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■ This course is going to look at various aspects of REML estimation in the
linear mixed model - sometimes also called multi-level models, or hierarchical
models

■ The material will be a mixture of theory and application, with some focus on
various types of data: what models to use, how to use them, limitations . . .

■ My background: statistics in agriculture & plant sciences - methods widely
applicable to medical statistics and data from the social sciences

■ Acknowledgements: unpublished book by Cullis, Smith & Verbyla.

■ Topics covered over 5 weeks:

◆ The linear model → linear mixed models & REML estimation

◆ Simple models and analysis of longitudinal data

◆ Spatial models & kriging

◆ Penalized spline models

◆ Analysis of multi-environment trials - a complex example

■ Software: GenStat, http://www.vsni.co.uk/software/genstat-teaching/
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A general form for the linear model is

y = Xτ + e (1)

where

■ y = (y1 . . . yn)′ is a vector of n data values

■ τ is a vector of p unknown fixed effects

■ X is an n × p design matrix with value xij in row i, column j

■ e = (e1 . . . en)′ is a vector of n random errors (deviations) and it is assumed
that

e ∼ N(0, σ2In)

so the errors are independent, identically distributed normal random
variables.

The aim of a statistical analysis is to estimate τ together with some measure of
uncertainty on the estimate in order to make predictions, again with some measure
of uncertainty.
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Explanatory variables can be defined as

■ quantitative variables (sometimes called variates)

◆ the variable has numeric values to be related to the response

◆ eg. height, weight

◆ the design matrix has a single column (p = 1) containing the values of
the variable

◆ this defines a linear relationship between the variable and the response
(often called linear regression)

■ qualitative variables (often called factors or dummy variables)

◆ define a set of g groups (g > 1, p = g), such that each unit falls into
one group

◆ eg. variety, colour, soil type

◆ the design matrix has one column for each group, and column j takes
value 1 if the ith unit (i = 1 . . . n) is in group j and zero otherwise

◆ the sum of the columns is then 1n, a vector with value 1 in all units

◆ this defines a model where each group can have a different mean value
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Consider the simple case of a single explanatory variable.

The design matrix usually also contains a column to represent an overall constant,
i.e. 1n with value 1 for every unit.

In a model with a single quantitative variable (variate), , then p = 2 and the
constant term represents the intercept, i.e. the response value when explanatory
variable x=0.

In a model with a single qualitative variable (factor), then p = g + 1 and more care
is required:

■ the design matrix X is no longer of full rank as, for i = 1 . . . n,

p
∑

j=2

xij = 1 = xi1

i.e. there are g + 1 parameters to describe g group means.

■ to make parameters identifiable, some constraint is required

■ interpretation of the constant depends on the constraint (return to this later)
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Consider an experiment to investigate plant growth (height) in response to three
doses of liquid feed (Low=20ml, Medium=40ml or High=60ml).

The explanatory variable can be considered as:

A) qualitative variable (factor): to look at mean response at each feed rate

B) quantitative variable (variate): to look at linear response to dose
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For data ordered by replicates within groups:

A) qualitative variable B) quantitative variable
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■ Model with qualititative explanatory variable (factor):

◆ more parameters - one for each group

◆ no interpolation

◆ more general model - fewer assumptions

■ Model with quantitative explanatory variable (variate):

◆ parsimonious (few parameters)

◆ can interpolate to intermediate points of explanatory variable

◆ goodness of fit depends on linearity of response
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The likelihood function for (1) is given by

L(τ , σ2; y) =
n
∏

i=1

f(yi; x
′

[i]τ, σ2)

=
n
∏

i=1

1√
2πσ2

exp

(

− 1

2σ2

(

yi − x′

[i]τ
)2
)

where

■ x′

[i]
is the ith row of X

■ f(y;µ, σ2) is the probability density function for a normal random variable y
with mean µ and variance σ2

The log-likelihood function is then

ℓ(τ, σ2;y) = −n

2
log(2π) − n

2
log(σ2) − 1

2σ2

n
∑

i=1

(

yi − x′

[i]τ
)2

and the maximum likelihood estimates of τ and σ2 (denoted τ̂ml and σ̂2
ml

) are
those values that maximise L or, equivalently, ℓ.
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Note that the ordinary least squares estimator of τ is the value that minimises the
sum of squares of the residuals, i.e. the difference between the data (yi) and its
estimated value (x′

[i]
τ̂ml):

n
∑

i=1

(

yi − x′

[i]τ̂
)2

This clearly yields the same estimate as the maximum likelihood method.

It follows from the Gauss-Markov theorem that this estimator of τ is the BLUE, i.e.
the

■ Best (minimum variance)

■ Linear

■ Unbiased

■ Estimator.
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Maximisation of the log-likelihood function is achieved by differentiating with
respect to each parameter and setting the derivative equal to zero, to give
estimating equations for τ̂ml :

1

σ̂2
ml

n
∑

i=1

x[i]

(

yi − x′

[i]τ̂ml

)

= 0

⇒
n
∑

i=1

x[i]x
′

[i]τ̂ml =
n
∑

i=1

x[i]yi

and for σ̂2
ml

− n

2σ̂2
ml

+
1

2σ̂4
ml

n
∑

i=1

(

yi − x′

[i]τ̂ml

)2
= 0

⇒ σ̂2
ml

=
1

n

n
∑

i=1

(

yi − x′

[i]τ̂ml

)2

using
∂a′x

∂x
= a



Estimation (4)

Introduction

Linear model review

The linear model

The design matrix

Example

Estimation

Estimability

ANOVA

Several terms

Symbolic representation

Designed experiments

REML

12

In matrix form, the log-likelihood function can be written as

ℓ(τ, σ2;y) = −n

2
log(2π) − n

2
log(σ2) − 1

2σ2
(y − Xτ)′ (y − Xτ)

with resulting estimation equations for for τ̂ml :

X′Xτ̂ml = X′y

and for σ̂2
ml

σ̂2
ml

= (y − Xτ̂ml)
′ (y − Xτ̂ml ) /n

It is straightforward to show that these forms are equivalent to those on the
previous slide.
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For X of full column rank:

τ̂ml = (X′X)−1X′y

For X not of full column rank:

τ̂ml = (X′X)−X′y

where A− is a generalized inverse of A such that AA−A = A.

