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Higher-order networks

Higher-order networks are characterising the
interactions between two ore more nodes and

are formed by nodes, links, triangles,
tetrahedra etc.
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d=2 simplicial complex d=3 simplicial complex



Simplicial complex models




Higher-order structure and dynamics
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Summary of
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Betti number 1

Fungi network from Sang Hoon Lee, et. al. Jour. Compl. Net. (2016)



Topological signals,
Hodge Laplacian



Topological signals

Simplicial complexes and networks can sustain dynamical variables (signals)
not only defined on nodes but also defined on higher order simplices
these signals are called

~




Topological signals

Citations in a collaboration network

Speed of wind at given locations

Currents at given locations in the ocean
Fluxes in biological transportation networks
Synaptic signal

Edge signals in the brain



Graph Laplacian in terms of
the boundary matrix

The graph Laplacian of elements
(Loy) ;= Oki = 4
Can be expressed in terms of the 1-boundary matrix

as

_ T
Loy =By By




Graph Laplacian

The graph Laplacian matrix is defined as
L= 6,k — a;
The graph Laplacian is a semi-definite positive matrix that in a
connected network has eigenvalues
O=p <pp<pus<...<py
The Laplacian is key for describing diffusion processes and

the Kuramoto model on networks and constitutes a natural
link between topology and dynamics

The Fiedler eigenvalue Up is the smallest non-zero eigenvalue



Harmonic eigenvectors of
the graph Laplacian

The quadratic form of the graph Laplacian
reads

1
T — 2 : 2
i,]

Therefore the harmonic eigenvectors of the
graph Laplacian are constant on each
connected component of the graph and zero
everywhere else.



Harmonic homology of a
graph

e The dimension of kernel of the graph Laplacian is given by the
zero Betti number f,.

* The Betti zero indicates the number of connected components of
the graph. Note that since any non-empty graph has at least one

connected component we have f, > 1.

* The harmonic eigenvectors are the eigenvectors that are constant
on each connected component and zero everywhere else.



Higher-order Laplacian

The higher order Laplacians can be defined in terms of the incidence
matrices as

_RT
L,,=B

-
B T Bpag1 B

[n+1] "

The higher order Laplacian can be decomposed as

L[n] — Ldown + L

[n] [n]’

with
down _ pT
Lig" =By Bpa,

up __ T
L[n] - B[n+1]B[n+1]°



Fidler eigenvalues of up and down
Hodge Laplacians

The up and down Hodge Laplacians
are positive semi-definite matrices that have eigenvalues

O<p Sup<p3 < ... <piy

There are two Fiedler eigenvalues

down , up
pp " Py

being the smallest non-zero eigenvalues of

down up
L[n] and L[n]

respectively




Harmonic eigenvectors of
the Hodge Laplacian

The dimension of the kernel of the Hodge Laplacian

is given by the corresponding Betti number

The harmonic eigenvectors

are associated to the generators of the homology




Eigenvectors of the

L, Hodge Laplacian
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Eigenvectors of the
L, Hodge Laplacian
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Visualisation of Hodge Laplacian
harmonic eigenvectors

Harmonic eigenvectors
localize around the cavities
of the simplicial complex

ey
e

Muhammad, A. and Egerstedt, M., e
Control using higher order Laplacians :
in network topologies.
In Proc. of 17th International Symposium on
Mathematical Theory
of Networks and Systems (pp. 1024-1038) 2006
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Clustering of molecular
molecules based on homology

Clustering based on harmonic eigenvectors Clustering based on non-harmonic eigenvectors

Wee et al. (2023)




Hodge decomposition

The Hodge decomposition implies that topological signals can be decomposed

in a irrotational, harmonic and solenoidal components

RD: = im(B[Tn]) @ ker(L,) ® im@B,, )

which in the case of topological signals of the links can be sketched as

<> A

Irrotational component Harmonic component Solenoidal component
Gradient Flow Curl Flow



Hodge decomposition

e Every n cochain X € C” can be decoposed in a unique way into
three components

[1] _ y d d +
x11 = L[i)]wn(L[lo]wn) X

— Il 2 h
X=X X = L

e where for n = 1 we have that X[l], x[?! are the irrotational and

solenoidal components respectively and X"“™ is the harmonic

component.

