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Splines have become a popular method for modelling non-linear trend within linear
models, especially where the underlying form is unknown.

Several types of polynomial spline have been proposed within the mixed model
context:

■ cubic smoothing splines

■ P-splines

■ penalised splines

These splines are very closely related.

We will look at

■ how splines fit into the mixed model framework

■ connections between these different methods

■ the practical use of splines for modelling non-linear curves in mixed models

There is also a wider class of L-splines, which we will not consider here.
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■ Suppose we have n data values y = (y1 . . . yn)′

■ and explanatory variable x = (x1 . . . xn)′ on range [a, b] with
a < x1 < x2 < . . . < xn < b

■ We assume the data follows some unknown but smooth function g(x) with
error

Evaluated at the data points, x,

y = g(x) + e

with e ∼ N(0, σ2R).
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A polynomial spline g(x) of degree k (k=3 for cubic splines) with r knots
t1 < t2 < . . . < tr has the properties:

■ on each interval [tj , tj+1], g(x) is a polynomial of degree k

■ g(x) and derivatives to order k − 1 are continuous on [a, b]

Natural splines of odd degree k = 2m − 1 obey an additional constraint

g(j)(t1) = g(j)(tr) = 0 for j = m . . . k

ie. natural splines have higher order derivatives constrained to zero outside the
range of the knots.

Natural cubic splines are piecewise cubic, continuous in the second derivative, and
linear outside the range of the knots.
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A polynomial spline g(x) of degree k with r knots has:

■ polynomial of kth degree on (r + 1) sections ⇒ (k + 1)(r + 1) parameters

■ 0 . . . k − 1 derivatives continuous at r knots ⇒ rk constraints

■ ⇒ r + k + 1 free parameters

Natural splines of degree k obey an additional k + 1 constraints ⇒ r free
parameters.
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A set of polynomial spline (degree k) basis functions for knot points t = (t1 . . . tr)′

is a set of functions {si(x) ; i = 1 . . . r + k + 1} such that

■ each basis function si(x) is itself a polynomial spline of degree k

■ the set {si(x)} spans the set of polynomial splines (degree k) for the knot
points t

Then any polynomial spline of degree k, g(x), can be represented as

g(x) =

r+k+1
∑

i=1

cisi(x)

for suitably chosen coefficients ci.

For natural splines, the basis functions should also be natural splines, then with only
r basis functions required.
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Regression splines are constructed as follows:

■ a set of r knots is chosen, r ≪ n

■ a set of r + k + 1 basis functions si(x) is constructed

■ the spline is fitted via regression using the model

y = g(x) + e =

r+k+1
∑

i=1

cisi(x) + e

■ If the n (distinct) covariate values are used as knots, we get an exact fit and
the fitted curve is the interpolation spline

■ The smoothness of the curve is determined by the number and position of
the knots: fewer knots ⇒ smoother curve

■ Choice of knots (and ∴ smoothness of curve) subjective
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■ black line is function

■ blue dots are data = function + normal error (32 points)

■ green line = regression spline with 20 knots (equal spacing)

■ red line = regression spline with 9 knots (equal spacing)
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Smoothing splines of degree k = 2m − 1 (k = 3 ⇒ m = 2) are fitted to the model

y = g(x) + e

by minimising a penalised sum of squares (PSS):

[y − g(x)]′R−1[y − g(x)] + λ

∫ b

a

[g(m)(s)]2ds

■ the first term (residual sum of squares) measures fidelity of the fitted curve
to the data

■ the second term (penalty) quantifies undesirable behaviour (roughness, ie.
wigglyness) of the fitted curve

■ in the PSS, the fit of the curve to the data competes against the roughness
of the fitted curve

■ λ (λ > 0) is a smoothing parameter that controls the balance between the
two terms, hence smoothness of fitted curve
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It can be shown that, for a given value of λ, the curve that minimises the PSS

[y − g(x)]′R−1[y − g(x)] + λ

∫ b

a

[g′′(s)]2ds

is a natural cubic spline with knots at the n (distinct) covariate values, x1 . . . xn.
This spline is called the cubic smoothing spline.

