LTCC Geometry and Physics: Exercise Sheet 1

1. On S^{n} define the coordinate neighbourhoods

$$
\begin{aligned}
U_{i+} & =\left\{\left(x_{0}, x_{1}, \ldots, x_{n}\right) \in S^{n}: x_{i}>0\right\} \\
U_{i-} & =\left\{\left(x_{0}, x_{1}, \ldots, x_{n}\right) \in S^{n}: x_{i}<0\right\}
\end{aligned}
$$

Define the coordinate maps $\phi_{i \pm} \rightarrow \mathbb{R}^{n}$ via

$$
\phi_{i \pm}=\left(x_{0}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right) .
$$

For $n=2$ calculate $\phi_{y-} \circ \phi_{x+}^{-1}$.
2. If f is a function on an open set $U \subset \mathbb{R}^{n}$, show that $d(d f)=0$.
3. Let $F: M=\mathbb{R}^{2} \rightarrow N=\mathbb{R}^{2}$ be defined by $F\left(x_{1}, x_{2}\right)=\left(x_{2}-x_{1}^{3}, x_{1}\right)$ (or, if you prefer, by saying $y_{1}=x_{2}-x_{1}^{3}$, etc.). If $\omega=y_{1} d y_{1} \wedge d y_{2}$, compute $F^{*} \omega$ (which should be a 2-form on M expressed using $d x_{1} \wedge d x_{2}$ - differentiating something may help).
4. Recall the pullback formula for metrics:

$$
g_{\mu \nu}^{M}(x)=g_{\alpha \beta}^{N}(F(x)) \frac{\partial F^{\alpha}}{\partial x^{\mu}} \frac{\partial F^{\beta}}{\partial x^{\nu}} .
$$

Let $F: M=\mathbb{R}^{2} \rightarrow N=\mathbb{R}^{2}$ be defined by $F(r, \phi)=(r \cos \phi, r \sin \phi)$. Compute the induced metric on M. Also calculate the induced map of the sphere $S^{2} \subset \mathbb{R}^{3}$ for both polar coordinates and stereographic coordinates.
5. Recall that

$$
\frac{\partial}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right) \quad \text { and } \quad \frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)
$$

is a basis of $\left(T_{p} M\right)^{\mathbb{C}}$ (I omit indices z^{μ} on the variables). Show that $d z=d x+i d y$ and $d \bar{z}=d x-i d y$ make a dual basis.
6. Show how the Hopf bundle can be derived by considering $z_{1}, z_{2} \in \mathbb{C}$, with $\left|z_{1}\right|^{2}+$ $\left|z_{2}\right|^{2}=1$, as the total space, and $\left[z_{1}, z_{2}\right]$ as homogeneous coordinates of the base space $\mathbb{C} P^{1} \cong S^{2}$. Here homogeneous coordinates are defined via the equivalence relation

$$
\left[z_{1}, z_{2}\right]=\left[\lambda z_{1}, \lambda z_{2}\right] \quad \text { for } \quad \lambda \in \mathbb{C} \backslash\{0\} .
$$

Find two suitable coordinate charts for S^{2} and write down the corresponding local trivialisations. Give the projections. What are the transition functions?

Dr Steffen Krusch, 2019.

LTCC Geometry and Physics: Exercise Sheet 2

(Note: Unless otherwise stated, the Einstein summation convention is assumed throughout.)

1. Given a Riemannian manifold M with metric g, consider the action $S=\int_{t_{0}}^{t_{1}} L d t$ with the purely kinetic Lagrangian

$$
\begin{equation*}
L=\frac{1}{2} g(\dot{\mathbf{x}}, \dot{\mathbf{x}})=\frac{1}{2} g_{j k} \dot{x}^{j} \dot{x}^{k} \tag{1}
\end{equation*}
$$

where $g=\left(g_{j k}(\mathbf{x})\right)$ is the metric given in terms of local coordinates x^{j} for a point $\mathbf{x} \in M$ with tangent vector $\dot{\mathbf{x}}$; the dot denotes differentiation w.r.t. the parameter t along a curve. (i) Applying the principle of least action, $\delta S=0$, calculate the Euler-Lagrange equations for this Lagrangian, and show that they can be written in the form

$$
\begin{equation*}
\ddot{x}^{j}+\Gamma_{k l}^{j} \dot{x}^{k} \dot{x}^{l}=0 \tag{2}
\end{equation*}
$$

where $\Gamma_{k l}^{j}$ (the Christoffel symbols) should be found in terms of g and its derivatives.
(ii) Perform a Legendre transformation and hence reformulate the geodesic equations as an Hamiltonian system on $T^{*} M$.
2. Write down the Euclidean metric on \mathbb{R}^{3} in Cartesian coordinates, and the invariant volume form. Use this to calculate the invariant 2-form on the sphere S^{2}, and show that this is a symplectic form.
3.(i) For a pair of vector fields X, Y on a smooth manifold M of dimension d, define their commutator $[X, Y]$ (or Lie bracket) by the commutator of the corresponding differential operators. Show that with this definition the vector fields form a Lie algebra.
(ii) Now suppose that $d=2 n$ and (M, ω) is a symplectic manifold. For Hamiltonian vector fields X_{G}, X_{H} corresponding to smooth functions G, H, show that the following formula holds:

$$
\left[X_{G}, X_{H}\right]=-X_{\{G, H\}}
$$

where $\{$,$\} denotes the Poisson bracket. (Hint: Use Darboux's theorem.)$
(iii) Prove that the Hamiltonian vector fields form a Lie subalgebra of the vector fields.
4.(i) Check that the formula

$$
\left\{\pi_{j}, \pi_{k}\right\}=-\epsilon_{j k l} \pi_{l}
$$

defines a Poisson bracket on \mathbb{R}^{3} with coordinates $\left(\pi_{1}, \pi_{2}, \pi_{3}\right)$, and show that (on linear functions) this is isomorphic to the Lie algebra $\mathfrak{s o}(3)$ of the rotation group in three dimensions. (ii) Write down the Poisson tensor for the above bracket and calculate its rank. Show that $C=\pi_{1}^{2}+\pi_{2}^{2}+\pi_{3}^{2}$ is a Casimir for this bracket, and describe the symplectic leaves.
(iii) Consider the Hamiltonian system on \mathbb{R}^{3} defined by the Hamiltonian

$$
H=\frac{\pi_{1}^{2}}{2 I_{1}}+\frac{\pi_{2}^{2}}{2 I_{2}}+\frac{\pi_{3}^{2}}{2 I_{3}}
$$

Write down the equations of motion, and show that they are equivalent to the Euler top (free motion of a rigid body about a fixed point) in terms of the angular momentum $\boldsymbol{\pi}$ and angular velocity $\boldsymbol{\omega}$, where $\boldsymbol{\pi}=I \boldsymbol{\omega}$ with the inertia tensor $I=\operatorname{diag}\left(I_{1}, I_{2}, I_{3}\right)$. Can you describe the orbits?

Professor Andy Hone, January 2013.