 Note that in the above formula A™ indicates the pseudo-inverse of
the matrix A



Boundary Operators

Boundary operators

[1,2,3]
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® ®
The boundary of the boundary is null
G[l] Discrete divergence\
_ TpT _
BE_I] Discrete gradient C B[n—llB[n]_O’ B[n]B[n—I] _9

QE_Z] Discrete Curl J




Higher-order
Diffusion of topological signals



Heat diffusion on a graph

Given a graph G and a node signal x € CV defined on it,
the heat diffusion process X = X(¢) obeys

» This process characterises the relaxation of the dynamics

toward the harmonic (constant) eigenvector of the graph
Laplacian

» This process is important in many applications and its
relevance is also enhanced by the fact that it provides a
linearised dynamics of more complex nonlinear processes



Heat diffusion on a graph

Consider the heat diffusion process
X =—Ligx, x(0)=x
Where x(1) = 2 cﬂ(t)uﬂ is decomposed into the eigenvectors of

H
the graph Laplacian.

Expressing the heat diffusion equation into the basis of the
eigenvector of the graph Laplacian we obtain

¢, = — HC, with solution ¢, (f) = cﬂ(O)e_”t



Heat diffusion on a graph

Assume that X, = €; is localised on node I then
we have cﬂ(O) = uﬂ(i)

x50 =) e u,(j) = hi.j)
JZ
Which is called the heat kernel.

In the figure visualisation of heat kernels

Bronstein, et.al, P., 2017. Geometric deep learning:
going beyond euclidean data.
IEEE Signal Processing Magazine, 34(4), pp.18-42.



Heat diffusion on a graph

Given the dynamics
_ _ﬂt o .
X0 =Y e (i)
U
The relaxation is toward to homogenous state

lim x,(£) = up(D)ug()j)

— o0

since U o 1 this limit does not depend on j!
If there is a spectral gap,
the characteristic temporal scale for the relaxation
to equilibrium is given

= 1/pp




Diffusion of topological sighals

Given a simplicial complex % and a n-cochain x € C" we
define the higher-order diffusion as




Diffusion of topological sighals

According to Hodge decomposition we can decompose the signal
as

x = x[1 4 x[2] 4 xharm
where

up 11 —_ v d 2] — harm __
L xth = L xie = Ly, X = 0

The diffusion dynamics X = — L, X therefore reads
for these components

Xharm =0 Xharm(o) — Xgarm
o1l — _1d (1] [1] — wl1]
x'H = L[,;)]W”X x'H(0) = X,

(2] — _ 7 up (2] (2] — wl2]
X = L[n]x X (O)—X0




Higher-order diffusion

Higher-order diffusion relaxes to the harmonic eigenvectors

In presence of a spectral gap
. down up
in the spectrum of L[n] and of L[n]

the irrotational and the solenoidal components
relax to the steady state with characteristic scale

el = 1/pdovn, o2 = 1/

correspondingly.




1-Laplacian flow

1-Laplacian flow
stabilises to the
single non-trivial co-homology
eigenvector
on this simplicial complex

Muhammad, A. and Egerstedt, M.,
Control using higher order Laplacians
in network topologies.
In Proc. of 17th International Symposium on
Mathematical Theory
of Networks and Systems (pp. 1024-1038) 2006




Properties of higher-order
diffusion

Higher-order diffusion stabilises on the homological eigenvectors
- The homological eigenvectors are localised on holes
- The Betti number can be zero or greater than one.
Therefore a steady state is reached only if the Betti number is positive.

In presence of more than one hole the stabilisation of the flow on one
more more holes will depend on the initial condition

We distinguish two Fiedler eigenvalues,
one for the up one for the down Hodge Laplacian

In presence of a spectral gap these Fiedler eigenvalues characterise the
characteristic scale of relaxation of the irrotational and solenoidal
component correspondigly



Kuramoto
model
on a graph



Synchronization is a
fundamental dynamical process
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Founding fathers of
synchronisation

Christiaan Huygens .
Yoshiki Kuramoto



Kuramoto model on a
network

Given a network of N nodes
defined by an adjacency matrix a
we assign to each node a phase obeying

9—w+62a sm( )

where the internal frequencies of the nodes
are drawn randomly from

w ~ N(Q,1)

and the coupling constantis ¢

The oscillators are non-identical



Order parameter for
synchronization

We consider the global order parameter R

1.0
N 0.8
> e
i1 ] 0.6
which indicates the
0.4
synchronisation transition such that for 0l
lo—0,.| <1 0.0
0 1

0 foro <o,

c(o — ac)l/2 foroc > o,

Kuramoto (1975)



Topological Kuramoto
model
on simplicial complexes



The higher-order simplicial
Kuramoto model

O12)

How to define
the higher-order Kuramoto model
coupling higher dimensional
topological signals?

