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1 Introduction

1.1 Topics to be covered

Part 1 of this course showed how an experiment may be designed optimally when the number
of observations is fixed in advance. The main focus was the application of this theory to non-
linear models and the construction of D-optimum designs. In this part, we are concerned
with sequential designs, where the number of observations to be taken is not fixed in advance
or the design points are chosen sequentially depending on the current data.

We first introduce the sequential probability ratio test for testing two simple hypotheses
and study several of its properties. Since this is a fully sequential design, in that a test is
performed after every observation, we then introduce group sequential designs and show how
these may be carried out in practice. Finally, we study some adaptive treatment allocation
rules, where the treatment allocation probabilities are functions of the current data.

1.2 Examples of sequential designs

A sequential design is often more efficient than an equivalent fixed-sample one. The
examples below demonstrate the wide range of applications of a sequential approach.

Example. Curtailed test.
Suppose that a machine produces items which may be judged good or defective, and that the
true proportion of defectives in a large batch is p. Let Sm denote the number of defectives in
a random sample of size m. Consider testing H0 : p ≤ p0 against H1 : p > p0. A reasonable
rule is to reject H0 if Sm ≥ r for some constant r.
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Now let T be the smallest value of k for which Sk = r and put T ′ = min(T, m). Consider
the procedure which stops sampling at the random time T ′ and decides that p > p0 if
and only if T ≤ m. If one considers these two procedures as tests of H0 against H1, their
rejection regions, namely, {T ≤ m} and {Sm ≥ r}, are the same events, and hence the two
tests have the same power function. Clearly, the test which stops at the random time T ′

has a reasonable claim to be regarded as more efficient.

Example. Repeated significance test.
Let X1, X2, . . . be independent normal random variables with unknown mean µ and unit
variance. Consider testing H0 : µ = 0 against H0 : µ 6= 0. Then the standard fixed-sample
0.05 level significance test rejects H0 if and only if |Sn| ≥ 1.96

√
n, where Sn =

∑n
k=1 xk.

Now suppose that, if H1 is true, a minimum amount of experimentation is desired, but
no similar constraint exists under H0. Let b > 0 and let m be a maximum sample size.
Sample sequentially, stopping with rejection of H0 at the first n ≤ m, if one exists, such that
|Sn| ≥ b

√
n. Otherwise, stop sampling at m and accept H0. The significance level of this

procedure is
α = α(b, m) = P0(|Sn| ≥ b

√
n for some n ≤ m),

where P0 denotes probability under H0. Clearly, b must be somewhat larger than 1.96,
depending on m, in order that α(b, m) = 0.05.

2 The sequential probability ratio test (SPRT)

2.1 Definitions

Let X1, X2, . . . be a sequence of random variables with joint probability density functions

P (X1 ∈ dξ1, . . . , Xn ∈ dξn) = fn(ξ1, . . . , ξn)dξ1 . . . dξn

for n = 1, 2, . . .. Consider testing the simple hypotheses H0 : fn = f0n for all n against
H1 : fn = f1n for all n. The likelihood ratio is

ℓn = ℓn(x1, . . . , xn) =
f1n(x1, . . . , xn)

f0n(x1, . . . , xn)
.

The sequential probability ratio test (SPRT) chooses constants 0 < A < B < ∞,
usually A < 1 < B, and samples x1, x2, . . . sequentially until the random time

N = first n ≥ 1 such that ℓn 6∈ (A, B)

= ∞ if ℓn ∈ (A, B) for all n ≥ 1.

The test stops sampling at time N , and, if N < ∞, rejects H0 if ℓN ≥ B and accepts H0 if
ℓN ≤ A.

Assuming temporarily that Pi(N < ∞) = 1 for i = 0, 1, where Pi denotes probability under
Hi, the above test has significance level α = P0(ℓN ≥ B) and power 1−β = P1(ℓN ≥ B).
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In the fixed-sample case, the Neyman-Pearson lemma tells us that, among all tests with
the same significance level, the likelihood ratio test has the highest power.

2.2 Properties of the SPRT

Let Bn denote the subset of n-dimensional space in which A < ℓk(ξ1, . . . , ξk) < B for
k = 1, 2, . . . , n − 1 and ℓn(ξ1, . . . , ξn) ≥ B, so that

{N = n, ℓn ≥ B} = {(x1, . . . , xn) ∈ Bn}.