■ The estimator τ̂ml is then not unique and depends on the generalized inverse
used.

■ The fitted values ŷ = Xτ̂ml = X(X′X)−X′y are unique, since
X(X′X)−X′ is invariant to the generalized inverse used (Searle et al 1992,
Appendix M4).
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X may be rank deficient for several reasons:

1. presence of constant with one or more qualititative explanatory variables in
the model

2. collinearity between quantitative explanatory variables

3. structural aliasing - eg. no data present for one (or more) groups for a
qualitative variable

Reasons (2) and (3) (in general) cannot be predicted in advance of forming X.

Reason (1) can be predicted from the structure of the model and explicit
constraints can often be imposed to keep X full rank.

Common constraints used in statistical packages:

■ sum-to-zero constraints

■ corner-point constraints
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Consider the model containing a constant and single qualitative variable with g
groups, each with r replicates, with data ordered by replicates within groups.

y = c1 + (Ig ⊗ 1r)a + e

for a = (a1 . . . ag)′, so τ = (c a1 . . . ag)′

Then X = [1n | Ig ⊗ 1r] is not full rank.

■ Sum-to-zero constraints:
∑g

i=1 ai = 0 so ag = −
∑g−1

i=1 ai .
Hence

X∗ =

[

1r(g−1) Ig−1 ⊗ 1r

1r −Jr,(g−1)

]

is a full-rank version of X which defines the same model, where Ja,b is an
a × b matrix with value 1 everywhere.

In this parameterization, the constant estimates the grand (overall) mean
and the g − 1 effects associated with the groups 1:g-1 estimate deviations
from the overall mean for each group.
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■ Corner-point constraints (zero first level): a1 = 0. Then we can use

X∗∗ =

[

1r 0r,(g−1)

1r(g−1) I(g−1) ⊗ 1r

]

is a different full-rank version of X which still defines the same model.

In this parameterization, the constant estimates the treatment mean for the
first group, and the g − 1 effects associated with groups 2:g estimate
deviations of each group with respect to the first group.

Sum-to-zero constraints are easier to interpret in simple models.

Corner-point constraints are often used in statistical packages because they are easy
to implement in complex models and give sparser design matrices.

In both cases, interpretation of individual parameters becomes difficult in more
complex models.

An alternative to constraints is to work with the full matrix X and deal only with
estimable functions of parameters.
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Searle (1971) defines a linear combination Dτ̂ of parameter estimates
τ̂ = (X′X)−X′y to be estimable if

E(Dτ̂) = Dτ .

This implies that the function Dτ̂ is invariant to the parameterization chosen.

It is straightforward to derive conditions to assess whether a function is estimable:

First, reorder the columns of X (and parameter vector τ) so that X = [X1 X2]
where X2 is a maximal set of linearly independent columns with τ = [τ1 τ2]
ordered conformally. Then

X′X =

[

A11 A′

21
A21 A22

]

with (X′X)− =

[

0 0

0 A−1
22

]

where A22 = X′

2X2 is a square invertible matrix. This generalized inverse of X′X

yields a (non-unique) ML estimate

τ̂0 =

[

0 0

0 A−1
22

]

[

X′

1 X′

2

]

y

=

(

0

A−1
22 X′

2y

)
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Consider

E(Dτ̂0) = [D1 D2]

(

0

A−1
22 X′

2E(y)

)

= [D1 D2]





0

A−1
22 X′

2

[

X1 X2
]

(

τ1

τ2

)





= [D1 D2]

(

0

A−1
22 A21τ1 + τ2

)

= D2A−1
22 A21τ1 + D2τ2.

Since Dτ = D1τ1 + D2τ2, estimability is achieved when

D1 − D2A−1
22 A21 = 0.
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For D = X, we use X1 = X2M (from the definition of the partition) to see that

D1 − D2A−1
22 A21 = X1 − X2(X′

2X2)
−1X′

2X1

= X2M − X2(X
′

2X2)
−1X′

2X2M

= 0.

so the fitted values are estimable, as shown earlier.

For D = I:

D1 − D2A−1
22 A21 =

(

I

0

)

−
(

0

I

)

(X′

2X2)
−1X′

2X2M

=

(

I

−M

)

6= 0.

so the parameter vector is not estimable, as expected.
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Note that σ̂2
ml

is a biased estimate of σ2:

E(σ̂2
ml

) = E
{

(y − Xτ̂ml)
′ (y − Xτ̂ml) /n

}

=
1

n
E
{

y′(In − X(X′X)−X′)y
}

=
1

n
σ2tr(In − X(X′X)−X′) +

1

n
τ ′X′(In − X(X′X)−X′)Xτ

=
n − rX

n
σ2

where rX = rank(X) and using

■ E(y′Ay) = trace(AV ) + µ′Aµ for y with expectation µ and variance
matrix V

■ trace[A(A′A)−A′] = rank(A)

■ see eg. Searle et al (1992), Appendix S5.
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■ Fitted values: ŷ
ml

= Xτ̂ml = X(X′X)−X′y = PXy

■ PX = X(X′X)−X′ is called the hat matrix - a projection into the column
space of X

■ Residuals: êml = y − ŷ
ml

= (I − PX)y = PX⊥y

■ PX⊥ is a projection out of the column space of X

The fitted values and residuals are statistically independent:

cov(ŷ
ml

, êml) = cov(PXy, PX⊥y) = σ2PXPX⊥ = 0
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The linear model is often assessed by ANOVA:

Source SS DF MS Ratio

Treatments TSS=y′(PX − 1
n
11

′)y rX − 1 TMS= 1
rX−1

TSS TMS/RMS

Residual RSS=y′PX⊥y n − rX RMS= 1
n−rX

RSS

Total y′(I − 1
n
11

′)y

Note that the overall mean is usually removed from the variation prior to the
ANOVA, hence the adjustment using 1

n
11

′ in the treatment and total sums of
squares.

