2.4 Examples of the SPRT

Let N be the stopping time for the SPRT. Then, from Theorem 2, P;(N < oo) = 1 for
i=0,1.

Example. Let Xi, X5, ... be independent normal random variables with mean p and unit
variance. Consider testing Hy : u = po against Hy : u = py, where pg < pq. The likelihood
ratio is

6 = Jan—i)

n
= exp{ (41— po)Sn — 5(#? - M(Q))} )

where ¢(z) = (2m) 72 exp(—22/2) and S, = 3P_, 2. Hence, the stopping rule for the SPRT
is given by

N = first n > 1 such that S, — 5 (1 + po) & (a,b),
where a = log A/(pu1 — po) and b = log B/ (11 — po). Note that, in the symmetric case,
p1 = —po and b = —a, and we have that

N = first n > 1 such that |S,| > b.

Example. Let X;,X,,... be independent random variables with P,(X = 1) = p and
P,(X = —1) = ¢, where p+ ¢ = 1. Consider testing Hy : p = po against Hy : p = p;, where
po < p1- The likelihood ratio is

n+Sn n—Sn
2 2
Po do
Sn. n
_ <plCI0> 2 <P1Q1> ?
Poq1 Podo ’
where S, = >-}_; x%. Note that, in the symmetric case, py = ¢; and B = A~!, the stopping
rule for the SPRT is given by

N = first n > 1 such that |S,| > b,

where b = log B/ log(qo/po)-

3 Group sequential tests

3.1 Analysing the data in groups

The SPRT is an example of a fully sequential test, since a test is performed after every
observation. In practice, especially in the context of clinical trials, it is more convenient
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to analyse the data after groups of observations. In fact, a group sequential approach can
often achieve most of the efficiency gains of an analogous fully sequential one. In this course,
group sequential tests are described in the context of two-treatment clinical trials.

Let X a1, X49,... and Xpy, Xpgo, ... denote the responses of subjects assigned to two treat-
ments, A and B. Interest lies in testing the null hypothesis of no treatment difference
Hy : 6 = 0 against the two-sided alternative H; : 6 # 0 that there is a treatment difference
with type I error probability @ and power 1 —  when # = £4. Suppose that there are a
maximum of K groups and that m denotes the group size.

For k=1,2,..., K, a standardised test statistic Z; is calculated from the first k& groups
of observations and Hj is rejected if Zy & (ax,by), where a; and by denote the critical
values for the kth analysis. If the test continues to the Kth analysis and Zx € (ag, bg), it
terminates and Hj is accepted. The critical values are chosen to achieve the required type I
error probability and the power condition determines the group size.

3.2 Designing a group sequential test

Suppose that a group sequential test with a maximum of K analyses yields the sequence
of test statistics {Z1,..., Zx}. These statistics are said to have the canonical joint dis-
tribution with information levels {Z;,...,Zx} for the parameter 6 if (i) (Z1,...,Zk) is
multivariate normal, (ii) F(Zy) = 0v/Zy, k =1,2,..., K, and (iil) cov(Zy,, Zi,) = /Ly /Lrs,
1 <k < ky < K. The fact that this implies that {Z,..., Zx} is a Markov sequence
simplifies the calculations. Let A = I, — Zy 1 for k= 2,3,..., K. Then Z; ~ N(0vZy, 1),
and, for each k =2,3,..., K,

Zk\/I»k; — Zi—a\/ Ti—1 ~ N(OA, Ay)

independently of 71, ..., Z,_1.

A key quantity to calculate for a group sequential test is the probability of crossing a specific
stopping boundary at a particular analysis. For each k =1,2,..., K, let

Yp(ar, by, ... ak, by 0) = Pylay < Zy < by, ... a5-1 < Zj—1 < b1, Zi > by)
and
Eplar, br, .. ap, by; 0) = Polay < Zy < by, ..., a1 < Zpq < by, Zi, < ag).

Now, Z; has density
fi(z2150) = ¢(21 — 0\/Th).

