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Network Topology and Geometry
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are expected to have impact in a variety of applications,
ranging from

brain research to biological transportation networks
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Simplicial complex models
of arbitrary dimension
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Simplicial complex

SIMPLICIAL COMPLEX

A simplicial complex K is formed by a set of simplices that is closed
under the inclusion of the faces of each simplex.
The dimension d of a simplicial complex is the largest dimension of its

simplices.

If a simplex a belongs

to the simplicial complex 7%
then every face of «

must also belong to %

H = (11,121,131, [41, [5], [6],
6 [1,21,1,3],[1,41, 1,51, 2,31,
[3.,4], 13,51, [3.,61, [5,6],
[1,2,3],[1,3,4],[1,3,5],[3,5,6]}



Dimension of a simplicial complex

The dimension of a simplicial complex %
IS the largest dimension of its simplices

This simplicial complex
has dimension 2

H = (11,121,131, [41, [5], [6],
6 [1,21,1,3],[1,41, 1,51, 2,31,
[3.,4], 13,51, [3.,61, [5,6],
[1,2,3],[1,3,4],[1,3,5],[3,5,6]}



Pure simplicial complex

PURE SIMPLICIAL COMPLEXES

A pure d-dimensional simplicial complex is formed by a set of d-
dimensional simplices and their faces.

Therefore pure d-dimensional simplicial complexes admit as facets only
d-dimensional simplices.

A pure d-dimensional simplicial complex
is fully determined by an
adjacency matrix tensor

with (d+1) indices.
For instance this simplicial complex
is determined by the tensor

1if (r,s,p) € X

P 0 otherwise



Example

A simplicial complex #is pure
if it is formed by d-dimensional simplices
and their faces

PURE SIMPLICIAL COMPLEX SIMPLICIAL COMPLEX
THAT IS NOT PURE



Cell complexes

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)




Combinatorial and statistical
properties

of simplicial complexes



Generalized degrees

The generalized degree ky (o) of a m-face «

in a d-dimensional simplicial complex is given by the number
of d-dimensional simplices incident to the m-face «.

2

1

ky o(@) Number of triangles
incident to the node «

k2,1(@) Number of triangles

incident to the link «
6

[Bianconi & Rahmede (2016)]



Generalized degree

The generalized degree ky (o) of a m-face «

in a d-dimensional simplicial complex is given by the number
of d-dimensional simplices incident to the m-face a.
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Combinatorial properties of the
generalised degrees

The generalized degrees & ,,(a) of a pure d-dimensional simplicial complex
can be defined in terms of the adjacency tensor a as

k(@)= Y ay

a'€@ (N)|a2a

The generalized degrees obey a nice combinatorial relation
as they are not independent of each other.
In fact for m’>m we have

1
k(@) = Y k@),

d—m a'€@(N)|a'2a
m —m




m-connected components




Geometrical properties
of simplicial complexes



Incidence number

To each (d-1)-face a we associate the

incidence number

na == kd’d_l(a) - 1

2

6
[Bianconi & Rahmede (2016)]
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Discrete manifolds

COMBINATORIAL CONDITIONS FOR DISCRETE MANIFOLDS

A discrete manifold M of dimension d is a pure simplicial complex that
satisfies the following two conditions:

* itis (d — 1)-connected;

* every two d-simplices a, @’ belonging to the simplicial complex K
either overlap on a (d — 1)-face of K, i.e. a Na’ € S4_1(K) or do not
overlap, i.e. aNna’ = 0.

e allits (d — 1)-faces a have an incidence number n, € {0, 1}.



Discrete manifolds

If n,takes only values », € (0.1}
each (d-1)-face is incident at most to two
d-dimensional simplices.

NOT A MANIFOLD MANIFOLD



Bulk and area of a discrete manifold

BOUNDARY AREA AND BULK OF A DISCRETE MANIFOLD

The boundary A of a d-dimensional discrete manifold M is formed by the
set of all (d — 1)-dimensional faces @ € M with incidence number n, = 0
and by all their faces. The area A is the number of (d — 1)-dimensional
faces in the boundary A. The bulk 8 of a discrete manifold M is formed
by the set of all the faces that are not in the boundary (A.