■ Result: for y ∼ N(µ, V ), then y′Ay ∼ χ2(rX , 1
2
µ′Aµ) if AV is

idempotent.

■ Result: for y ∼ N(µ, V ), then y′Ay and y′By are independent if
AV B = 0.

Using these results we can show that, under the null hypothesis Xτ = µ1, the ratio
TMS/RMS has an F-distribution on (rX − 1), (n − rX) degrees of freedom.
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The sums of squares can alternatively be written as:

■ TSS=τ̂ ′

ml
X′Xτ̂ml − 1

n
y′

11
′y - an estimate of variation due to the fitted

model (excluding overall mean)

■ RSS = (y − Xτ̂ml)
′ (y − Xτ̂ml) - an estimate of residual - or background -

variation

The variance ratio assesses whether variation due to the fitted model could
plausibly be accounted for by background variation.

The residual mean square can also be used as an unbiased estimate of σ2, ie

σ̂2
a

= (y − Xτ̂ml )
′ (y − Xτ̂ml) /(n − rX)

This estimate is usually used in preference to the maximum likelihood estimate
because it gives ’more realistic’ estimates of error to use in SEs/SEDs/CIs.
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■ In general, a linear model may contain several (b) terms, each related to
quantitative or qualitative explanatory variables.

■ The design matrix is then partitioned into b terms as X = [X1 . . . Xb]
where Xi is the (n × pi) design matrix for term i, with

∑

i pi = p.

■ A term corresponding to a single explanatory variable is a ’main effect’.

■ Combinations of explanatory variables are called interactions. The interaction
of term A with design matrix XA = [xAij ] for i = 1 . . . n, j = 1 . . . pA and
term B with design matrix XB has a design matrix with ith row

[

xAi1XB . . . xAipA
XB

]

.

■ Different types of explanatory variables combine as follows:

◆ Two qualitative variables (factors) with pA and pB groups: forms a
new set of pApB groups and fit a mean for each

◆ Qualitative + quantitative variable: fit a linear trend for the
quantitative variable within each group of the factor separately

◆ Two quantitative variables: form a new variable by element-wise
multiplication and fit a linear trend for the new variable
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Within statistical packages, each variable is given a name, and the variable names
used to define the model.

We will use the following notation for model formulae:

■ A = qualitative variable (factor)

■ x = quantitative variable (variate)

■ A.B = interaction of terms A and B

■ A*B = A + B + A.B = main effects and interaction

■ A/B = A + A.B = term B nested within term A

■ lin(A) = variate made from the levels (groups) of A

■ fac(x) = factor made from the distinct values of x



Designed experiments

Introduction

Linear model review

Designed experiments

A mixed model

RCBD

Strata

Multi-stratum ANOVA

REML

26

The motivation for the REML method originally arose from comparison of
(unbiased) ANOVA and (biased) ML estimates of variance parameters in designed
experiments.

Designed experiments use blocking to account for heterogeneity:

■ similar units are grouped together to form blocks

■ treatments are compared within blocks (as far as possible)

■ variation due to blocks can be separated from background variation (residual
error) and increase precision of estimates

■ examples of blocking factors:

◆ areas of similar fertility in a field trial

◆ shelves in controlled environment cabinet

◆ time of day - for processing plant samples

◆ observer/experimenter - especially for subjective judgements

■ it is usually assumed that there is no interaction between blocks and
treatments
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Designed experiments therefore usually have a set of terms relating to treatments
(Xτ) and a set of terms relating to blocks (Zu):

■ blocks are usually assumed to comprise a random sample for a (often
notional) wider population.

■ it is then natural to assume that block effects are realizations of a random
variable - random effects

In the simple case, with one blocking factor, the model is written as

y = Xτ + Zu + e (2)

where

■ y = (y1 . . . yn)′ is a vector of data

■ τ represent p fixed, unknown treatment effects with (n × p) design matrix
X

■ u represent q random block effects with (n × q) design matrix Z and
u ∼ N(0, σ2

b I) - independent effects with equal variance.

■ e = (e1 . . . en)′ is a vector of residual errors (noise) with e ∼ N(0, σ2I) -
independent effects with equal variance.
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Mixed model:
y = Xτ + Zu + e

In the general case, both the fixed and random effects can be partitioned into terms
associated with explanatory variables (in this context usually qualitative):

■ X = [ X1 X2 . . . Xb ]

■ where Xi is an n × pi design matrix for the ith fixed term,
∑

i pi = p

■ Z = [ Z1 Z2 . . . Zc ]

■ where Zj is an n × qj design matrix for the jth random term,
∑

j qj = q

■ τ , u are partitioned conformally

◆ τ = (τ ′

1 . . . τb)
′

◆ u = (u′

1 . . . uc)′

◆ with ui ∼ N(0qi , σ
2
i Iqi ) and cov(ui, uj) = 0

◆ independent random effects, with common variances within terms -
simple variance components model
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Mixed model:
y = Xτ + Zu + e

The variance matrix of the data takes the form

var(y) = Zvar(u)Z′ + var(e)

=
c
∑

i=1

σ2
i ZiZ

′

i + σ2In

= V

= σ2

(

c
∑

i=1

γiZiZ
′

i + In

)

= σ2H

for γi = σ2
i /σ2.

This gives two alternative parameterizations of the variance model, in terms of
σ = (σ2

1 . . . σ2
c σ2)′ (sigma parameterization) or in terms of (γ′, σ2)′ for

γ = (γ1 . . . γc)′ (gamma parameterization).