Further, the conditional density of Z; given Z; = 21,..., Z;_1 = z;,_1 depends only on z;,_;

and is
VI s (Zk:\/Ik: — Zg—1VZLr—1 — 9Ak>
VAL VAL ’

Tr(Zeo1, 265 6) =



Hence, for each £k =2,3,... K,

bl bk71 o
wk(al,bl,...,ak,bk;e) = / / /b fl(zl;O)fg(zl,zg;O)...fk(zk,l,zk;G)dzk...dzl

1
b1 br_1

= / / f1(21;‘9)f2(21,22;6)~~~fk—1(Zk—2,Zk—1;3)
al ap—1

Xek_1(zk—1,0x; 0)dzgp_1 . . . dzy,

where
N 2oVt + 00, — b/
er—1(2k—1,0x;0) = ® :
VA
A similar expression can be obtained for & (ay, by, ..., ax, bg; 6).

Although the above multiple integral appears difficult, it can be rewritten to simplify the
computation. To see this, let gx(zx;0), & = 1,2,..., K, denote the sub-densities of
Zy, ..., Lk, their integrals being less than unity for £ > 1 due to early stopping at stages
1,2,...,k—1. In other words,

91(2150) = f1(21:0)
and

br—1

gk(Zk;e) :/ gkfl(zkfﬁe)fk(zkflaZk§9)d2’k71

ap—1

for k =2,3,..., K. It then follows that we can write

¢k(a17b17"'7ak7bk;0) - / gk(zlme)dzk

b

bk—l [e.e]
= / /b Gr—1(26—1;0) fi(zh—1, 25; 0)dzpd 2z
ap—1 k

br_1
= / Gr—1(2k—1;0)ex—1(zk—1, bi; 0)dzi_1.

k—1
Thus, the computation only requires a succession of univariate integrations.
The values of ¥y (a1, b1, ..., ax, bg; 0) and &x(ay, by, ..., a, by; 0) for k =1,2,..., K determine
the distribution of the stopping time and associated decision for a group sequential test.

From these, we can obtain the test’s error probabilities for any 6. For example, the test’s
type I error probability is

K
szo(Reject HO) = Z{@Z)k(al, bl, e, g, bk; 0) + fk(al, bl, e, Qg bk; 0)}
k=1

Similarly, the test’s power when 6 = § is

K
Py—s(Reject Hy) = Z{wk(abbla---;akabk?&)+€k(@1>bl>---a@kabk§6)}
k=1

12

K
> Ular, by, ..., ag, by; )
k=1
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if 0 > 0 is large. The approximate power when § = —J has the same form, but with
replaced with &, and 0 with —¢. For specified values of K and the type I error probability
«, a numerical search can be used to find the a; and b,,.

Recall that a fixed-sample test of Hy : 8 = 0 against H; : § # 0 with type I error probability
a and power 1 — 3 at 8 = 0 has information

_f{o'1l-a/2)+ 21— P)}?
72 - 62 :
Then a group sequential test requires a larger maximum sample size and we set a maximum
information level, Z,,,, = RZ;>, where R > 1 and depends on K, a, # and the type of
group sequential boundary being used. With equally-spaced information levels, we have

k
I, = ?Imax, k=1,2,...,K.
By finding the value Z,,,, such that the test’s power is 1 — (3 for this sequence of information

levels, we can obtain R.

Iy

The above calculations can be used to design group sequential tests with specific properties.
For example, the Wang and Tsiatis family of two-sided tests are indexed by a parameter
A, which gives boundaries of different shapes. Members of this family include the Pocock
test with constant critical values and the O’Brien and Fleming test with converging critical
values. The test with parameter A has boundaries of the form

B e A
ap = —C K an r — C % .

Taking A = 1/2 gives Pocock’s test and A = 0 gives the O’Brien and Fleming test.

3.3 Inference following a group sequential test
The group sequential test stops at stage
T = min{first k& > 1 such that Z & (a,bx), K}.