Here the penalty

■ is the integrated squared second derivative of the fitted spline

■ can be regarded as measuring accumulated deviations from straight line
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For a natural cubic spline, the penalty can be rewritten as

∫ b

a

[g′′(s)]2ds = δ′G−1
s δ

where

■ δ = (δ2 . . . δn−1)′ holds values of second derivatives of fitted spline at
internal knots x2 . . . xn−1

■ G−1
s is a tri-diagonal matrix with n − 2 rows defined in terms of distances

between successive knots, defined in terms of its inverse as

[G−1
s ]ij =



















1
6
(xi − xi−1) = 1

6
hi−1 j = i − 1

1
3
(xi+1 − xi−1) = 1

6
(hi + hi−1) j = i

1
6
(xi+1 − xi) = 1

6
hi j = i + 1

0 otherwise

where hj = xj+1 − xj .

■ details in Green & Silverman (1994)
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A natural cubic spline can be written as

g(x) = τ1 + τ2x +

n−1
∑

i=2

δiPi(x)

where {Pi(x), i = 2 . . . n − 1} are basis functions for natural cubic splines, representing
smooth deviations about linear trend.

Each basis function is cubic on across a range of 3 knots, and linear either side:

6Pj(x) =



















0 x ≤ tj−1 ,

h
−1

j−1
(x − tj−1)

3 tj−1 < x ≤ tj ,

h
−1

j−1
(x − tj−1)

3 − (h−1

j−1
+ h

−1

j
)(x − tj)

3 tj < x ≤ tj+1 ,

(hj−1 + hj)(3x − tj−1 − tj − tj+1) tj+1 < x.
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In matrix form
g(x) = Xτ + Pδ

where X = [1 x], τ = (τ1 τ2)′ and P = [P2(x) . . . Pn−1(x)].

The PSS can now be rewritten as

[y − Xτ − Pδ]′R−1[y − Xτ − Pδ] + λδ′G−1
s δ

Minimise with respect to τ and δ: differentiate and set equal to zero gives equations

X′R−1Xτ + X′R−1Pδ = X′R−1y

P ′R−1Xτ + (P ′R−1P + λG−1
s )δ = P ′R−1y

This looks like the mixed model equations from a linear mixed model

→ mixed model smoothing splines described by Verbyla et al 1999, Brumback &
Rice (1998), Wang (1998), Zhang et al (1998).
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Given the smoothing parameter, the cubic smoothing spline can be calculated as
the BLUP

g̃(x) = Xτ̂ + Pδ̃

from the mixed model
y = Xτ + Pδ + e

with var (δ) = σ2
sGs, var (e) = σ2R and λ = σ2/σ2

s = γ−1
s .

■ Note: fitting both τ and δ as fixed gives interpolation spline.

■ Fitting deviations as random introduces smoothing via shrinkage of random
effects.

■ Amount of shrinkage depends on λ.

■ λ > 0 ⇒ σ2
s > 0

■ The smoothing parameter can also be estimated by REML as a variance
parameter.
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In practice, we make a transformation to independent random effects:

y = Xτ + Zsus + e

where Zs = PG0.5
s , us = G−0.5

s δ ∼ N(0, σ2
sI).

The random part of the spline can then be fitted as a simple variance component
term.

In addition, we can transform so that X and Zs are independent (to aid
interpretation).

This model can then easily be fitted using most mixed model software.
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■ black line is function

■ blue dots are data = function + normal error (32 points)

■ purple line = smoothing spline fitted by REML
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■ REML estimation selects smoothing parameter value that gives best fit to
implicit variance model defined by P and Gs

■ Studies have shown that REML performs as well as GCV in terms of MSEP,
although it yields smoother curves than GCV

■ Advantage of REML approach: can build spline terms into complex mixed
models that account for all sources of variation in the data, including
correlated errors

But are we using this model just as a tool, or do we really believe it as a mixed
model for the data?

■ if a tool, need to bear this in mind when making inferences from fitted
model

■ might get better results when model is compatible with data
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■ In general mixed model, inference is made taking into account the influence
of the population of random effects

■ If population of random effects is not considered relevant then it is
appropriate to exclude this variation from inferences and consider the model
conditional on the random effects

■ For mixed model spline, we are not interested in population of spline curves,
we are interested only in the instance present in the data

■ In the simple case, the mixed model smoothing spline is therefore considered
as

y | τ , δ ∼ N( Xτ + Pδ, σ2R )
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Figure 1: Fitted spline with population of splines
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We are interested in conditional inference, ie.

y | τ, δ ∼ N( g(x), σ2R )

The conditional expectation takes the form

E( ỹ | τ , δ ) = E( Xτ̂ + Pδ̃ + ẽ | τ , δ )

= Xτ + PGsP ′PHE(y|τ , δ)

= Xτ + PGsP ′PHPδ

6= g(x)

where P = [P2(x) . . . Pn−1(x)], PH = H−1 − H−1X(X′H−1X)−1XH−1

and PHX = 0.