We will usually work with the gamma parameterization.
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Balanced designed experiments have properties which simplify the estimation
process for both treatments and variance parameters.

The simplest design with blocking is the randomized complete block design
(RCBD).

For an experiment with g treatment groups and r replicates (blocks), each block
consists of g units and contains one instance of each treatment, with treatments
allocated to units within blocks at random.

The RCBD model for treatment j in block i can be written as

yij = bi + µj + eij

for i = 1 . . . r, j = 1 . . . g, n = rg.

This parameterization uses a single parameter for each treatment group so that the
design matrix X is full rank.
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The form of the previous model masks the randomization that takes place in the
design and it is usually better to make this explicit as a model for unit k in block i as

yik = bi + µs(ik) + eik

for i = 1 . . . r, k = 1 . . . g, where s(ik) indicates the treatment applied to this unit.

The advantage of the latter form is that it preserves the distinction between
treatments and units. For simplicity, we will use the former notation.

If we order our data by blocks within treatment, ie
y = (y11 y21 . . . yr1 y12 . . . yrg)′, then the matrix form of the model uses

■ X = Ig ⊗ 1r

■ Z = 1g ⊗ Ir

■ τ = (µ1 . . . µg)′

■ u = (b1 . . . br)′
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The variance matrix for the data then takes the form:

var(y) = V = Zvar(u)Z′ + var(e)

= σ2
b ZZ′ + σ2In

= σ2
b (1g ⊗ Ir)(1g ⊗ Ir)′ + σ2In

= σ2
b (1g1

′

g ⊗ Ir) + σ2In

with

■ var(yij) = σ2
b + σ2

■ cov(yij , yik) = σ2
b for j 6= k

■ cov(yij , ylk) = 0 for i 6= l

So data from units within the same block have a correlation of
σ2

b

σ2
b
+σ2 , and units

from different blocks are uncorrelated.
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Within balanced designed experiments, the term strata is used to describe different
levels within the blocking structure, such that items within the same level have the
same variance.

Bailey (2008) gives a good overview of designed experiments and defines

■ a stratum is an eigenspace of var(y) = V

In the RCBD, it is straightforward to verify that columns of Z form a set of
eigenvectors for V with common eigenvalue gσ2

b + σ2 and in fact these columns
form an eigenspace (a maximal set of independent eigenvectors with a common
eigenvalue).

Projection into this eigenspace can be achieved by the matrix
PZ = Z(Z′Z)−1Z′ = 1

g
ZZ′.

Similarly, projection into the orthogonal space can be achieved using
PZ⊥ = In − PZ .

We can therefore project onto the eigenspaces using orthogonal projection matrices
that add up to the identity matrix.

It is conventional (arising from randomization theory) to partition out the
1-dimensional subspace corresponding to the mean, using the set P0 = 1

n
1n1

′

n

with P1 = PZ − P0 and P2 = I − PZ .
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Note that we can write the variance matrix in terms of these projection matrices by
equating coefficients, so

V = ξ0P0 + ξ1P1 + ξ2P2

= ξ0
1

n
1n1

′

n + ξ1(
1

g
ZZ′ − 1

n
1n1

′

n) + ξ2(I − 1

g
ZZ′)

= σ2
b ZZ′ + σ2I

where

■ ξ0 = ξ1 = gσ2
b + σ2

■ ξ2 = σ2

Then V −1 = 1
ξ0

P0 + 1
ξ1

P1 + 1
ξ2

P2.

Given a set of orthogonal projection matrices P i, i = 0, 1, 2, we can write
P i = UiU

′

i where

■ Ui is an n × rank(P i) matrix of full column rank

■ U′

iUj = 0 for i 6= j

■ U′

iUi = I
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Then we can consider a transformation of the data as





U′

0y

U′

1y

U′

2y



 ∼ N









U′

0Xτ

U′

1Xτ

U′

2Xτ



 ,





ξ0I1 0 0

0 ξ1I
r(P1)

0

0 0 ξ2I
r(P2)









using

■ var(U′

iy) = U′

iV Ui = ξiIr(P i)

■ cov(U′

iy, U′

jy) = U′

iV Uj = 0

The transformed data has log-likelihood function:

ℓ =
∑

i=0,1,2

{

− r(P i)

2
log(2πξi) −

1

2ξi

(y − Xτ)′P i(y − Xτ)

}

for r(P i) = rank(P i).



Strata (4)

Introduction

Linear model review

Designed experiments

A mixed model

RCBD

Strata

Multi-stratum ANOVA

REML

36

This form of the log-likelihood function yields estimating equations:

∑

i=0,1,2

1

ξi

{

X′P iXτ̂ml − X′P iy
}

= 0

− r(P i)

2ξi

+
1

2ξ2
i

(y − Xτ̂ml)
′P i(y − Xτ̂ml) = 0

hence immediately

ξ̂iml
= (y − Xτ̂ml)

′P i(y − Xτ̂ml )/r(P i)

but this requires evaluation of τ̂ml , which does not appear to be calculated
immediately from this form.

However, the structure of balanced designs can be used to rearrange these
equations to get estimates of τ̂ml directly.
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We partition the set of treatment means into an overall mean, main effects and
interactions using another set of orthogonal projections, T j , so τ =

∑l
j=1 T jτ

where

■
∑l

j=1 T j = I

■ T iT j = 0 for i 6= j

■ T iT i = T i for i = 1 . . . l.

This gives a set of interpretable effects in the case of balanced factorial treatment
structures.

A design then has the property of general balance if

X′P iX =
l
∑

j=1

λijT j

and λij is then the effective replication of treatment j in stratum i.

A design is orthogonal if, for each treatment j, λij 6= 0 for only one value of i
(stratum).
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In the case of the RCBD with a single treatment factor, l = 2 and projections
correspond to the overall mean:

T1 =
1

g
1g1

′

g

and deviations of treatment groups from the mean:

T2 = Ig − T1 = Ig − 1

g
1g1

′

g

Hence
T1τ = µ1g

for µ = 1
g

∑g
i=1 µi, and

T2τ =







µ1 − µ
..
.