Regge curvature

Extends the notion of Ricci curvature of simplicial complexes
Applies to discrete manifolds

REGGE CURVATURE

The Regge curvature (Regge (1961)) is associated to each (d — 2)-
dimensional face @ € S;_>(M) of a discrete d dimensional manifold
M. The Regge curvature R, for a face @ € S;_»(M) is defined as

Ra={27r—9(, if v € B, @2)

m—46, otherwise,

where 6, is the sum of all dihedral angles of the d-dimensional simplices
incident to the face «.



Regge curvature and generalized degrees

If the discrete manifold is formed
by a set of geometrically identical d-simplices
the Regge curvature
Is simply related to the generalized degree of the (d-2)-faces, i.e.

271' — eokd,d_z(a) if a € !@,

T — eokd,d_z(a) OtherWise,

a

where @, indicates the dihedral angle of each d-simplex.



Combinatorial curvature
for planar triangulations

For planar triangulations the curvature is localised on the nodes. Assuming all triangles equilateral,
and the curvature expressed in units 2z we obtain

. For anode in the bulk we have | R

The node has zero curvature for k, , = 6 (the node is incident to 6 triangles), negative and positive

curvature of k, (i) > 6,k; ((i) < 6 respectively

. For anode in the boundary we have

The node has zero curvature for k; ((i) = 3 (3 triangles), negative and positive curvature of
ko o(i) > 3.k, o(i) < 3 respectively



Gauss-Bonnet theorem

GAUSS-BONNET THEOREM

According to the Gauss-Bonnet theorem the sum over the Regge curvatures
R, of all the (d — 2)-faces a of the discrete d-dimensional manifold M is

a topological invariant proportional to the Euler characteristic y of the
manifold, i.e.

Z Ry =2my. 4.5)

a€Sg . a-1(M)



romov hyperbolici

Global notion of curvature for a networks
Applies to general networks (also not manifolds)

b

GROMOV §-HYPERBOLICITY

A network is said to be §-hyperbolic, if it obeys the §-slim property, i.e. if
there is a 0 > 0 such that for any triple of nodes r, s, g connected by the
shortest paths P,5, Py, Prq the union of the 6-neighbourhood of any pair
of shortest paths, say Ns(#rs) U Ns(Ps4) includes nodes belonging to the

third path, i.e.®y,.

For the actual algorithm see
Albert, R., DasGupta, B. and Mobasheri, N., 2014.
Topological implications of negative curvature for biological and social networks.
Physical Review E, 89(3), p.032811.



Examples of 6-hyperbolic networks

Tree NGF
(b) 5=0 (c) o=1



Ollivier-Ricci curvature

The Ollivier-Ricci curvature is a local curvature

defined on each link/edge of a network

The Ollivier-Ricci curvature is defined as
W(mi, mj)

D=1

Where d(i, j) is the distance between the nodes i and j and where W(m;,, m;) is the

optimal transport distance between the two distributions m;, m, localised on

the neighbours of node i and the node j respectively.




Ollivier-Ricci curvature

The distribution m; can be for instance defined as (mj is defined similarly)
a ifi=1
m(i’) = 3 (1 — a)lk, if i’ € N(i)
0 otherwise

The optimal transportation distance is defined as

Wi, m®) = infy, Y d(i', jYM(", )
i',j'ev
where M(i’, j') is the mass transported between node i’ and node j’ and M is the optimised
transport function among all functions that satisfy

D MG =m(i) Y M) = mj)
J i




Hausdorff dimension

HAUSDORFF DIMENSION OF NETWORK MODELS

Given a class of network models, such as d-dimensional lattices or
ensembles of networks with given degree distribution, for which we can
consider a series of models with increasing network size N, the Haudorft
dimension dy scales for N > 1

D ~ N'/4u (4.6)

where D is the diameter of the network model with N nodes, i.e. the
maximum among all the shortest distances between any two pair of nodes

in the network.