Now, the sequence of test statistics {Z1,...,Zk} has the same joint distribution as the
sequence {(Yy + ...+ Y3)/VZr;k = 1,2,..., K}, where the Y, are independent such that
Yy ~ N(A0, Ag). The structure of the joint density of (Z1, ..., Zk) shows that (T, Zr) is a
pair of sufficient statistics for # and that the maximum likelihood estimator of 6 is given
by 0 = Zr/+/Ir. Although the form of the maximum likelihood estimator is the same as for
a fixed-sample test, its sampling distribution is more complicated.

The sampling density of 6 at 6 = y is given by
K
> 96UV T OV ey Tigan
k=1
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where the contributions from the K sub-densities yield a multi-modal density with a peak
for each value of T' € {1,2,..., K'}. This means that the density is completely different to
a normal with mean ¢ and variance Z;', which it would be for a fixed-sample test. As a
result, 0 is now a biased estimator of 6. More specifically, we can write

Eg(é) = f: {/ak gk(zkﬁ)idzk + /OO gk(Zk; Q)Z—k} Cle
k=1 7> V(Z; br VKZ;

An expression can also be obtained for the variance of 0.

As before, the above integrals can be rewritten to simplify the computation. For example,
the first integral can be written as

/“:O ( )‘/k /bkl/ak ( ) I ( )—L -
2 0)—==dz, = Gr—1(2k-1;0) fr(zx_1, 2x; 0 dzpdz
Ik (Zk T k - k—1(Zk—1 k(Zk—1, 2k T, kAZk—1

br_1
= / Gr—1(2k—1; 0)ri—1 (21, ak; 0)dzg_1,
a

where
VA ak\/I_k — Zp—1V g1 — 04
1z, a3 0) = —
Te—1(2—1, ax; 0) 7, o) A
+(Zk—1\/Ik—1 + QAk)cb <%\/I_k — Zp—1VZLk—1 — 9Ak>
Iy VA, '

The second integral can be computed in a similar way.

Upon termination of the group sequential test, rather than just concluding that we accept or
reject Hy, we can report the p-value of the observed data for testing Hy. Now, the sample
space € defined by the group sequential design is the set of all pairs (k, z), where z & (ay, by),
so that the test can terminate with (7, Z7) = (k, z). Let the observed value of (T, Zr) be
denoted by (k*,z*). Then the p-value is

Py_o{Obtain (k, z) as extreme or more extreme than (k*, z*)}.

In order to calculate this, we need to specify the ordering of Q. We write (£, 2") = (k, z) to
denote that (£, 2') is above (k, z) in a given ordering,.

There are a number of orderings available. In stage-wise ordering, (', z') > (k, z) if any of
the following conditions hold: (i) ¥ =k and 2’ > z; (ii) ¥’ < k and 2’ > by; (iii) &’ > k and

z < ai. As an example, suppose that the test terminates after crossing the upper boundary.
Then the one-sided upper p-value is

k*—1
P@:O{(T, ZT) t (k*az*)} = Z ¢j(a17b17 .. '7aj7bj;0)+¢k*(alab17 .. '7ak*—17bk*—17ak*72*;0)'
j=1

12



One-sided lower p-values are found in the same manner and the two-sided p-value is twice
the smaller of these two quantities.

Equal-tailed 100(1 — «)% confidence intervals for @ can be obtained by inverting a family of
hypothesis tests with two-sided type I error probability . For any given value 6y, we can

find pairs (k,(6o), 2.(00)) and (ke(0o), ze(6p)) such that

Py—,{(T. Zr) = (ku(6o), 2u(00))} =

N[

and
Pocoo{(T, Zr) = (ke(0o), 20(00))} =

It follows that the acceptance region

A(0o) = {(k, 2) = (ke(bo), 2¢(00)) < (K, 2) < (Kku(6h), 2u(60))}

defines a two-sided hypothesis test of 8 = 6y with type I error probability «. This implies
that the set {0 : (T, Z7) € A(0)} obtained by inverting this family of tests is a 100(1 — @)%
equal-tailed confidence set for 0. If Py{(T, Z7) = (k,z)} is an increasing function of € for
each (k, z) € Q, then this set is an interval.

e

3.4 Examples of group sequential designs

Two examples are now given to show how group sequential designs may be constructed in
practice.