A. P. Millan, J. J. Torres, and G.Bianconi,
Physical Review Letters, 124, 218301 (2020)



Topological signals

Simplicial complexes can sustain dynamical variables (signals)
not only defined on nodes but also defined on higher order simplices
these signals are called topological signals
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Standard Kuramoto model in
terms of boundary matrices

The standard Kuramoto model, can be expressed in terms

of the boundary matrix Bpjjas

- S
0 = — oB;;sinB 0

where we have defined the vectors

0 = (61,02, ...,Qi...)T

w = (0, w,, ...,a)i...)T

and we use the notation SiIl X

to indicates the column vector where the sine function is taken element wise



The standard Kuramoto model
In terms of boundary matrices

Let us show that the Kuramoto equations
N
J=1

can be also written in matrix form as

- —_
0 = w — oB;;sinB,0

Using the explicit expression of the elements of the boundary matrix B[l]

1 i =1ij]
[Bilie =4 1 it £ = [j,i]

0 otherwise




Proof

To prove the above statement we write element wise the equations
o . o7
0 =w —oBsinB; 0

obtaining

O=w,—o Z [B1ylizsin Z [By11] 19
2 J

For the link £ = [i, j] we obtain

J



Proof

To prove the above statement we write element wise the equations
o . o7
0 =w —oBsinB; 0

obtaining

Z J

For the link £ = [, i] we obtain

[Buliesin | X [Buylef;| = aysin(6; — 6)) = — asin(¢; — 6)
j



Linearised dynamics

Let us study the linearisation of the Kuramoto dynamics.

Let us start from the nonlinear system

. . . T

Using sin X ~ X we get the linearised dynamics




Linearised Dynamics

The linearised dynamics is dictated by the graph

The phases and the intrinsic frequencies can be decomposed in the basis of the
eigenvectors of the graph Laplacian

01) =) cdu,
U
w = Z O)Mllﬂ
U

The dynamical equation in this basis reduce to

¢, = W, — oUc,



Linearised Dynamics
(continuation)

The dynamical equations

¢, = W, — ojc,

have solution

Charm(t) = charm(o) + wharmt
4);

() =— (1 — &™) + ¢ (0)e ™
gz
Therefore the harmonic mode undergoes an unperturbed motion,

while the non-harmonic modes are freezing with time.



The harmonic mode of the
non-linear Kuramoto model

Let us now study the full nonlinear Kuramoto equation

T

narm & 17 of the graph Laplacian

Let us consider the harmonic eigenvector u
_ T
Lo = By By,
Since the graph Laplacian is symmetric we have uZarmB[l] =0

du, . .0
By multiplying (1) by u}  we obtain < hgm ) _ (W @)
t

Therefore the harmonic mode oscillates at constant frequency also in the nonlinear
Kuramoto model.




Topological signals

We associate to each

n-dimensional simplex « a phase ¢_

For instance for n=1 we might associate to each link a oscillating flux

The vector of phases is indicated by

d=Cnchy.)T




Topological synchronisation

We propose to study the higher-order Kuramoto model

defined as

. _ A . T T .
P =w-— aB[n+1] sin B[n+1]¢ — aB[n] sin B[n]qﬁ,

where is the vector of phases associated to n-simplices

and the topological signals ad their internal frequencies are indicated by
p=(..0,.)"

&=(.0,..)"

with the internal frequencies

o, ~ N(Q,1)



Topologically induced

many-body interactions
@

®

© ®

(121 = @p1p) — oSz — Pz + P — 0 [Sin(¢[12] — ¢po3p + sin(py3 + ¢[12])] ,
P13 = @3+ o sin(@pz — Pz + Py — o [sin(¢[13] + Ppiap) + sin(yyz)+ Pz — 45[34])]’
D3 = Dz — 0 SIN(Ppz — Pz + P — 0 [sin(¢[23] — $pop + i@z + Ppozy — 4)[34])]’

D341 = Dp3g— 0 [Sin(¢[34]) — sin(y 3 + Ppo3; — ¢[34])],



Linearised Dynamics

The linearised dynamics is dictated by the Hodge-Laplacian

The harmonic component of the signal oscillates freely

The other modes freeze asymptotically in time




In the Topological Kuramoto model the
dynamics of the synchronised state
is localised on the

n-dimensional holes

AWy P A

= u , ()
At < harm >

The free dynamics is localised on harmonic components




The harmonic mode of the
non-linear Kuramoto model

Let us now study the full nonlinear Topological Kuramoto equation
o A - pT T o
¢ =w —oB,,sinB, ¢ —oB,;sinB, P, 2

Let us consider any harmonic eigenvector uZarm of the Hodge Laplacian

— T T
L[n] - B[n+1]B[n+1] + B[n]B[n]'

Since Hodge decomposition applies u;L-armB[n+1] = uZarmB[Tn] =0

dlw, .. R
By multiplying (2) by w, we obtain < hjlr;n $) = (uy,,,,, D)

Therefore the harmonic modes oscillate at constant frequency also in the
nonlinear Topological Kuramoto model.