Graph Laplacian

The graph Laplacian matrix is defined as

The graph Laplacian is a semi-positive matrix that in a
connected network has eigenvalues

O=AISAZSA3S'AN

The Laplacian is key for describing diffusion processes and
the Kuramoto model on networks and constitutes a natural
link between topology and dynamics

The Fiedler eigenvalue /12 is also called spectral gap



Spectral dimension

In geometrical network models

Ay = 0 for N -

and we say that the spectral gap “closes”

If the density of eigenvalues p(A) scales like

p(A) ~ A%~ for ) <« 1

ds is called the spectral dimension



Relation among the spectral
and the Hausdorff dimension

The spectral and the Hausdorff dimension are distinct
notions.

The Hausdorff and the spectral dimensions are related by
the inequalities

dH
dy+ 1

A small-world network with infinite Hausdorff dimension
can have a finite spectral dimension with dS >




Square d-dimensional
lattice

The eigenvalues 4 of the Laplacian

of a d-dimensional lattice are given by
Y, 4sin¥(g/2) ~|q’
i€{1,2,3,....d}

where ( is the wave-number characterising the eigenvectors of the
Laplacian (Fourier basis) with

The spectral dimension of a d-dimensional lattice is d¢ = d




Square 1-dimensional
lattice

The eigenvalues A of the Laplacian

of a 1-dimensional lattice are given by

A =2(1 —cos q) = 4sin*(g/2) ~ g>

where ¢ is the wave-number characterising the eigenvectors of the
Laplacian (Fourier basis) with

2nn

1=




Spectrum of a 1D lattice

The Laplacian of a 1D lattice with periodic boundary conditions (a cycle) has elements

Ll] == 25l_] - Cll] = 251_] - 5xj,xi+] - 5xi’xi_1

The eigenvector of the Laplacian are given by the Fourier modes with wave-number g, i.e.
u, = e'di

The eigenvalue problem 2 Lju; = Aw;, reads

J
—_ — i —i —
ZLijuj— 2u,—up g+ u_ =2 —e—e Dy, = Ay,
J

with 4 = [2 — !9 — ¢719] = 2(1 — cos(qg))

1
For |g| < 1 we have cos(qg) = 1 — qu and hence 1 ~ ¢



Periodic boundary
conditions 1D lattice

The periodic boundary conditions imposed

q-L

u, =e'

Therefore they imply
gL =2zn n €N

The only admitted wavenumber are given by

21
q =Tn ne{0,1,2,.,L-1}




Square 2-dimensional
lattice

The eigenvalues A of the Laplacian

of a 2-dimensional lattice are given by

A = 4sin¥(q,/2) + 4sin*(q,/2) =~ |q’

where ( is the wave-number characterising the eigenvectors of the
Laplacian (Fourier basis) with

2nn;

q; = 7




Spectrum of a 2D lattice

For a 2D lattice with periodic boundary conditions (a torus)

the Laplacian has matrix elements

The eigenvectors of the Laplacian has Fourier modesu; = !9 = ¢1(@xXitdy¥)

From the eigenvalue problem Z Liju; = du,;

J

We deduce the eigenvalue
AQ) =[2— €% — ™) +[2 — €' — 7] = 2(1 — cos(qy) + 2(1 — cos(g,))

Therefore for | q| < 1 we obtain A(q) ~ qf + qu =|q |2




Periodic boundary
conditions

Imposing the periodic boundary conditions the
only admitted wavenumber have components

., L—-1)

L L-1)




Square d-dimensional
lattice

The eigenvalues 4 of the Laplacian

of a d-dimensional lattice are given by
1= Z 4sin*(q;/2) ~ | q B
i€{1,2,3,....d}

where ( is the wave-number characterising the eigenvectors of the
Laplacian (Fourier basis) with

2nn;
L

q; =




Spectral dimension of a
d-dimensional lattice

The number An of models corresponding to wavenumber of absolute value

d
L -
lql.lq| + Alqlis given by An = (2—ﬂ> Q,1q1“"'Alq]

d
L
In the limit L — oo we have (2—> Q,1q|'d|q| = Np(A)dA
T

1
Using |q| =AY d|q| = 5/1_1/2d/1 we obtain

,0(/1) o ld/2—l

Therefore the spectral dimension of a d-dimensional lattice is d




Fiedler eigenvalue of a network
with spectral dimension

The Fiedler eigenvalue of a connected network with spectral dimension
can be estimated from

1
p(A)di = —
J A<4, N

Assuming p(1) « A(s=2)/2

we get
Ay o N~ 2ds

Therefore the spectral gap closes, i.e.