The shrinkage that provides smoothing also introduces bias into the fitted function.

Bias is largest where shrinkage is largest, ie. where |δi| is large and hence where the
absolute value of the second derivative, or curvature, is largest.
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The conditional variance of the random effects takes the form:

var
(

δ̃|δ
)

= σ2GsP ′PHRPHPGs

The conditional mean square error is calculated from the variance and the bias
squared and takes the form

E
(

(δ̃ − δ)(δ̃ − δ)′|δ
)

= E
(

(δ̃ − δ)|δ
)

E
(

(δ̃ − δ)|δ
)

′

+ var
(

δ̃ | δ
)

= (GsP ′PHP − I)δδ′(P ′PHPGs − I) + σ2GsP ′PHRPHPGs

Taking expectations over δ and using E(δδ′) = σ2Gs, we get

E(δ̃ − δ)2 = σ2(GsP ′PHP − I)Gs(P
′PHPGs − I) + σ2GsP ′PHRPHPGs

= σ2
(

GsP ′PHPGsP ′PHPGs − 2GsP ′PHPGs + Gs

+ GsP ′PHRPHPGs

)

= σ2
(

GsP ′PHHPHPGs − 2GsP ′PHPGs + Gs

)

= σ2
(

Gs − GsP ′PHPGs

)

So the unconditional variance (readily available) can be used as an estimate of the
average conditional Mean Squared Error.
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Is the spline required?

■ Test for curvature: REML likelihood ratio test of H0 : σ2
s = 0

◆ test on boundary of parameter space

◆ does not obey conditions for 50:50 mixture of chi-squared distributions

◆ use parametric bootstrap to get empirical distribution for test under
null hypothesis

Figure 2: Bootstrap and theoretical distribution of RLRT

Empirical distribution: 67% zero values, 95th percentile = 1.74 (50:50 mixture 2.71)
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So far, we have considered the case of a single curve with distinct covariate values.

Repeated covariate values are easily dealt with:

■ if we have n data values and r < n distinct covariate values t ⊂ x

■ use set of distinct values t as knots to form r basis functions

■ apply basis functions to full covariate x, i.e.

g(x) = τ1 + τ2x +
r

∑

i=1

δiPi(x)

■ this effectively gives additional weight to repeated covariate values and still
achieves minimum of PSS
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Similarly, splines can be included as part of more complex model formulae:

■ denote random part of spline function (Pδ) as spl(x)

■ simple spline model = constant + lin(x) + spl(x)

■ might introduce different splines for different treatments

constant + trt + lin(x) + trt.lin(x) + spl(x) + trt.spl(x)

with trt.lin(x) fitted as fixed, trt.spl(x) fitted as random

■ can simplify model using RLRT

Can also consider interaction of spline with another covariate, z.spl(x), to get
varying coefficient models

■ allows coefficient of z to change as a smooth function of x

■ this gives an alternative method of response surface modelling
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Field experiment to find optimal seeding rate (6 rates) for 8 varieties of lupin

■ Completely randomized design (laid out on 16 x 6 grid)

■ Theory suggests exponential model, but cannot fit this to all varieties

■ Use splines to model profiles across seed rate and establish whether common
model adequate
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■ fixed terms = const + variety + lin(seedrate) + variety.lin(seedrate)

■ spline random component = spl(seedrate) + variety.spl(seedrate)

■ structural random terms = residual error (spatial model)

Estimated variance components

Random term component s.e.