Example. Let X1, X4o,... be independent normal random variables with mean p4 and
unit variance and let X1, Xpo, ... be independent normal random variables with mean ug
and unit variance. For k£ = 1,2,..., K, let ny, and npg, denote the cumulative numbers of

observations on treatments A and B, respectively, at the time of the kth analysis. Then the
parameter of interest is § = 4 — pup and its natural estimator is

o o 1 NAk 1 NBLk
XY -XW =S Xu——> Xp ~NO, I,
Nak ;=1 NBk ;=1

where

1 1\ !
R
N Ak npk

is the information for 6. So the standardised statistic at analysis k for testing Hy : 6 = 0 is
(k) =k
2~ X0 -xP)
fork=1,2,... K.

It is easily verified that the above statistics have the canonical joint distribution with in-
formation levels {Z;,...,Zx} for 6. Firstly, (Z1,..., Z) is multivariate normal, since each
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Z is a linear combination of the independent normal random variables X ,; and Xp; for
i=1,2,.... Secondly, we know that Z, ~ N(0v/Zy, 1). Lastly, for ky < ko,

—(k —(k —(k —(k
o xi)  fxxie) ]
1 1 1 1
= ( NAk, T+ an1> \/ Ziey \/ L,

N Ak, NBky NBEk; M Ak,

= T.Tu\T, = VT /T,

cov(Zy,, Zy,) = cov

as required.

Now suppose that we wish to test Hy : 8 = 0 against H; : § # 0 with type I error probability

a = 0.05 and power 1 — (3 = 0.90 when # = +0.5. We will use a Pocock test with a maximum

of K = 5 analyses. The information for # required by a fixed-sample test with these error

probabilities is

{®710.975) + ®71(0.9)}2
0.5%

and the maximum information level for the group sequential test can be shown to be

Tjo= — 42.032

Rp(5,0.05,0.1) x Z;5 = 1.207 x 42.032 = 50.7.

Assuming that na = npgy for each k = 1,2,...,5, we see that Zs = n;/2, where nj denotes
the common value of n45 and ngs. Thus, solving Zs = 50.7 yields n5; = 101.4, which we
round to 110 to obtain a multiple of 10. This means that five groups of 11 observations
per treatment should be planned. It may also be shown that Hj is rejected at analysis k if
| Zk| > 2413, k=1,2,...,5.

Example. Let X 41, X49,... be independent Bernoulli random variables with parameter p

and let Xpgq, Xpo,... be independent Bernoulli random variables with parameter pg. Then

the parameter of interest is = p4 —pp and its natural estimator is ﬁf) — ﬁg) = Yf) —7551;).

Let D= (pa + pp)/2. Then, under Hy, ps = pg = P, and the information for 6 is
1 1 -1
I = {To(l - D) (— + —)} :
NaAk  NMBk

. St X + 2000 X
Pk = )
NAk + 1Bk
we obtain the estimated information level at analysis k£ given by

I = {ﬁk(l — Dr) (i + i)}l

N Ak N Bk

Estimating p by

for k=1,2,..., K. So the standardised statistics for testing H, are
OB NE
Zk:{P(A)—pss)} Iy
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for k =1,2,..., K. If 6 is small, these statistics can be shown to follow approximately the
canonical joint distribution with information levels {Z;,...,Zx} for 6.