Ay = 0,as N = o0




Heat diffusion on a graph

Consider the heat diffusion process
X=—-Ljux, x(0)=x,
Where X(t) = )" c)(,

y)
is decomposed into the eigenvectors of the graph Laplacian.

Expressing the heat diffusion equation into the basis of the
eigenvector of the graph Laplacian we obtain

¢, = — Ac; with solution c,(1) = CA(O)e_M




Heat diffusion on a graph

Assume that X; = €; is localised on node [ then
we have ¢,(0) = u,(i)
x50 = ) e Muu(j) = by, j)
'j A A AN
A
Which is called the heat kernel.

In the flgure visualisation of heat kernels Bronstein, et.al, P., 2017. Geometric deep learnin:

going beyond euclidean data.
IEEE Signal Processing Magazine, 34(4), pp.18-4.



Heat diffusion on a graph

Given the dynamics

OED RO
A
The relaxation is toward to homogenous state

tlim xJ(t) = up(1)uy(J)

since llo X 1 this limit does not depend on j!

If there is a spectral gap,
the characteristic temporal scale for the relaxation
to equilibrium is given

r=1/4,

However what happens if 4, — 0 ?




Return-time probability

Given an initial condition localised at node i
We have
x(1) = Y e Mu (i)
yl

Averaging over all possible initial conditions we get that
the probability of return at time t is given by

1
p(t) = ~ Z Z e~ Mu, (iDuy(i) ~ Jp(ﬂ)e‘l’dﬂ
PR

Assuming that the network has a spectral
dimension the relaxation is power-law
rather than exponential!

pt) o< 174"

A drunken man always finds his was home
while a drunken bird may be lost forever



Higher-order spectral dimension

Some geometrical simplicial complexes
do not have just a single spectral dimension

but they display a vector of spectral dimensions

dg = (@), d M, ....,d %)

with one spectral dimension for each m-order up-Laplacian




Higher-order spectral dimension

In particular the higher-order spectral dimension

IS observed when the density of non-zero eigenvalues of
the m-order up Hodge Laplacian L[m]

scales as

D (/1) x ﬂd}m]/Z—l




The possible coexistence
of several different higher-order spectral dimensions
implies that the diffusion
taking place on simplices of different order

can have significant differences

although the simplices belong to the same simplicial complex




Which structural
properties determine the
presence of a spectral
dimension?



Growing network models



Networks
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the interactions between the elements

of large complex systems.



Randomness and order
Complex networks

LATTICES COMPLEX NETWORKS RANDOM GRAPHS

a Human Disease Netwgrk o ® 0. Py

> |- A1 Aol }

Simple Body-centered Base-centered Face-centered
orthorhombic orthor! h mbic orthorhombic orthorhombic

W G g &

Simple Base-centered Triclinic
Rhombohedral Monoclinic monoclinic

Scale free networks

Small world Totally random

Regular networks With communities Binomial degree

Symmetric ENCODING INFORMATION IN

THEIR STRUCTURE distribution



Universalities

* Small-world: dy=

10"
[Watts & Strogatz 1998] B . B
» X
0%} \\'
- ° = \
* Scale-free: pyy~rrfork>1 ¢t .
[Barabasi & Albert 1999]
withy € 23] ' E
10° o - , 10° 0147._.“..?;;&‘
10 10 10 10 100 100 100 100 10

(k) — const (k%) -
for N -

° Modularity: Local communities of nodes
[Fortunato 2010]




Models

e Non-equilibrium growing network models:

Explanatory of emergent properties of complex networks
-BA model, BB model

e Deterministic models:
Hierarchical models

-Apollonian network, Pseudo-fractal network

« Maximum entropy ensembles:

Maximum random graphs satisfying a set of constraints
-Configuration model, Exponential Random Graphs



Growth by uniform attachment of links
GROWTH

At every timestep we add a new node with m edges
(connected to the nodes already present in the system).