Spline(seedrate) 0.01214 0.01490

variety.Spline(seedrate) 0.00000 bound

Residual variance model

Term Model(order) Parameter Estimate s.e.

row.column Identity Sigma2 0.0338 0.00562

Tests for fixed effects

Sequentially adding terms to fixed model

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr

variety 41.24 7 5.89 72.5 <0.001

seedrate 86.90 1 86.90 72.5 <0.001

variety.seedrate 8.32 7 1.19 72.5 0.321
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■ fixed terms = const + variety + lin(seedrate)

■ spline random component = spl(seedrate)

■ structural random terms = residual error
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Spline model is useful in this context

■ can investigate differences between varieties without specifying form of curve

■ can add other fixed or random effects, eg. to model spatial trend

In general, spline mixed models useful to model non-linear trend within complex
mixed models, especially where

■ form of non-linear trend does not fit standard curve

■ form of non-linear trend may differ between treatments

■ correlated error structure present, eg. longitudinal data

■ contribution of nuisance variables needs to be removed
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■ Advantage of cubic smoothing spline: no need to use subjective choice of
knots

■ But, design matrix for spline basis functions is dense, with #columns =
number of distinct covariate values - 2

■ For large data sets, models may be slow to fit

■ Use reduced knot version of cubic smoothing spline:

◆ for specified knots t = (t1 . . . tr)′ form basis functions P2 . . . Pr−1

◆ fit model with same fixed effects, but basis functions, random effects δ

and variance matrix Gs defined with respect to new knots

■ Number of columns in random design matrix = r − 2

■ Choice of knots subjective (and affects fitted spline)

■ Fitted spline no longer minimises PSS

■ Compromise solution: retain as many knots as possible
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Introduced by Eilers & Marx (1996) as simple and computationally efficient
alternative to smoothing splines.

P-splines

■ use a B-spline basis

■ reduced knot set, knots usually equally spaced

■ discrete penalty defined using differencing operators

■ model

g(x) =

r+k+1
∑

i=1

aiBi(x) or g(x) = Ba

■ penalised sum of squares

[y − Ba]′R−1[y − Ba] + λa′
∆

′

d∆da

■ where ∆d is dth order differencing matrix
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B-spline basis has many desirable properties

■ individual B-spline basis functions have compact support ⇒ matrix B has
sparse form

■
∑

i Bi(x) = 1 ∀x and the form of the curve follows the pattern in the
coefficients

■ hence restricting differences in adjacent coefficients compels fitted spline to
be smooth

B-spline basis functions for knots 1 . . . 10
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User has choice of:

■ degree of B-splines (k)

■ number and position of knots = t1 . . . tr

■ order of differencing in the penalty (d)
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■ For k=3, d=2, P-spline approximates O-spline with same knots

■ In the general case, let

I − ∆
′

d(∆d∆
′

d)−1
∆d = LL′ ,

for full column-rank matrix L

■ Mixed model form of P-spline uses

y = BLL′α + B∆
′

d(∆d∆
′

d)−1
∆dα + e

= Xbτb + Zbub + e.

■ Xb = BL is a polynomial of degree d, τb = L′α, ub = ∆dα

■ For d=2, fixed part of model represents linear trend, random part represents
deviations about linear trend (as for O-spline)

■ Sparse representation lost within mixed model context
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Comparison with O-spline:

■ both have choice of knots

P-splines:

■ has choice of differencing order in penalty

■ differencing order determines fixed terms in model

■ non-natural basis (this can be modified)

O-splines:

■ penalty determined by degree of spline

■ optimisation property for full-knot basis (cubic smoothing spline)

■ fixed terms determined by degree of spline basis

■ can relax naturalness constraints
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Described in Semi-parametric Regression by Ruppert, Wand & Carroll (2003)

Penalised splines use:

■ truncated power function basis, {Tj(x) = (x − tj)
k
+ ; j = 1 . . . r}

■ reduced knot set

■ ad-hoc penalty to induce smoothing

Model

g(x) =
k

∑

j=0

τ
T,j

xj +
r

∑

j=1

βjTj(x) or g(x) = X
T

τ
T

+ Tβ

where X
T

= [1 x , . . . , xk], τ
T

= (τ
T,0

, . . . , τ
T,k

)′, T = [ T1(x), . . . , Tr(x) ],

β = (β1 . . . βr)′
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Truncated power function (TPF) basis for knots 1 . . . 10 (excluding constant and
linear)

TPF basis has properties

■ easy to write down and calculate

■ easy to add/remove knots from basis

■ poor numerical properties of T (badly conditioned)
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■ Penalised sum of squares

[ y − X
T

τ
T
− Tβ ]′R−1[ y − X

T
τ

T
− Tβ ] + λβ′β

■ ad-hoc penalty used to introduce shrinkage/smoothing

■ User choice:

◆ degree of basis

◆ knot positions

■ Mixed model formulation

y + X
T

τ
T

+ Tβ + e

with var (β) = σ2
sI, var (e) = σ2I.
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O-spline P-spline Penalised spline
( Minimises general PSS ) No optimality No optimality
Choice of k Choice of k Choice of k
- Choice of d -
k ⇒ fixed terms d ⇒ fixed terms k ⇒ fixed terms
k ⇒ penalty d ⇒ penalty Identity penalty
( Choice of knots ) Choice of knots Choice of knots
( Natural ) ( Not natural ) ( Not natural )

■ what differences do these choices make?