µg − µ







Then:

λ01 = r λ11 = 0 λ21 = 0

λ02 = 0 λ12 = 0 λ22 = r
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Consider estimation of Tkτ from each stratum separately, for a balanced design,
using estimating equation:

XP iXτ̂ml = X′P iy

⇒
l
∑

j=1

λijT j τ̂ml = X′P iy

(pre-multiply by Tk)

⇒ λikTkτ̂ml = TkX′P iy

⇒ Tkτ̂ml =
1

λik

TkX′P iy

then use

τ̂ml =
l
∑

j=1

T j τ̂ml

For an orthogonal design, for treatment k, λik is non-zero in only one strata, so
this process gives a single unique estimate of treatment Tkτ .

This gives an easy and computationally efficient algorithm for estimation of
treatment effects that does not require inversion of X′V −1X and leads directly to
an ANOVA decomposition in terms of sums of squares.
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A multi-stratum ANOVA partitions the sums of squares into strata defined by
orthogonal projections P i and partitions the treatments according to the orthogonal
projections T j , with SS for treatment T jτ appearing in strata where λij > 0.

Stratum total sums of squares take the form y′P iy, with expected value:

E
(

y′P iy
)

= ξitrace(P i) +
l
∑

j=1

λijτ ′T jτ

= ξirank(P i) +
l
∑

j=1

λijτ ′T jτ

The sum of squares for treatment term Tkτ in stratum i is

1

λik

y′P iXTkX′P iy = (XTkτ̂ml)
′P i(XTkτ̂ml )

with expected value

E

(

1

λik

y′P iXTkX′P iy

)

=
ξi

λik

tr(P iXTkX′P i) +
1

λik

τ ′X′P iXTkX′P iXτ

= ξirank(Tk) + λikτ ′Tkτ
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ANOVA for the RCBD

Stratum
Source SS DF EMS

Mean stratum y′P0y 1 ξ0 + nµ′µ

Mean y′P0y 1 ξ0 + nµ′µ

Residual - 0 -

Block stratum y′P1y r-1 (r − 1)ξ1

Residual y′P1y r-1 (r − 1)ξ1

Block.Units stratum y′P2y r(g-1) r(g − 1)ξ2 + rτ ′T 2τ

Treatments TSS g − 1 (g − 1)ξ2 + rτ ′T 2τ

Residual y′P2y-TSS (r − 1)(g − 1) (r − 1)(g − 1)ξ2

Total y′y

■ TSS= 1
r
y′P2XT2X′P2y

■ τ ′T2τ = (µ− µ1)′(µ− µ1)

■ The DF of a sum of squares is the rank of the associated projection matrix.

■ Under the hypothesis τ = µ1 the variance ratio (treatment MS/residual MS)
in the units stratum has an F distribution with (g − 1), (r − 1)(g − 1) DF.
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The ANOVA estimates of the stratum variances are equal to the stratum residual
mean squares:

■ ξ̂1a = RSS1
r−1

= y′P 1y
r−1

■ ξ̂2a = RSS2
(r−1)(g−1)

= y′P 2y−TSS
(r−1)(g−1)

In general the estimates take the form

ξ̂ia = RSSi/[r(P i) −
l
∑

j=1

I(λij > 0)r(T j)].

Compared to the maximum likelihood estimates

ξ̂iml = RSSi/[r(P i)],

the ANOVA estimates adjust for the DF used in estimation of treatment effects to
achieve unbiased estimates.

Unbiased estimates of variance components follow from:

■ ξ̂1a = gσ̂2
b + σ̂2, ξ̂2a = σ̂2
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In unbalanced designs, this simple estimation process cannot be followed and more
complex iterative algorithms are required, such as maximum likelihood estimation.

However, the downwards bias of ML estimates of stratum variances is undesirable
as this means that estimates of treatment standard errors are also underestimated.

For this reason, Patterson & Thompson (1971) introduced the method of residual
(or restricted) maximum likelihood (REML) which includes an adjustment for
degrees of freedom used in estimating fixed effects from the general linear mixed
model

y = Xτ + Zu + e

as defined earlier (equation 2). Assume (make) X full rank.

Verbyla (1990) gives a clear interpretation of the REML method as follows:
partition the likelihood into two independent parts: one (y1 = L′

1y) relating to the
fixed effects and one part (y2 = L′

2y) relating to the residual contrasts (zero
expectation) with

■ L1 is an n × p matrix of full column rank

■ L2 is an n × [n − p] matrix of full column rank

■ L′

1X = I, L′

2X = 0
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Then
(

y1
y2

)

∼ N

([

τ

0

]

, σ2

[

L′

1HL1 L′

1HL2

L′

2HL1 L′

2HL2

])

and we can use

ℓ(τ, γ, σ2;y) = ℓ(τ , γ, σ2; y1|y2) + ℓ(γ, σ2; y2).

The conditional distribution of y1|y2 has expected value

E(y1|y2) = τ + L′

1HL2(L
′

2HL2)
−1y2

and variance

var(y1|y2) = σ2(L′

1HL1 − L′

1HL2(L′

2HL2)−1L′

2HL1).