Now suppose that we wish to test Hy : 6 = 0 against H; : 6 # 0 with type I error probability
a = 0.05 and power 1 — 3 = 0.8 when # = +£0.2. We will use an O’Brien and Fleming test
with a maximum of K = 10 analyses. The information for 6 required by a fixed-sample test
with these error probabilities is Z;, = 196.224 and the maximum information level for the
group sequential test can be shown to be

Rp(10,0.05,0.2) X Zyo = 1.040 x 196.224 = 204.1.

Taking p = 0.5 and assuming that ny, = npgg for £ = 1,2,...,10, we see that Z;y = 2nqo.
Thus, solving Z;9 = 204.1 yields n;g = 102.1, which we round to 120 to obtain a multiple
of 20. This means that 10 groups of six observations per treatment should be planned. It
may also be shown that Hy is rejected at analysis k if |Z;| > 2.087,/10/k = 6.600/v/k,
k=1,2,...,10.

4 Adaptive treatment allocation rules

4.1 Definitions

So far, we have been concerned with how to construct sequential tests of some null hypothesis
H, against an alternative H; which have certain error probabilities. We now turn our
attention to the problem of how to assign patients to treatments in the context of a fixed-
sample clinical trial. The incorporation of stopping rules will be addressed later. Suppose
initially that there are ¢t > 2 treatments.

If complete randomisation is used, the next patient is equally likely to be assigned to
any of the t treatments, so that the treatment allocation probabilities are all 1/t. So this
randomisation rule does not take into account the previous treatment assignments and re-
sponses, or any other information. Consequently, complete randomisation is a non-adaptive
treatment allocation rule.

Since complete randomisation can lead to treatment group imbalances, a restricted ran-
domisation rule can be used to ensure that each treatment group has roughly the same
number of patients. For one of the simplest such rules, the treatment which most reduces
the imbalance is assigned with probability p, 0.5 < p < 1, and the other ¢ — 1 treatments are
assigned with probability (1 —p)/(t — 1).

As the trial progresses, some treatments may look more promising than others and it would
be desirable to allocate a higher proportion of patients to these treatments. In such cases,
a response-adaptive randomisation rule is used. The simplest such rules may be repre-
sented as urn models, in which balls of different types are added to or removed from the urn
according to the previous assignments and responses.
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4.2 Properties of adaptive treatment allocation

Let N;, denote the number of patients on treatment j after n assignments for j = 1,2. First
suppose that complete randomisation is used. Then it is easy to see that Ny,/n — 1/2

almost surely and
Ny, 1 1
_ - N(0. =
ﬁ( n 2) - ( ’4)

in distribution as n — oo. If restricted randomisation is used instead, then we still have
Nin/n — 1/2, but, since the aim is now to balance the treatment groups, Ny, /n will be less
variable. This means that any tests will have greater power.

As an example of a restricted randomisation rule, suppose that the responses on the two
treatments are independent with variance 2. Then, after n assignments, the covariance
matrix of the estimated means is o?diag(1/ny,,1/ns,). Since the parameter of interest is
the difference between the means, the D 4-optimum design minimises 0(1/n,+1/ns,). This
design assigns the next patient to treatment 1 if n3, > n?, and to treatment 2 if n?, > n3, .
From this deterministic design, we can construct a biased coin design which assigns the
nth patient to treatment 1 with probability

2

- N2,n71

= N2 2 -
Nip1+ Nipq

(53 -5(05)

Pn

It can be shown that

2 " 20
in distribution as n — co. This means that Ny, /n is now asymptotically 80% less variable.

The above biased coin design is a special case of a generalised biased coin design which
assigns the nth patient to treatment 1 with probability
— N;,n—l

Niy,n—l + N;,n—l ’

Pn

where v > 0. It can be shown that

(e 5) =30 g

in distribution as n — oo. When v = 0, we have complete randomisation. The recommended
design is 7 = 5, for which the asymptotic variance is 1/44.