■ how can we compare the different penalties?
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Blurring over details (see Welham et al 2007):

■ k-degree B-spline basis can be constructed as (k + 1)th differenced TPF
basis

■ i.e. cubic B-spline basis is 4th difference of cubic TPF basis

■ cubic spline basis functions can be constructed as 2nd differences of cubic
TPF basis

Hence for equally-spaced knots, spacing = h, we have equivalent representations of
cubic spline with

β = ∆2δ/6h ; δ = ∆2a/h2 ; β = ∆4a/6h3
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Given the connections between bases, we can relate penalties:

■ For O-spline and cubic P-spline with 2nd order differencing (recommended
default)

a′
∆

′

2∆2a ∝ δ′δ ≈ δ′G−1
s δ

so second difference penalty can be regarded as rough approximation to
cubic smoothing spline penalty

■ For cubic penalised spline

β′β ∝ a′
∆

′

4∆4a

so cubic penalised spline is equivalent to cubic P-spline with d=4

■ Linear penalised spline (recommended default) is equivalent to linear
P-spline with d=2.

■ P-splines (or smoothing/O-splines) preferred (by me) because penalty is
explicit
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Degree of spline basis:

■ for given penalty and reasonable number of knots, degree of basis makes
little difference

■ basis should be appropriate to aims of analysis

■ eg. to estimate derivatives of curve, require differentiable function

■ linear splines are continuous but not differentiable
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Number of knots

■ choice of both number and position of knots

■ reducing number of knots reduces flexibility of fitted spline

■ usually aim to have sufficient knots to allow flexible spline without incurring
excessive computational load

■ large regression spline literature on knot selection

■ Ruppert et al (2003) advocate

r = min
{ n

4
, 35

}

with knots at quantiles of covariate

■ Eilers & Marx strongly advocate equally spaced knots

■ can produce examples for each set where it performs poorly, usually where
gaps exist in distribution of covariate
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Penalty matrix

■ consider in P-spline context: penalty depends on order of differencing

■ increased order of differencing ⇒ more constrained/smoother spline

■ in practice, selection of smoothing parameter by REML to optimise fit to
data often (but not always) leads to similar fitted splines

■ difficulties occur in comparing models with different penalties, as this also
implies different fixed effects

■ unresolved issue

■ first step: understand implications of different penalties
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Does order of penalty make any real difference?

Simulation study

■ four known functions on [0,1]

■ data generated as function + error with normal errors at 32 or 128
equally-spaced points

■ four different error variances, defined with as 0.5, 0.25, 0.1 or 0.05 × range
of function

Compare splines, all with full knot set

■ NCS = natural cubic spline

■ cubic P-spline with d=1,2,3,4

■ linear penalised spline

Evaluate models in terms of average mean squared error of prediction (MSEP)
across 500 data sets



Impact of penalty on fitted curve

Introduction

Simple spline model

Polynomial splines

Spline basis

Regression splines

Smoothing splines

Cubic SS

Mixed model CSS

Inference

More complex models

Example

Reduced knot spline

P-splines

Penalised splines

Comparison

Connections

User choices

Penalty

Unified model

An issue

References

45

Known functions used for simulation study with different properties
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Average MSEP as % of minimum (se)

σ2 d=1 d=2 d=3 d=4
0.5 127 (3.6) 100 (2.9) 104 (2.7) 117 (3.1)
0.25 127 (2.9) 100 (2.2) 126 (2.2) 112 (2.5)
0.1 142 (2.6) 100 (2.0) 112 (2.7) 111 (2.0)
0.05 203 (3.1) 111 (2.2) 100 (2.1) 110 (2.2)

100 x Average ratio estimated σ2: actual σ2 (% zero σ2
s)