If we define a higher-order Kuramoto model on
n-simplices,
(let us say links, n=1) a key question is:
What is the dynamics induced
on (n-1) faces and (n+1) faces?

i.e. what is the dynamics induced on nodes and triangles?

Edge dynamics Upward projection Downward projection



Projected dynamics on
n-1 and n+1 faces

A natural way to project the dynamics is to use the
incidence matrices obtaining

¢[+] — BE;l+1]¢ Discrete curl

¢ = = B[n]¢ Discrete divergence



Projected dynamics on
n-1 and n+1 faces

Thanks to Hodge decomposition,
the projected dynamics
on the (n-1) and (n+1) faces

decouple

Pt =B, > — aL{mﬂ sin(¢p*1)

¢! =B, d — oLV sin(@!™)




Proof

Starting from the Topological Kuramoto dynamics
h — A2 RT T o
¢ =w—0B, sinB, ¢ —oB,;sinB, @,

We apply BT+1] to both sides of the equations getting for ¢[+] = [n+1]¢

[+] — T T T
1) [n+1] — 0B, ;sin B[nH]qb oB, . 1B sin B¢,
i T d T T _
Using B, , 1B 1) = L2 By, 1By, = 0 we get

!t = B[Tn+1] 0 Lflofii sin ¢!

A similar derivation holds for getting the equation for (]5[_]



Simplicial Synchronization
transition
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Order parameters using the
n-dimensional phases

R
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Order parameters using the
n-dimensional phases
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Only if we perform

the correct topological filtering

of the topological signal

we can reveal higher-order topological synchronisation




Explosive topological
synchronisation

We propose the Explosive Topological Kuramoto model

defined as

1 A — . T T .
¢ =& — oR! ]B[n+1] sinBy, ¢ — aRH]B[n] sin B, ¢




Projected dynamics

The projected dynamics on
(n+1) and (n-1) are now coupled

by their order parameters

pltl — BT 5 — [—1y [down] ; [+]
¢ =B, ;@ —oR L[n+1] sin(¢p'™)

hl—-1 — S — gRUTIL P] g [-]
¢ =B, —oR Lo sin(¢p'™")




The explosive
simplicial synchronisation transition

0.8
0.6/ —-Simple
] |+ Explosive
0.4 [ / |
¢ |
0.2 / |
0 2 il



Order parameters
associlated to n-faces
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Higher-order synchronisation
on real Connectomes
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Coupling topological signals
of different dimer)sion

R. Ghorbanchian, J. Restrepo, J.J. Torres and G. Bianconi (2020)



Explosive synchronisation of
globally coupled topological signals
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Annealed solution on
random networks

The annealed solution
captures
the backward transition

Reveals that the transition
is discontinuous

Gives very reliable results
for connected networks
that are not too sparse
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Solution on a fully
connected network

Fully connected
networks undergo
a discontinuous
synchronisation transition
of topological signals
defined on nodes and links
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Global synchronisation of
topological signals on
simplicial and cell complexes



Cell complexes

(a) (b)

(c) (d) (e)

ADIA S A

(a) (b) (c) (d) (e)




Global synchronisation
on graphs



Uncoupled dynamics of
iIdentical node oscillators

Consider coupled identical oscillators defined on the nodes,
captured by the 0-cochain X € C° with value X; € R4 on

each node i .

In absence of interactions these nodes obey the same

dynamics

i _ fx
— = I(X.
dt ’

with arbitrary non-linear function f(x) .




Global synchronisation
on graphs

Consider the coupling of the oscillators implemented with the
graph Laplacian leading to the coupled dynamics

dx;

—L = f(x,) — GZ [Lyo];; h(x;)
p

dt

with arbitrary non-linear functions f(x), h(x).

The global synchronisation is a state in which

X; = X; Vi,j € Qy(F)



Global synchronisation
state of topological signals

The global synchronisation is a state in which

The coupled dynamics

dx;

— = f(Xl) - GZ [L[O]]ij h(XJ)
p

dt

admits always a global synchronisation state in which all the node haves
the same dynamics.

In fact the harmonic eigenvector of the graph Laplacian is constant

uharm x 1




Master Stability Function
for graphs

The Master Stability Function establishes the dynamical
conditions ensuring the stability of global synchronisation.