Now suppose that response-adaptive randomisation is used. In order to assess how good an
allocation rule is, we need to study the behaviour of Ny, /n for large n. Although response-
adaptive randomisation will assign a higher proportion of patients to the better treatment,
it induces correlation among treatment assignments, so that Ny, /n may be more variable.
This means that any tests may have lower power. If the distribution of the responses on
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treatment j depends on the parameter 6; and p;(f;,602) denotes the target allocation for
treatment j for j = 1,2, then we can use the variance of Ny, /n to compare rules with the
same target allocation.

For a given target allocation, a Cramér-Rao lower bound on the asymptotic variance of the
allocation proportions can be obtained. Suppose that

Nip
7; —>P1(91,92)

almost surely and
Nin
Vi SE = pu(1,60) = N0 Vi(61,62))

in distribution as n — oo. Then it can be shown that

Op1(61,02) Op2(61,0
{ ,01861l 2) }2 N { p28621 2}2

p1(01,02)11(01)  pa(01,02)I2(6)

where I;(0;) denotes the Fisher information for a single observation on treatment j for
j =1,2. Any rule that attains this lower bound is called asymptotically best.

‘/1(61)92) Z 3(91762) =

There are essentially two approaches to response-adaptive randomisation, one based on a
class of urn models and the other on a class of adaptive biased coin designs. As an example
of the latter, suppose that we wish to minimise a weighted average of the numbers of patients
on the two treatments subject to attaining a fixed power, where the weights are functions of
the 6; for j = 1,2. In the binary case, the weights would be the failure probabilities. Then
the optimal treatment allocation probabilities can be derived and the 6; replaced by their
current maximum likelihood estimates. Thus, we obtain a sequential maximum likelihood
estimation rule.

4.3 Examples of adaptive treatment allocation

There are a wide variety of adaptive treatment allocation rules available. Four of the more
popular ones are described below.

Example. Efron’s biased coin design.

Let the treatment imbalance after n assignments be D,, = Ny, — Ny, and let 0.5 <p < 1
be a constant. Then the probability that the nth patient is assigned to treatment 1 is 1/2 if
D, 1=0,pif D, 1 <0and 1—pif D,_; > 0. It can be shown that

()

in probability as n — oo. This means that var(Ny,/n) = o(1/n), which shows why this
design is so effective in terms of balancing the numbers of patients on the two treatments.
In fact, Efron’s biased coin design gives a uniformly more powerful Z or ¢ test than complete
randomisation.
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Example. Adjustable biased coin design.

Let F(.) be a function F' : Z — [0,1], where Z is the set of integers, such that F' is non-
increasing and F'(—z) = 1 — F(x). Then the probability that the nth patient is assigned
to treatment 1 is F'(D,_1). Thus, with this design, the tendency towards balance becomes
stronger the more we move away from it. It can be shown that

almost surely as n — oco. When F(z) = p for x < 0, we have Efron’s biased coin design.
The adjustable biased coin design yields a uniformly more powerful Z or ¢ test than Efron’s
biased coin design.

Example. Drop-the-loser rule.

Consider an urn model in which there are initially a balls for both treatment types and b
immigration balls. The immigration balls are present in order to ensure that the urn does
not empty. When a treatment ball is drawn, it is only replaced if the response is a success.
If an immigration ball is drawn, it is replaced along with one ball of each treatment type.
Assume that the probability of success for treatment j is p; for 7 = 1,2. Then it can be
shown that

Ny, a2
H
n G+ q2
in probability and
N- +
\/ﬁ< @ ) B N{O, 0192(py 122)}
n G+ q2 (1 + g2)

in distribution as n — oo, where ¢; = 1 — p,. Thus, the target allocation for treatment 1 is
p1(p1,p2) = @2/ (@1 + q2). Since I;(p;) = 1/(p;q;) for j = 1,2, it is easily verified that

_ q1q2(p1 + p2)
B(ppr) - W

Consequently, the drop-the-loser rule is an asymptotically best procedure for the above target
allocation.