Then

α = P0(ℓN ≥ B) =
∞
∑

n=1

P0(N = n, ℓn ≥ B)

=
∞
∑

n=1

∫

Bn

f0ndξ1 . . . dξn

=
∞
∑

n=1

∫

Bn

f0n

f1n

f1ndξ1 . . . dξn

=
∞
∑

n=1

E1

(

ℓ−1
n ; N = n, ℓn ≥ B

)

= E1

(

ℓ−1
N ; ℓN ≥ B

)

≤ B−1P1(ℓN ≥ B) = B−1(1 − β).

Similarly,
β = P1(ℓN ≤ A) ≤ AP0(ℓN ≤ A) = A(1 − α).

Treating the above inequalities as approximate equalities and solving for α and β leads to
the simple approximations

α ≃ 1 − A

B − A
and β ≃ A(B − 1)

B − A
.

Theorem 1. Wald’s equation.
Let X1, X2, . . . be independent and identically distributed random variables with finite mean
µ. Let M be any integer-valued random variable such that {M = n} is an event determined
only by X1, . . . , Xn for all n = 1, 2, . . ., and assume that E(M) < ∞. Then

E

(

M
∑

k=1

Xk

)

= µE(M).

Proof. Suppose initially that X ≥ 0. Write

M
∑

k=1

Xk =
∞
∑

k=1

1{M≥k}Xk

3



and note that

{M ≥ k} =





k−1
⋃

j=1

{M = j}




c

is independent of Xk, Xk+1, . . .. Hence, by the monotone convergence theorem, we have
that

E

(

M
∑

k=1

Xk

)

=
∞
∑

k=1

E(Xk; M ≥ k) = µ
∞
∑

k=1

P (M ≥ k) = µE(M).

For the general case, write
M
∑

k=1

Xk =
M
∑

k=1

X+
k −

M
∑

k=1

X−
k ,

where a+ = max(a, 0) and a− = −min(a, 0), and apply the above case to these two terms
separately. 2

Suppose that X1, X2, . . . are independent and identically distributed random variables, so
that

ℓn =
n
∏

k=1

f1(xk)

f0(xk)
,

where fi is the probability density function of X under Hi for i = 0, 1. Then

log ℓn =
n
∑

k=1

log

{

f1(xk)

f0(xk)

}

is a sum of independent and identically distributed random variables. Further, the stopping
rule for the SPRT may be written as

N = first n ≥ 1 such that log ℓn 6∈ (a, b)

= ∞ if log ℓn ∈ (a, b) for all n,

where a = log A and b = log B. Now, by Theorem 1,

Ei(log ℓN) = µiEi(N),

where µi = Ei[log{f1(X)/f0(X)}] for i = 0, 1. Also, we may write

Ei(log ℓN) ≃ aPi(ℓN ≤ A) + bPi(ℓN ≥ B).

Combining this approximation with the previous equation yields

E0(N) ≃ 1

µ0

{

a
(B − 1)

B − A
+ b

(1 − A)

B − A

}

and

E1(N) ≃ 1

µ1

{

a
A(B − 1)

B − A
+ b

B(1 − A)

B − A

}

.
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Alternatively, we may write

E0(N) ≃ 1

µ0

{

(1 − α) log

(

β

1 − α

)

+ α log

(

1 − β

α

)}

and

E1(N) ≃ 1

µ1

{

β log

(

β

1 − α

)

+ (1 − β) log

(

1 − β

α

)}

.

The following result, which is stated without proof, shows that the SPRT terminates with
probability one.

Theorem 2. Stein’s lemma.
Let Y1, Y2, . . . be independent and identically distributed random variables with the property
P (Y = 0) < 1. Let −∞ < a < b < ∞ and Sn =

∑n
k=1 Yk, and define

M = first n ≥ 1 such that Sn 6∈ (a, b)

= ∞ if Sn ∈ (a, b) for all n.

Then there exist constants C > 0 and 0 < ρ < 1 such that P (M > n) ≤ Cρn for n = 1, 2, . . ..
In particular, E(Mk) < ∞ for all k = 1, 2, . . . and E(eλM) < ∞ for λ < log(ρ−1).