Use result

■ if K′X = 0 for K of full column rank and H is positive definite, then

K(K′HK)−1K′ = H−1 − H−1X(X′H−1X)−X′H−1 = P

to get

E(y1|y2) = τ + L′

1HPy ; var(y1|y2) = σ2(X′H−1X)−1.
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Then

ℓ(τ, γ, σ2;y1|y2) = −1

2

{

p log(2πσ2) + log |(X′H−1X)−1|

+(L′

1(I − HP)y − τ)′X′H−1X(L′

1(I − HP)y − τ)/σ2
}

and

ℓ(γ, σ2; y2) = −1

2

{

(n − p) log(2πσ2) + log |L′

2HL2| + y′L2(L
′

2HL′

2)
−1L2y

}

= −1

2

{

(n − p) log(2πσ2) + log |L′L| + log |H| + log |(X′H−1X)|

+ y′Py/σ2
}

Using the result on partitioned matrices

■ for a non-singular matrix

∣

∣

∣

∣

A B

C D

∣

∣

∣

∣

= |D||A− BC−1D|

to get

log |L′HL| = log |L′L| + log |H| = log |L′

2HL2| + log |(X′H−1X)−1|

Note that ℓ(γ, σ2;y2) is not a function of τ .
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The fixed effects must therefore be estimated from ℓ1 = ℓ(τ, γ, σ2;y1|y2):

∂ℓ1

∂τ
= X′H−1X(L′

1(I − HP)y − τ)/σ2

⇒ τ̂ = L′

1(I − HP )y

⇒ τ̂ = (X′H−1X)−1X′H−1y

Note that τ̂ depends on the estimated variance parameters through H.

For inference, var(τ̂) = σ2(X′H−1X)−1.

Note that this can also be obtained as the generalized least squares estimate of τ

given H, hence τ̂ is a BLUE.

As both y1 and τ are of length p, there is no further information in y1 and the
variance parameters γ and σ2 must be estimated from ℓ2 = ℓ(γ, σ2;y2).
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We write

ℓ2 = −1

2

{

c(X) + (n − p) log(σ2) + log |H| + log |(X′H−1X)|

+ y′Py/σ2
}

where c(X) = (n − p) log(2π) + log |L′L| is a function of X (through L).

Then

∂ℓ2

∂σ2
= −1

2

{

(n − p)

σ2
− y′Py/σ4

}

This gives the score equation

Uσ2 (γ, σ2) = −1

2

{

(n − p)

σ2
− y′Py/σ4

}

Setting this equal to zero yields the estimate:

σ̂2 = y′P̂y/(n − p)

So, given an estimate of γ and hence P , we can obtain an estimate of σ2 directly.
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For the gamma parameters, we need to use results on matrix differentiation:

■ for a general matrix A(θ)

∂ log |A|
∂θ

= tr

(

A−1 ∂A

∂θ

)

■ also
∂A−1

∂θ
= −A−1 ∂A

∂θ
A−1

■ and (eventually) for matrix P = H−1 − H−1X(X′H−1X)−XH−1, with
H = H(θ),

∂P

∂θ
= −P

∂H

∂θ
P
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Hence

∂ℓ2

∂γi

= −1

2

{

tr

(

H−1 ∂H

∂γi

)

− tr

(

(X′H−1X)−1X′H−1 ∂H

∂γi

H−1X

)

− 1

σ2
y′P

∂H

∂γi

Py

}

= −1

2

{

tr

(

P
∂H

∂γi

)

− 1

σ2
y′P

∂H

∂γi

Py

}

= −1

2

{

tr
(

Z′

iPZi

)

− 1

σ2
y′PZiZ

′

iPy

}

The estimating equations (score equations) for γ are therefore

Uγ (γ, σ2) = tr
(

Z′

iPZi

)

− 1

σ2
y′PZiZ

′

iPy

These equations are usually a complex non-linear function of γ (through H and P )
and cannot be solved (by setting equal to zero) directly. Note: balanced designs are
a special case.

An iterative algorithm is therefore required.



ML vs REML comparison

Introduction

Linear model review

Designed experiments

REML

Unbalanced designs

REML

Estimation

ML vs REML

Algorithms

Information matrices

BLUPS

Mixed model equations

Inference

Bayes interpretation

References

Problems

50

Before getting onto iterative algorithms, it is helpful to review the difference
between the log-likelihood function ℓ used to calculate maximum likelihood
estimates, and that (ℓ2) used for REML:

−2ℓ(τ, γ, σ2; y) = c + n log σ2 + log |H| + (y − Xτ)′H−1(y − Xτ)/σ2

−2ℓ2 = −2ℓ(γ, σ2;y2) = c(X) + (n − p) log(σ2) + log |H| + log |(X′H−1X)|
+(y − Xτ̂)′H−1(y − Xτ̂)/σ2

using (y − Xτ̂)′H−1(y − Xτ̂) = y′Py for τ̂ = (X′H−1X)−1X′H−1y with
Xτ̂ = (I − HP)y and PHP = P .

The term log |(X′H−1X)| makes the adjustment for degrees of freedom used in
estimating treatment effects, so that REML estimates of variance components are
less biased than ML estimates.

The other major differences are:

■ ℓ2 is not a function of the fixed effects τ

■ the constant in ℓ2 is a function of the fixed design matrix X
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Two main alternatives:

■ EM (expectation-maximisation) algorithm - see eg Searle et al (1992)

■ Newton-Raphson type algorithms - we will look briefly at these

Newton-Raphson algorithm can be derived from a Taylor expansion of the score
equations U for a set of parameters θ about a value θ̂:

U(θ) = U(θ̂) +
∂U(θ)

∂θ

∣

∣

∣

∣

θ=θ̂

(θ − θ̂)

We are aiming to get U(θ) = 0.

Given an initial estimate θ̂(0), say, we can get an improved estimate, θ̂(1), by

solving for U(θ̂(1)) = 0 as

θ̂(1) = θ̂(0) −
[

∂U(θ)

∂θ

]

−1

θ=θ̂(0)

U(θ̂(0))
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In our context, we can alternate between two equations over several iterations:

σ̂2
(i+1) = y′P̂ (i)y/(n − p)

γ̂(i+1) = γ̂(i) −
[

∂U(γ, σ2)

∂γ

]−1

γ=γ̂(i),σ2=σ̂2
(i+1)

U(γ̂(i), σ̂
2
(i+1))

where the subscript (i) indicates evaluation using estimates from iteration i.

