LTCC Geometry and Physics: Exercise Sheet 3

- 1. Let M, J be an almost complex manifold and g be a hermitian metric. Let X be a vector of length 1: g(X, X) = 1. Show that X, JX is an orthonormal pair—that is, g(JX, JX) = 1 and g(X, JX) = 0.
- 2. If M is a complex manifold, define an almost complex structure on a patch with coordinates $z^j = x^j + iy^j$ by $J(\frac{\partial}{\partial x^j}) = \frac{\partial}{\partial y^j}$ and $J(\frac{\partial}{\partial y^j}) = -\frac{\partial}{\partial x^j}$. Show that this rule is unchanged by holomorphic change of coordinates so that it defines an almost complex structure on the whole of M. (Use the Cauchy–Riemann equations, as usual.)
- 3. Let X and Y be the stereographic coordinates via projection from the south pole. Invert this projection to show that points on $S^2 \subset \mathbb{R}^3$ are given by

$$\mathbf{n} = \frac{1}{1 + X^2 + Y^2} \begin{pmatrix} 2X \\ 2Y \\ 1 - X^2 - Y^2 \end{pmatrix}.$$

Let

$$\mathbf{n}_X = \frac{\partial \mathbf{n}}{\partial X}$$
 and $\mathbf{n}_Y = \frac{\partial \mathbf{n}}{\partial Y}$

Show that \mathbf{n}_X and \mathbf{n}_Y are orthogonal to each other and to \mathbf{n} and hence span the tangent space T_pM for fixed p. Show that $(\mathbf{n} \times .)$ gives an almost complex structure on T_pM .

4. (i) Calculate the Euler-Lagrange equation for the Lagrangian density

$$\mathcal{L} = \frac{1}{2}(\varphi_t^2 - \varphi_x^2) + 4(\cos\varphi - 1),$$

and write down the kinetic and potential energy.

(ii) Calculate the Euler-Lagrange equation for

$$\mathcal{L} = -\frac{1}{2}\varphi_t\varphi_x + \frac{1}{2}\varphi_{xx}^2 - \varphi_x^3.$$

Show that this can be written as a single equation for π , the conjugate momentum variable. Finally, show that this is in Hamiltonian form

$$\pi_t = -D_x \, \frac{\delta H}{\delta \pi},$$

where $-D_x$ is the Hamiltonian operator and the Hamiltonian is

$$H = \int (\pi \varphi_t - \mathcal{L}) \, dx.$$

5. Let

$$\exp(i\varphi/2) = \tau_+/\tau_-$$

for some functions τ_{\pm} (Hirota's tau-functions). Verify that if τ_{\pm} satisfy the pair of equations

$$\tau_{\pm}\tau_{\pm,tt} - \tau_{\pm,t}^2 - \tau_{\pm}\tau_{\pm,xx} + \tau_{\pm,x}^2 = \tau_{\pm}^2 - \tau_{\mp}^2$$

then φ is a solution of the sine-Gordon equation

$$\varphi_{tt} - \varphi_{xx} = 4\sin\varphi.$$

Verify that the equations for τ_{\pm} (the Hirota bilinear equations) have a solution given by

$$\tau_{\pm} = 1 \pm \exp(ax + bt + c),$$

for constants a, b, c satisfying a suitable constraint. Show that if $\tau_{-} = \overline{\tau}_{+}$ then φ is real, and explain how to choose the constants a, b, c to ensure that this is the case (for real x, t). Sketch the corresponding solution of the sine-Gordon equation.

6. Given the matrices

$$U = \begin{pmatrix} i\varphi_{x_+}/2 & \lambda \\ \lambda & -i\varphi_{x_+}/2 \end{pmatrix}, \quad V = \begin{pmatrix} 0 & \lambda^{-1}e^{i\varphi} \\ \lambda^{-1}e^{-i\varphi} & 0 \end{pmatrix},$$

let $\partial_{x_+} - U$, $\partial_{x_-} - V$ define a connection on a vector bundle of rank 2 over \mathbb{R}^2 , with (x_+, x_-) being coordinates on the base space. What are the fibres of the vector bundle? Calculate the condition on $\varphi(x_+, x_-)$ for the connection to be flat.

Dr Steffen Krusch & Prof. Andy Hone, February 2013.