UNIFORM ATTACHMENT

The probability II; that a new node will be connected to

node i is uniform 1

11,
N

Exponential

&

-1 Ie
10 L L"";“‘
%0

Q "
-3
100 L o© L B A

P(k)

10°

107 |

(a) k

[Barabasi & Albert, Physica A (1999)]



Barabasi-Albert model
GROWTH

At every timestep we add a new node with m edges
(connected to the nodes already present in the system).

PREFERENTIAL ATTACHMENT

The probabillity I1; that a new node will be connected to
node / depends on the degree k; of that node

[Barabasi et al. Science (1999)]



Master equation approach for the
Barabasi-Albert model

We write the master equation for the average number of nodes N(k)
that have degree k at time t

Nt+1(k) = N'(k) + mII(k — D)N'(k — D[] — 5k,m] — mII(k)N'(k) + 5k,m

where

ko
H(k):EwﬂhZ:]ijzth

We assume that asymptotically

N(k) ~ tP(k) for t > 1




Master equation approach for the
Barabasi-Albert model

In the asymptotic limit we have therefore

(k—1) k
(t+ DP(k) =tP(k) +m P(tk— D[l = 6,,,] —m—P(k) + 6,
2m ’ 2m ’

Which lead to the time independent equations

P(k) = (k ; D P(k — D[1 = §,,,] - gP(k) + 81,

Whose solution is

k—1
P(k)y=——Pk—-1)fork >m
k+2

P(m)=m+2

Leading to

Cent ) TR o o .

P(k) =2m ~
I'm) T'(k+2)




Energies
of the nodes

Not all the nodes are the
same!

©
Let assign to each node i "@
an energy € from a "@
E—

g(¢) distribution



The Bianconi-Barabasi model

Growth:

—At each time a new node and m links are added to the network.
—To each node i we assign a energy ¢; from a g(e) distribution

Preferential attachment towards
high degree low energy nodes:

—Each node connects to the rest of the network by m links attached preferentially to
well connected, low energy nodes.

[G. Bianconi, A.-L. Barabasi 2001]



Self-consistent solution of the
Bianconi-Barabasi model

We write the master equation for the average number of nodes N/(k)
with energy ¢ that have degree k at time t

N2 (k) = NA(k) + mT(k — 1,e)N!(k — D[1 = 8,1 — mII(k, ©ON'(k) + g(€)5.,

where

—pey,
Ik, €) = ‘ ~ with Z = Z kje_ﬂej

J
We assume self consistently that

, 7z
lim—— =C=¢ePH
=00 2mt

and that

Ni(k) ~ tP (k) for t > 1




Self-consistent solution of the
Bianconi-Barabasi model

We obtain that

ple—p)
P(k) = epew H ) 1M

~ k77 with v.=1+ ePle=m)
[(m) Lk + 1 4 efle=w)

Therefore we can evaluate the degree distribution

P(k) = Jdeg(a)&(k)

By imposing the self-consistent equation we find that

1
ePle—p) — 1

I = "deg(e)

Where the Bose-Einstein occupation

indicates the number of links attached to nodes of energy ¢




Bose-Einstein condensation
in complex networks

Scale-Free Bose-Einstein
Phase Condensate Phase

p<p, p> b

[G. Bianconi, A.-L. Barabasi 2001]



Quantum statistics
in growing networks

Scale-free network Complex Cayley tree
Bianconi-Barabasi model (2001) Bianconi (2002)
&) eo
- © S ®
@ ®." ?
o e

o

Bose Einstein statistics Fermi statistics



The Complex Growing Cayley tree model

Growth:

—At each time attach a old node with n,=0 to m links are added to the network and
then we set n=1.

—To each node /i we assign a energy ¢ from a g(e) distribution

Attachment towards low energy nodes:

—The node ito which we attach the new “unitary cell” is chosen with probability

e (1-m)
Zje_ﬂej (1 o n])




Energy distribution of the nodes at the bulk of the growing
Cayley tree network

3 | I | I

o B:
» B=10




Apollonian networks

Apollonian networks are formed by linking the
centers of an Apollonian sphere packing
They are scale-free and are described by the Apollonian group

P2
(b)

P3

[Andrade et al. PRL 2005]
[Soderberg PRA 1992]



Modularity

Modularity is a measure to characterise the significance of a given community assignment in a graph.
In particular it measures whether nodes belonging to the same community
are more connected among themselves than in a null hypothesis.