Note that

∂U(γ, σ2)

∂γ
=

∂2ℓ2(γ, σ2; y)

(∂γ)(∂γ)′

= −Io
γγ (γ, σ2)

where Io
γγ is known as the observed information matrix for gamma.

An alternative version of this algorithm updates γ and σ2 using the joint
information matrix for the two sets of parameters:

Io =

[

Io
γγ Io

γσ2

Io
σ2γ

Io
σ2σ2

]
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The observed information matrix contains:

Io
γiγj

= − ∂2ℓ2
∂γi∂γj

=
1

2

{

−tr(PZiZ
′

iPZjZ′

j) +
2

σ2
y′PZiZ

′

iPZjZ′

jPy

}

Io
γiσ2 = − ∂2ℓ2

∂γi∂σ2 =
1

2

{

1

σ4
y′PZiZ

′

iPy

}

Io
σ2σ2 = − ∂2ℓ2

∂γi∂γj
=

1

2

{

−n − p

σ4
+

2

σ6
y′Py

}

The most common variation on the Newton-Raphson algorithm uses the expected
information matrix, Ie, (Fisher scoring algorithm) with

Ie
γiγj

= E
(

− ∂2ℓ2
∂γi∂γj

)

=
1

2

{

tr(PZiZ
′

iPZjZ′

j)
}

Ie
γiσ2 = E

(

− ∂2ℓ2
∂γi∂σ2

)

=
1

2

{

1

σ2
tr(PZiZ

′

i)

}

Ie
σ2σ2 = E

(

− ∂2ℓ2
∂γi∂γj

)

=
1

2

{

n − p

σ4

}

This algorithm tends (not always) to be more stable - less influenced by data values
in second derivatives.
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Terms of the type tr(PZiZ
′

iPZjZ′

j) can be computationally expensive to
calculate.

Gilmour et al (1995) suggested use of an alternative ’average’ information matrix
consisting of sum of squares terms only that can be more easily calculated.

This ’average information matrix’ is motivated as an average of the observed and
expected information matrices but in fact omits some inconvenient terms to give:

Ia
γiγj

=
1

2

{

1

σ2
y′PZiZ

′

iPZjZ′

jPy

}

Ia
γiσ2 =

1

2

{

1

σ4
y′PZiZ

′

iPy

}

Ia
σ2σ2 =

1

2

{

1

σ6
y′Py

}

With an efficient algorithm, as in Gilmour et al (1995), this gives much faster
computing time.
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Since the random effects u are not parameters of the model, it is conventional to
talk of prediction rather than estimation of these effects. The predictors are usually
denoted by ũ rather than û.

The criteria used for predictors of u are:

■ minimum mean squared error E[(ũ− u)′(ũ− u)] (’best’)

■ linear (in y2 since no information is available from y1)

■ unbiased in the sense E(ũ) = E(u).

Hence BLUPs (best linear unbiased predictors).

A linear estimator must be of the form

ũ = a + By2

for some known vector a and matrix B.

Then
E(ũ) = E(a + By2) = a

and E(u) = 0 so a = 0.
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Following Searle et al (1992), let u0 = E(u|y2) and consider the MSE:

E[(ũ− u)′(ũ− u)] = E[(ũ− u0 + u0 − u)′(ũ− u0 + u0 − u)]

= E[(ũ− u0)
′(ũ− u0)] + 2E[(ũ− u0)

′(u0 − u)]

+E[(u0 − u)′(u0 − u)]

We wish to find ũ to minimise this expression:

■ the first term is minimised for ũ = u0

■ the second term is zero, since ũ = By2 is fixed given y2 and using

E[(ũ− u0)′(u0 − u)] = Ey2{Eu[(ũ− u0)′(u0 − u)|y2]} = 0

■ the third term is constant

Hence the minimum mean squared error is achieved by

ũ = E(u|y2) = cov(u, y2)[var(y2)]
−1y2

= GZ′L2(L′

2HL2)
−1L2y

= GZ′Py

where G = var(u)/σ2 = ⊕{γiIqi}
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The BLUP ũ can also be expressed as

ũ = (Z′Z + G−1)−1Z′(y − Xτ̂)

by using Py = H−1(y − Xτ̂) and expanding H−1 as

H−1 = I − Z(Z′Z + G−1)−1Z′.

The BLUPs are unbiased in a population sense

E(ũ) = E(u) = 0

but conditionally biased towards zero (shrinkage)

E(ũ|u) = GZ′PZu.

The variance of the predictors is

var(ũ) = σ2GZ′PZG

but variation is usually considered in terms of the prediction error variance

var(ũ− u) = σ2(G− GZ′PZG)

which measures variation in terms of distance from the unobserved true value.
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Estimates of fixed and random effects can be achieved from solving the mixed
model equations:

[

X′X X′Z

Z′X Z′Z + G−1

] (

τ

u

)

=

(

X′y

Z′y

)

where G = ⊕{γiIqi}.

These equations yield

■ τ̂ = (X′H−1X)−1X′H−1y

■ ũ = (Z′Z + G−1)−1Z′(y − Xτ̂)

as required.

Many statistical packages use the mixed model equations (or parts of) for this
calculation as it involves inversion of a matrix size p + q (often ≪ n) but does not
require H−1 (n × n) for be formed explicitly.
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The inverse of the coefficient matrix also gives access to the variance matrix for the
estimated (predicted) fixed and random effects.

The inverse of the coefficient matrix takes the form:
[

C11 C12

C21 C22

]

=

[

(X′H−1X)−1 −(X′H−1X)−1X′H−1ZG

−GZ′H−1X(X′H−1X)−1 G− GZ′PZG

]

It is immediately clear that σ2C11 = var(τ̂) and σ2C22 = var(ũ− u).

It is straightforward to verify that σ2C12 = cov(τ̂ , ũ− u).

eBLUEs and eBLUPs

In practice, variance parameters used in calculation of τ̂ and ũ are unknown.

Estimates of variance parameters are plugged in to get empirical or eBLUEs for the
fixed effects and eBLUPs for the random effects.

