 6. Three-Parameter Compartmental Model

I Area under the curve: g1(ϑ) =
∫∞

0 η(t, ϑ)dt

I Time to maximum concentration: g2(ϑ) = tmax(ϑ)

I The maximum concentration: g3(ϑ) = η(tmax, ϑ)
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c-optimality
Example 6. Three-Parameter Compartmental Model

The total area under the curve (AUC) is

g1(ϑ) =

∫ ∞
0

η(t, ϑ)dt =
ϑ3

ϑ2
− ϑ3

ϑ1
= ϑ3

(
1
ϑ2
− 1
ϑ1

)
.

This function is linear in ϑ3 and non-linear in ϑ1 and ϑ2.

The time to maximum concentration (tmax) is found by
differentiation of η(t, ϑ) with respect to t to be

g2(ϑ) =
log(ϑ1)− log(ϑ2)

ϑ1 − ϑ2
,

which does not depend on ϑ3.

The maximum concentration is found by substituting tmax in
η(t, ϑ):

g3(ϑ) = η(tmax, ϑ).



c-optimality
Example 6. Three-Parameter Compartmental Model

Design
Criterion Time t Weight

D 0.23 1/3
1.39 1/3

18.45 1/3

cAUC 0.23 0.0135
17.63 0.9865

ctmax 0.18 0.6061
3.57 0.3939

cη(tmax) 1.01 1

D- and c-optimum designs



c-optimality
Example 6. Three-Parameter Compartmental Model

I The D-optimum design for this three-parameter model has
three support points, each with weight 1/3. It allows
estimation of the three parameters.

I The c-optimum designs, with only two points of support, or
even with only one, are singular.

I In order to calculate the designs, the singularity of M(ξ)
was overcome by use of the ridge-type regularisation
procedure in which a small quantity ε is added to the
diagonal of M(ξ) before inversion. An ε value of 10−5 was
found to be adequate.

I With this regularisation, it is possible to check the
equivalence theorem that, for each optimum design,

{f (x)TM−1(ξ∗)c(ϑ)}2 ≤ c(ϑ)TM−1(ξ∗)c(ϑ)

for all x ∈ X , the design region.



c-optimality
Example 6. Three-Parameter Compartmental Model: AUC

For the area under the curve

g1(ϑ) =
ϑ3

ϑ2
− ϑ3

ϑ1
,

c(ϑ) =

 c1(ϑ)
c2(ϑ)
c3(ϑ)

 =

 ϑ3/ϑ
2
1

−ϑ3/ϑ
2
2

1/ϑ2 − 1/ϑ1

 .

So the cAUC-optimum design is

ξ? = arg min
ξ

var
{

ĝ1(ϑ)
}
∼= arg min

ξ
c(ϑ)TM−1(ξ, ϑ)c(ϑ).



c-optimality
Example 6. Three-Parameter Compartmental Model: AUC

Here,

ξ? =

{
0.23 17.63

0.0135 0.9865

}
.

I The cAUC-optimum design for estimating the AUC has only
two points of support.

I This makes some sense, as the criterion is a function of
the two ratios ϑ3/ϑ1 and ϑ3/ϑ2.

I The reading at the low time of 0.23 allows efficient
estimation of the ratio ϑ3/ϑ1, whereas that at t = 17.6 is for
the ratio ϑ3/ϑ2.



c-optimality
Example 6. Three-Parameter Compartmental Model: AUC

The curve rises very rapidly to the maximum at t = 1.10, declining
slowly thereafter.
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The relationship between ϑ3 and ϑ2 is therefore of greater importance
in determining the AUC. It is reflected in the design putting over 98%
of the experimental effort at the higher value of t.



c-optimality
Example 6. Three-Parameter Compartmental Model: tmax

Here,

ξ? =

{
0.18 3.57

0.6061 0.3939

}
.

I The ctmax-optimum design for tmax again has two points of
support.

I In comparison with the design for the AUC, the
experimental effort is much more evenly spread over the
two design points.

I In addition, these points are relatively close to the
calculated time of maximum concentration.



c-optimality
Example 6. Three-Parameter Compartmental Model: η(tmax)

This time,

ξ? =

{
1.01

1

}
.

I The cη(tmax)-optimum design is concentrated on one point;
all measurements are taken at tmax, the time at which the
maximum is believed to occur.

I This is an extreme example of a c-optimum design for
which the quantity of interest is not estimable.

I If this design were to be used, so that measurements were
taken at only one point, it would be impossible to tell
where, in fact, the response was a maximum.

I These results demonstrate that, whichever criterion of
optimality is used, the optimum design has far fewer points
of support than the 18-point design used originally.



Efficiencies of the D- and c-optimum designs
Example 6. Three-Parameter Compartmental Model

This table shows that it may be very inefficient to use a
D-optimum design (or an equally-spaced design) when a
function of the parameters is of interest rather than the model
parameters themselves.

Efficiency for

Design D-optimum AUC tmax η(tmax)

D-optimum 100.0 34.31 65.94 36.10
18-point 67.65 24.00 28.61 36.77



Possible remedies for the singularity problem

1. Take observations not only at the optimum points but also
at some points close to the optimum ones.
I This will lower the efficiency, but not very much if the other

points are not far from the optimum ones.

2. Use a compound design criterion

Ψ{M(ξ, ϑ)} =
3∑

j=1

log{cgj(ϑ)(ξ, ϑ)TM−1(ξ, ϑ)cgj(ϑ)(ξ, ϑ)}.

I This is a ’compromise’ kind of criterion, good for all
purposes but not optimum for any.

3. Use a Bayesian approach.
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