Given a network of NV nodes with each node i assigned to the community c;

and L links the modularity M is defined as

1
M=— Z, [A;; = p;16(c;, )

where p;; is the probability that in the null model node i and node j are linked.

The typical choice for the null model is the configuration model with

_ kik;
Pi 2L



Emergent properties
of simplicial complexes



Emergence of communities



Triadic closure

Starting from a finite connected network with ny>2 nodes

(1) GROWTH : At every timestep we add a new node with 2 edges
(connected to the nodes already present in the system).

(2) TRIADIC CLOSURE: The first link is attached to a random
node, the second link with probability p closes a triangle and with
probability 1-p is connected randomly

-,

random

=]
3

<---:--.




Emergence of communities

G. Bianconi et al.
PRE (2014)



Topological moves



Topological moves

Topological moves enumerate the ways of adding/removing simplices
without changing the topology of a discrete manifold

A
\ 4

(b)

’

Topological moves in 3D

A
AVA

N




Topological moves

(a)
1-3
+—>
3-1

3D Topological moves
Projected in 2D

O O

ET
NN




Emergent geometry



Network Topology and Geometry
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are expected to have impact in a variety of applications,
ranging from

brain research to biological transportation networks
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Is the network geometry of complex systems
an a priori pre-requisite
for the network evolution
or is an emergent phenomenon of the
network dynamics?



Emergent geometry

In the framework of emergent geometry
networks with a geometry
are generated
by non-equilibrium dynamics
that is purely combinatorial,
i.e. is independent of the network geometry



Emergent geometry
in 2-dimensional
simplicial complexes



Emergent network geometry

The model describes
the underlying structure of a simplicial complex
constructed by gluing together triangles by a
non-equilibrium dynamics.
Every link Is incident to
at most k triangles with k>1.

Wu, Menichetti, Rahmede, Bianconi, Scientific Reports (2015)



Saturated and unsaturated links

Saturated link
p15=0




Process (a)

Pij

We choose a link (i,j) with probability H(i H=
and glue a new triangle the link Zr,s Prs




Process (b)

We choose a two adjacent unsaturated links
and we add the link between the nodes at distance 2
and all triangles that this link closes
as long that this is allowed.

(b)




The model

Starting from an initial triangle,
At each time

‘process (a) takes place
and

‘process (b) takes place
with probability p<1.



Discrete Manifolds
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A discrete manifold of
dimension d=2 is a
simplicial complex
formed by triangles
such that every link is
incident to at most two
triangles.

Therefore the emergent
network geometry for our
model with k = 2 is a
discrete 2d manifold.



Scale-free networks

In the case k =

a scale-free network
with high clustering,
significant community
structure, finite
spectral dimension is
generated.

Planar for p=0.




Emergent preferential attachment

If we add triangles to link with uniform probability,

i.e. we add a new triangle to a link (7, j) with probability
a;;

=T

the probability 11; of adding a new link to a node i is given

by

k;
[I.=2

i.e. obeys preferential attachment




Emergent preferential attachment

If we add triangles to link with uniform probability,

i.e. we add a new triangle to a link (i, j) with probability
a;

=T

the probability 11, of adding a new link to a node i is given by

a.:

Y

M= 2m= 2
J J

Using

1
k; = Zaij L=52kj
J

J
we obtain

ki

Tk




Curvature distribution

Planar (R) = 1 Planar (R) = 1
Exponential degree distribution Non-planar Scale-free degree distribution
Exponential negative tail of Broad Power-law negative tail of
Local curvatures degree distribution Local curvatures

2
(R") <coasN — oo (R?*) > c0oas N = o
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Spectral dimension of emergent

geometry
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Properties of emergent network
geometries

Small world
*Finite clustering
*High modularity
*Finite spectral dimension
Which are properties of many
real network datasets.