It depends on the non-zero spectrum of the graph

Laplacian.

It is based on an expansion around a stable solution of the
uncoupled dynamics.




Global synchronisation

of higher-order topological
signals



Uncoupled dynamics of
topological signals

Consider coupled identical oscillators defined on the n-simplices,
captured by the n-cochain X € C" with n > 0 and values x, € R

on each n-simplex r .

In absence of interactions these simplices obey the same dynamics

r
= f(x,)
dt '
To insure invariance of the uncoupled equations upon change of
orientation of each simplex we must impose that f(X) is an odd

function, i.e. f(x) = — f(—Xx).

dx




Proof

dax

Consider the uncoupled dynamics = f(Xr)

dt

Upon change of orientation of the simplex r we have X, - — X..

X
Therefore the dynamics becomes — = — f(—x,)

dt

Imposing invariance of the dynamics under this change of
orientation implies that the function f(X) must be odd, i.e.

f(x) = —1(—x).




Coupled identical
topological signals

e The coupled dynamics obeys

dx,
= f(x) — azﬂ: L], h(x,)

e where in order to ensure invariance under change of

orientation of the simplifies h(x) should be an odd
function.




Global synchronisation
state of topological signals

Recall that for higher order topological signals, the signs of
the signal is determined by the orientation of the simplex, i.e.

X(a,) = = X(=a,)

For instance a positive sign of an edge flux is relative to the
orientation chosen for that edge.

It follows that the state of global synchronisation is a
state in which

x, =uXwithuy. € {1,-1} Vre Q (X)




Global topological
synchronisation

e |t follows that the coupled dynamics

dx,
dt

= f(x,) = 0 ) [L1y],q h(x))
q

e can lead to global synchronisation only if the kernel of the
Hodge Laplacian L[n]admits an eigenvector u with elements
of constant absolute value.

e Therefore for identical higher-order oscillators there are not
only dynamical but also topological constraints to global
synchronisation




Topological conditions for
global synchronisation

Assume u is a vector of elements |u,.| = 1.

Global synchronisation can only happen if there is one such vector u in
the kernel of the Hodge Laplacian L,,;.

Therefore we must have B, ju = 0, uTB[n =0

This implies that:

On simplicial complexes topological signals of odd dimension can
never achieve global synchronisation

Cell complexes of any dimension can achieve global
synchronisation overcoming topological obstruction




Topological constraints for
global synchronisation

a) c) 11-1-10..0 e)
oo (S0 0

. SRR 1
YN C) R = P &
) 0 Y S
(1,1,1)By = -1 #£0 Bl<;>=(,> (1,1,1,1)Bs = 0
1 .



Master Stability Function for
simplicial and cell complexes

The Master Stability Function establishes the dynamical
conditions ensuring the stability of global synchronisation.

It depends on the non-zero spectrum of the Hodge
Laplacian.

It should account for the possible degeneracy of the zero
eigenvalue (a dimension of the kernel greater than one)

It is based on an expansion around a stable solution of the
uncoupled dynamics.
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Global Topological
synchronisation

m

e On cell complexes forming square
lattices topological signals of any
dimension can achieve global
synchronisation

20
* On simplicial complexes topological

signals of odd dimension can never

achieve global synchronisation
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20 Carletti, Giambagli, Bianconi (2022)



Properties of global synchronisation
of topological signals

e The globally synchronised state is aligned with an harmonic
eigenvector of the Hodge Laplacian, i.e. requires
topologies with holes that span the entire simplicial or
cell complex.

Since the Hodge Laplacian has an harmonic space with
dimension given by the Betti number, the same simplicial or
cell complex can sustain different globalised states (see
tori)




Example of manifolds sustaining
global synchronisation

Synchronisation of (n — 1)-dimensional Synchronisation of any k-dimensional
topological signal topological signal

e

n-dimensional hypersphere
n-dimensional torus (cell complex)

Betti numbers

:BO — ﬁn—l —

Pp=0for0<k<n-—1 ﬂk=<”;1>

Betti numbers



Higher-order structure and dynamics

e

Higher-order
networks \

. - Combinatorial - -
Simplicial Statictionl H Simplicial
Geometry H Properties Topology

Higher-order

dynamics




- Spectral properties of the Laplacians

Diffusion
 Heat diffusion on graphs
* Higher-order diffusion of topological signals

> Topological Kuramoto model
 The Kuramoto model on graphs
 The Topological Kuramoto model

Global synchronisation of topological signals
» Global synchronisation ongraphs
» Global synchronisation on simplicial and cell complexes
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