Prediction error variances (PEVs) for the effects are also estimated by plugging the
variance parameter estimates.

The estimated PEV then ignores uncertainty in the variance parameter estimates.
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As the REML log-likelihood function ℓ2 is a function of the variance parameters, we
can use likelihood ratio tests.

Simple case

■ test of H0 : σ2
i = 0 against Ha : σ2

i 6= 0

■ test statistic −2(ℓ20 − ℓ2a) where ℓ20 (ℓ2a) is the maximum value of ℓ2
under the null (alternative) hypothesis

■ usual asymptotic result: −2(ℓ20 − ℓ2a) ∼ χ2
1

■ in general DF of χ2-distribution for test increases with the number of
variance parameters tested

Complications arise if the null hypothesis fixes one or more parameters on the
boundary of the parameter space, eg. for H0 : σ2

b
= 0 against Ha : σ2

i ≥ 0.
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The variance parameter σ2
i was defined by

var(ui) = σ2
i Iqi .

This definition has the implicit assumption σ2
i ≥ 0.

However we can also specify the model as

E(y) = Xτ , var(y) = σ2H

for H = ZGZ′ + In.

This specification requires only that H is positive-definite, without any explicit
individual constraints on σ2

i , i = 1 . . . c.
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For example, consider the RCBD with

■ var(yij) = σ2
b + σ2

■ cov(yij , yik) = σ2
b

for j 6= k

■ cov(yij , ylk) = 0 for i 6= l

The rationale for the RCBD is that units in the same block should be more similar
than units in different blocks, which implies σ2

b > 0.

This assumption is based on prior expectations

■ which may be wrong

■ or the experimental procedure may be changed

In these cases, it is reasonable to allow for the case where correlation within blocks
is smaller than correlation between blocks, ie σ2

b < 0.

In general, appropriate constraints depend on context.
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Consider a RLRT of H0 : σ2
b = 0 against Ha : σ2

b ≥ 0

■ Under certain conditions, test statistic distribution is a 50:50 mixture of χ2
0

distribution : χ2
1 distribution.

■ Crainiceanu & Ruppert (2004) showed that conditions used by Stram & Lee
(1994) to develop this result do not necessarily hold in the general mixed
model setting

■ The asymptotic result requires that either

◆ the data be independent and identically distributed

◆ the data can be partitioned into independent subsets & number of
subsets increases with the size of the dataset

■ Crainiceanu & Ruppert (2004) assert that the asymptotic approximation is
poor if either the independence condition does not hold, or if the number of
independent subsets is small.

■ No solution for general case! Can use parametric bootstrap to get empirical
p-value.
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BLUEs of fixed effects have the distribution

τ̂ ∼ N( τ , σ2(X′H−1X)−1 ) = N( τ , V τ̂ )

To test H0 : τ = 0 against general alternative Ha : τ 6= 0:

■ cannot use LRT because ℓ2 is not a function of τ and ℓ1/ℓ2 partition
depends on X

■ Wald test for Dτ uses statistic τ̂ ′D′V −1
τ̂

Dτ̂

■ in the case that X is not of full rank, issues of estimability arise and can be
solved as for the linear model

■ Wald test has asymptotic χ2 distribution with DF equal to rank(D)

■ Wald test is analogous to using χ2 test in ANOVA rather than F-test

■ asymptotic distribution is poor if stratum residual DF is small, especially if
term DF is large

■ calculation of denominator DF for approximate F-tests presented by Kenward
& Roger (1997)
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■ Random effects from a REML analysis can be considered as empirical Bayes
estimates from a prior

u ∼ N(0, G(γ))

■ The parameters of the prior are estimated from the data rather than
provided with their own prior distributions

■ The BLUP is then the mean of the posterior distribution

u|L′

2y

■ Shrinkage in BLUPs can then be interpreted as the contribution of the prior
to the posterior estimate: if there is much information about u in the data,
then the contribution of the prior (shrinkage) is small
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1. Derive the effective replications {λij} for the RCBD (slides 30-38)

2. Show that ∂P
∂θ

= −P ∂H
∂θ

P for P = H−1 − H−1X(X′H−1X)−XH−1,
with H = H(θ) (slide 48)

3. Derive the form of the inverse coefficient matrix from the mixed model
equations (slide 59)


	Introduction
	Linear model review
	The linear model
	The design matrix
	The design matrix (2)
	Example
	Example (2)
	Example (3)
	Estimation
	Estimation (2)
	Estimation (3)
	Estimation (4)
	Estimation of ml
	Estimation of ml (2)
	Estimation of ml (3)
	Estimation of ml (4)
	Estimability
	Estimability (2)
	Estimability (3)
	Estimation of ml2
	Fitted values and residuals
	Analysis of variance
	ANOVA (2)
	Linear models with several terms
	Symbolic representation of models

	Designed experiments
	Designed experiments
	A mixed model
	A mixed model (2)
	A mixed model (3)
	Randomized complete block design
	RCBD (2)
	RCBD (3)
	Strata
	Strata (2)
	Strata (3)
	Strata (4)
	Strata (5)
	Strata (6)
	Strata (7)
	Multi-stratum ANOVA
	Multi-stratum ANOVA (2)
	Multi-stratum ANOVA (3)

	REML
	Unbalanced designs & REML
	REML
	REML (2)
	Estimation
	Estimation (2)
	Estimation (3)
	Estimation (4)
	ML vs REML comparison
	Iterative algorithms
	Newton-Raphson algorithm
	Information matrices
	Information matrices (2)
	Estimation of random effects: BLUPs
	BLUPs (2)
	BLUPs (3)
	Mixed model equations (MMEs)
	Mixed model equations (2)
	Inference on variance model
	Constraints on variance components
	Constraints on variance components (2)
	Inference on variance model (2)
	Inference on fixed model
	Bayesian interpretation
	References / Further reading
	Problems