σ2 d=1 d=2 d=3 d=4
0.5 91 ( 1) 97 ( 0) 99 (64) 98 (49)
0.25 85 ( 0) 99 ( 0) 104 (46) 101 (17)
0.1 72 ( 0) 97 ( 0) 104 ( 1) 106 ( 0)
0.05 53 ( 0) 91 ( 0) 97 ( 0) 104 ( 0)

■ d=2 gives best MSEP for large σ2

■ d=3 gives best MSEP for small σ2

■ d=1 over-fits (allocates noise as signal)

■ d=4 over-smooths (allocates signal as noise)
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Average MSEP as % of minimum (se)

σ2 d=1 d=2 d=3 d=4
0.5 100 (1.7) 119 (1.5) 120 (1.5) 112 (1.9)
0.25 119 (2.9) 110 (4.3) 105 (4.5) 100 (3.0)
0.1 183 (2.7) 116 (2.0) 100 (1.9) 101 (1.9)
0.05 250 (2.7) 134 (2.1) 106 (1.8) 100 (1.8)

100 x Average ratio estimated σ2: actual σ2 (% zero σ2
s)

σ2 d=1 d=2 d=3 d=4
0.5 110 (39) 126 (38) 126 (62) 117 (47)
0.25 85 ( 1) 97 ( 1) 101 ( 4) 102 ( 1)
0.1 53 ( 0) 83 ( 0) 93 ( 1) 97 ( 0)
0.05 13 ( 0) 73 ( 0) 90 ( 0) 95 ( 0)

For large σ2, pattern lost in noise for all splines (many zero spline variance
components)

■ d=3,4 give best MSEP

■ d=1 over-fits (allocates noise as signal)

■ d=2 slightly over-fits
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Simulated data generated from function (c) with σ2 = 0.5 (top) or 0.1 (bottom)
with fitted splines from cubic P-spline mixed models with d = 1 (thin black line),
d = 2 (thick grey line) or d = 4 (dotted line).
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Second differences of fitted mixed model splines. Fitted splines generated from
cubic P-spline mixed models with d = 1 (thin black line), d = 2 (thick grey line) or
d = 4 (dotted line).



Performance for function (c)

Introduction

Simple spline model

Polynomial splines

Spline basis

Regression splines

Smoothing splines

Cubic SS

Mixed model CSS

Inference

More complex models

Example

Reduced knot spline

P-splines

Penalised splines

Comparison

Connections

User choices

Penalty

Unified model

An issue

References

50

Average MSEP as % of minimum (se)

σ2 d=1 d=2 d=3 d=4
0.5 100 (1.3) 111 (1.3) 116 (1.4) 116 (1.6)
0.25 100 (2.7) 132 (2.9) 153 (2.5) 150 (2.1)
0.1 101 (1.5) 100 (1.7) 155 (3.5) 255 (4.0)
0.05 140 (1.6) 100 (1.4) 110 (1.8) 181 (7.7)

100 x Average ratio estimated σ2: actual σ2 (% zero σ2
s)

σ2 d=1 d=2 d=3 d=4
0.5 109 (49) 115 (51) 115 (50) 113 (27)
0.25 104 (10) 133 (14) 147 (15) 146 ( 3)
0.1 68 ( 0) 109 ( 0) 158 ( 0) 234 ( 0)
0.05 25 ( 0) 83 ( 0) 117 ( 0) 185 ( 0)

For large σ2, pattern lost in noise for all splines (many zero spline variance
components)

■ d=1,2 gives best MSEP

■ d=3,4 over-smooths (allocates signal as noise)
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Generated errors (×) with σ2 = 0.05 with deviations of fitted splines from
underlying function fC . Splines were fitted with knots at data points as a cubic
P-spline mixed model with d = 2 (—) or linear P-spline with d = 2 (ie. linear
penalised spline —).