Theorem 3. Wald’s likelihood ratio identity.
Let X1, X2, . . . be an arbitrary sequence of random variables and suppose that there exists
a likelihood ratio ℓn for x1, . . . , xn under P1 relative to P0 such that

E1(Yn) = E0(Ynℓn),

where Yn = g(X1, . . . , Xn) for some function g. Then, for any stopping time N and non-
negative random variable Y = g(X1, . . . , XN), say,

E1(Y ; N < ∞) = E0(Y ℓN ; N < ∞).

In particular, if Y = 1A, then

P1[A ∩ {N < ∞}] = E0[ℓN ; A ∩ {N < ∞}].

Proof. We have that

E1(Y ; N < ∞) =
∞
∑

n=1

E1(Y ; N = n)

=
∞
∑

n=1

E0(Y ℓn; N = n)

= E0(Y ℓN ; N < ∞),
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as required. 2

Note that we have already used Theorem 3 to obtain the approximations for the error
probabilities α and β. The following result is a special case of Theorem 3 and is stated
without proof.

Corollary. Wald’s fundamental identity.
Let X1, X2, . . . be a sequence of independent and identically distributed random variables,
and suppose that φ(t) = E(etX) < ∞ for some t 6= 0. Then, if N is a stopping time such
that P (N < ∞) = 1,

E
[

{φ(t)}−NetSN

]

= 1,

where SN =
∑N

k=1 Xk.

If φ(t) < ∞ for |t| < δ, where δ > 0, then the above identity may be differentiated with
respect to t at t = 0 to reproduce Theorem 1, provided that differentiation under the
expectation can be justified.

When testing a simple hypothesis against a simple alternative with independent and identi-
cally distributed observations, the Wald-Wolfowitz theorem states that the SPRT min-
imises Ei(N) for i = 0, 1, among all tests having no larger error probabilities. For cases
where the results for expected sample size are exact, Theorem 5 contains a complete proof.

Theorem 5. Let T be the stopping time of any test of H0 : f = f0 against H1 : f = f1 with
error probabilities α and β, 0 < α, β < 1. Assume that Ei(T ) < ∞ for i = 0, 1. Then

E0(T ) ≥ 1

µ0

{

(1 − α) log

(

β

1 − α

)

+ α log

(

1 − β

α

)}

and

E1(T ) ≥ 1

µ1

{

β log

(

β

1 − α

)

+ (1 − β) log

(

1 − β

α

)}

,

where

µi = Ei

[

log

{

f1(X)

f0(X)

}]

for i = 0, 1.

Proof. Let R = {Reject H0} and Rc = {Accept H0}. Then, by Theorem 3,

α = P0(R) = E1

(

ℓ−1
T ; R

)

= E1

(

e− log ℓT |R
)

P1(R)

≥ exp{−E1(log ℓT |R)}(1 − β)

= exp{−E1(log ℓT ; R)/(1 − β)}(1 − β),
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where the penultimate line is due to Jensen’s inequality. Thus,

(1 − β) log

(

α

1 − β

)

≥ −E1(log ℓT ; R).

Similarly,

β log

(

1 − α

β

)

≥ −E1(log ℓT ; Rc).

Hence, by Theorem 1,

(1 − β) log

(

α

1 − β

)

+ β log

(

1 − α

β

)

≥ −E1(log ℓT )

= −µ1E1(T ).

Since µ1 > 0, this completes the proof of the first assertion. The second assertion is proved
similarly. 2

2.3 Estimation following the SPRT

The estimation of a parameter when the data have been obtained from a SPRT is a difficult
problem. Even sequentially stopped versions of ordinarily unbiased estimators are biased,
and their sampling distributions are often quite complicated. The following result, which
is stated without proof, shows that randomly stopped averages are asymptotically normally
distributed under quite general conditions.

Theorem 6. Anscombe-Doeblin theorem.
Let X1, X2, . . . be independent and identically distributed random variables with finite mean
µ and finite positive variance σ2. Let Sn =

∑n
k=1 Xk and suppose that Mc, c ≥ 0, are positive

integer-valued random variables such that, for some constants mc → ∞, Mc/mc → 1 in
probability as c → ∞. Then

P





SMc
− µMc

σM
1

2

c

≤ x



→ Φ(x)

as c → ∞, where Φ denotes the standard normal distribution function.

It follows from Theorem 6 that N− 1

2 (SN −Nµ)/σ is approximately standard normal. Thus,
an approximate 95% confidence interval for µ for large a and b is given by

SN

N
± 1.96

σ

N
1

2

.

However, this approximation is very poor for moderate values of a and b.
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