Example. Sequential maximum likelihood estimation rule.
Suppose that responses are binary and interest lies in minimising the number of treatment
failures for a fixed power. Then, if we use the usual large-sample Z test, this means that we
need to find the allocation p = p;(p1, p2) that minimises giny + gang subject to

iy P22 C,

—+—
ny U

where C'is a constant. Letting ny = pn and ny = (1 — p)n, we see that

- P1g1 4 D2G2
pC  (1-pC
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Substituting for n in the formula for the number of treatment failures and differentiating
with respect to p, we obtain the equation

qip292  P141G2

— 0.
(1—-p)? p?

Solving yields

___ vk
VD1t /D2
Since this is a function of the unknown success probabilities, after n — 1 assignments, we

replace p; and p, by their maximum likelihood estimates based on the first n — 1 responses.
It can be shown that, for this sequential maximum likelihood estimation rule,

Niw P
n Jhit b

P

almost surely as n — oo and

3 3
pi (P2 + q2/2) +p35 (p1 + @1/2)

(/P1 + /D2)*\/P1P2

‘/1(]717]92) -

It is also easily verified that

_ 1 P21 | P142
B = S v (o)

Consequently, this is not an asymptotically best procedure for the above target allocation.

4.4 Group-sequential response-adaptive tests

Up to now, we have considered adaptive treatment allocation in the context of a fixed trial
size. Since it is often more efficient to conduct a trial group sequentially, it is natural to
investigate the consequences of incorporating adaptive treatment allocation. The formula-
tion of such a group sequential test requires the determination of the joint distribution of
sequentially computed test statistics. Because of the dependencies induced by adaptive
treatment allocation, this is difficult in general.

Let X 41, X2, ... be independent normal random variables with mean 4 and known variance
02 and let Xp1, Xpo, ... be independent normal random variables with mean g and known
variance 0%. Then response-adaptive randomisation can be incorporated into a general
family of group sequential tests without affecting the error probabilities if the group sizes
do not depend on the estimated mean responses at the previous stage in any other way but
through their difference.

Let & = pu4 — pp and suppose that we wish to test Hy : § = 0. Then the standardised
statistic at analysis k for testing Hy is

~(k ~(k
N
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where

is the information level. Let my, and mpg; denote the group sizes on treatments A and
B, respectively, at stage k. Then these are allowed to depend on the accumulated data
through the current estimate of 6 given by ok=1) = Yff_l) - Y%‘” and chosen to achieve
the specified value of Z. Under such an adaptive sampling scheme, the above statistics have

the canonical joint distribution with information levels {Z,...,Zx} for 6.

To see how such a group-sequential response-adaptive test is constructed in practice,
suppose that we wish to minimise u(€)na, + v(0)np,, where u(f) and v(f) are specified
weights, and 7 denotes the stage at which the test terminates. Then the allocation ratio
which minimises this weighted average is

n
AT O—_Aw(e)’
npr oB

where

Since this is a function of the unknown 6, after k£ — 1 stages, we replace 6 with its maximum
likelihood estimate #%*~1). This means that we choose mx and mpg so that

NAk UAw(é(k—l))

npBk 0B
for k=1,2,..., K. If w(d) = 1, then sampling is non-adaptive and only gives equal group
sizes if 04 = 0.

At the first stage, we take R
ma = oa{oa + opw(@O) T,
and R X
mp, = og{oa + ow(@ )}, Jw(H D),

where 0© is a preliminary estimate of  and the group sizes are rounded to integers. If no
such estimate is available, we can use w(6(®) = 1. At stage 2 < k < K, assuming that the
test has not yet terminated, we take

MaALr = O'A{O'A + an(é(k_l))}Ik. — NA k-1
and R R
mar = O'B{O'A -+ an(H(k_l))}Ik/w(H(k_l)) — nB,k—l'

Again, these group sizes are rounded to integers. If either of their values is negative, that
group size is set to zero and sufficient observations are taken on the other treatment to achieve
the specified information level. The calculation of the information levels and boundaries for
a group-sequential response-adaptive test is the same as for its non-adaptive analogue.
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