Linear splines have continuous function but derivatives are not continuous.
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Average MSEP as % of minimum (se)

σ2 d=1 d=2 d=3 d=4
0.5 101 (3.1) 100 (2.6) 101 (2.3) 111 (3.2)
0.25 103 (2.7) 100 (2.7) 102 (2.4) 103 (2.5)
0.1 130 (2.7) 100 (1.7) 123 (2.1) 139 (2.4)
0.05 146 (2.5) 100 (1.8) 120 (2.2) 136 (2.5)

100 x Average ratio estimated σ2: actual σ2 (% zero σ2
s)

σ2 d=1 d=2 d=3 d=4
0.5 93 ( 1) 98 (30) 98 (42) 97 (66)
0.25 90 ( 0) 99 ( 2) 100 (11) 99 (61)
0.1 81 ( 0) 98 ( 0) 106 ( 0) 108 (37)
0.05 71 ( 0) 98 ( 0) 110 ( 0) 116 ( 2)

■ for large σ2, all splines similar as discontinuity masked by noise

■ as noise decreases, discontinuity becomes apparent and fitted better by small
d

■ d=2 fits uniformly better: balances good fit of smooth trend with adaptation
to discontinuity



Impact of the penalty

Introduction

Simple spline model

Polynomial splines

Spline basis

Regression splines

Smoothing splines

Cubic SS

Mixed model CSS

Inference

More complex models

Example

Reduced knot spline

P-splines

Penalised splines

Comparison

Connections

User choices

Penalty

Unified model

An issue

References

53

Overall summary:

■ d = 1 fits detail well, but smooth trend badly

■ d = 4 fits detail badly, smooth trend well

■ As signal:noise ratio increases, smooth trend becomes more apparent and
optimal order of d tends to increase

■ Hence, optimal d depends on characteristics of curve and signal:noise ratio

■ As d increases, splines are more likely to allocate high frequency pattern as
noise

◆ for small d, there is a tendency to over-fit.

◆ for large d, there is a tendency to over-smooth.

◆ both ameliorated by replication enabling independent estimate of error
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For exploratory analysis:

■ purpose is to explore shape of underlying function

■ use spline with small d, eg. cubic spline, cubic P-spline with d=2

For modelling curves:

■ purpose is to get reliable description of underlying function

■ more problematic: no objective method to choose between penalties

■ requires further work

■ wider class of L-splines that uses different penalties, useful for periodic data,
should also be considered (Welham et al, 2006 )

■ we are looking at diagnostics to identify which spline is most consistent with
data
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Use B-spline basis, because this seems the most natural scale.

For spline basis {Bi(x); i = 1q}, we use model

y =

q
∑

i=1

αiBi(x) + e = Bα + e

with penalised sum of squares

(y − Bα)′R−1(y − Bα) + λα′G−1α

where G is a semi-positive definite symmetric penalty matrix (eg. ∆
′

d∆ or an
evaluated integral).

We can extend this model to impose c constraints of the form C′α = 0 (eg.
naturalness or periodicity) via α = Sv where C′S = 0.

The penalised sum of squares (PSS) then becomes

(y − BSv)′R−1(y − BSv) + λv′S′G−1Sv
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This general model can be fitted via eigen-value decomposition:

SG−1S = U′DU

for some (q − c) × (q − c − s) matrix U with U′U = Iq−c−s and
D = diag{d1 . . . dq−c−s} with di > 0 for i = 1 . . . q − c − s.

Then we can write
BSv = BSLτ + BSUD0.5u

We can use this form as a mixed model with

■ τ is an s × 1 vector of fixed effects and design matrix BSL

■ u is a (q − c − s) × 1 vector of random effects with design matrix
BSUD0.5 and variance σ2

sIq−c−s for λ = σ2/σ2
s

It is straightforward to show that BLUPs from this mixed model minimise the PSS.
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This general model allows easy transformation between bases.

Suppose we have two bases

■ represented by matrices Tβ and Bα

■ with T = BA for some full rank matrix A

■ then α = Aβ

We can then rewrite the PSS as

(y − BAβ)′R−1(y − BAβ) + λβ′A′G−1Aβ

and use the resulting mixed model.
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Example: cubic smoothing spline with additional periodic constraints.

■ suppose data periodic on range [0, ω]

■ use full TPF basis with penalty
∫ ω

0 [g′′(s)]2ds expressed as β′G−1β

■ impose constraints g(j)(0) = g(j)(ω) for j = 0, 1, 2.

Derived basis has only 1 fixed term: constant, with constrained basis functions:
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For some data sets, log-likelihood function is bimodal:

■ several fitted splines may be obtained from standard algorithms

■ fitted spline dependent on initial value of smoothing parameter
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■ This feature common to smoothing & penalised splines

■ Usually indicates incompatibility between data & spline model - cubic spline
model assumes non-linear trend dominated by low frequency components

■ Problem not flagged in software packages
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