Properties of real datasets

Datasets N L (0) C M dg
1L8W (protein) 294 1608 | 5.09 | 0.52 | 0.643 | 1.95
1PHP (protein) 219 1095 | 4.31 | 0.54 | 0.638 | 2.02
1AOP chain A (protein) 265 1363 | 4.31 | 0.53 | 0.644 | 2.01
1AOP chain B (protein) | 390 2100 | 494 | 0.54 | 0.685 | 2.03
Brain-(coactivation) 4° 638 | 18625 | 2.21 | 0.384 | 0.426 | 4.25
Internet 46 22963 | 48436 | 3.8 | 0.35 | 0.652 | 5.083
Power-grid®® 4941 6594 19 | 0.11 | 0.933 | 2.01
Add Health (school61)*” | 1743 | 4419 6 0.22 | 0.741 | 2.97




Network Geometry with Flavor



Network Geometry with Flavor

2 NETWORK GEOMETRY WITH FLAVOR (NEUTRAL MODEL) [29]

At time ¢ = 1 the NGF is formed by a single d-dimensional simplex. At
each time ¢ > 1 the model evolves according to the following principles.

4 * GROWTH : At every timestep a new d-dimensional simplex formed
by one new node and an existing (d — 1)-face is added to the simplicial
complex.

e ATTACHMENT: The probability that the new d-simplex is glued to a
3 (d — 1)-dimensional face @ depends on the flavor s € {—1,0, 1} and is
given by

Hc[ys] . (1 + sna)

= S+ sng)’ 60

Bianconi & Rahmede (2016)



Attachment probability

The attachment probability to (d-1)-dimensional faces is given by

1 — iIf s =—1
H[S] (1 + Sl’la) 1 na .fS O
Y (1 +sny,) ' L

a d,d_l(a) |f S = 1

For s=-1 we obtain discrete manifolds n,= 0,1
For s=0 we have uniform attachment , = (),1,2,3.4...

For s=1 we have a generalised preferential attachment 1, = 0,1,2,3,4...



Pachner move 1-d for NGF with s=-1




Emergence of preferential attachment

The probability of attaching a d-dimensional simplex

Hd,5(k) = <

to a 5 -dimensional face is given by

([ 2k

ford+s—-6—-1=-1

(d— Dt
d=6—1+s)k+1—5s

ford+s—6—-1>0
(d+ s)t

Therefore for d — 6 > 1 — s we observe a generalised preferential attachment
as a consequence of the geometry and dimensionality of of the NGF



Effective preferential attachment in
d=3 s=-1

t=3 t=4

Node i has generalized degree 3 Node i has generalized degree 4
Node i is incident to 5 faces with n=0 Node i is incident to 6 faces with n=0



Manifold

Dimension d=1

Uniform Preferential
attachment attachment
X
v &% ¢
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Exponential BA model



Dimension d=2

Manifold Uniform Preferential
attachment attachment

Exponential Scale-free Scale-free



Dimension d=3

Manifold Uniform Preferential
attachment attachment

Scale-free Scale-free Scale-free



Degree distribution

For d+s=1
PBl(k) = <L>k_d 1
d 7 \d+1 d+1
For d+s>1
Plsl(k) = d+s Il +@2d+9)/(d+s - 1)] [k—d+d/(d+s—1)]
4T 2d4s  Tldid+s—1]  Tk—d+1+Qd+9)/d+s— 1)

NGF are always scale-free for d>1-s

* For s=1 NGF are always scale free
* For s=0 and d>1 the NGF are scale-free

* For s=-1 and d>2 the NGF are scale-free
[Bianconi & Rahmede (2016)]



Degree distribution of NGF
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Generalized degree distributions

The generalized degree distribution depends on both d and m
and can be calculated with the master equation approach

getting the following exact asymptotic results

P 1y — {(d— hid  for k=1, For m+d+s=0
d,m 1/d for k =2.
k
Pl = (4= m+1L For m+d+s=1
O =\G51) aom

[lk+ (1= $)/(d—m+s—1)]
[s] —
Fin® = T dr Did—mts— DI For m+d+s>1

[Bianconi & Rahmede (2016)]



Generalized degree distribution

Flavor s =-—1 s=0 s=1

m=d-1 Bimodal Exponential Power-law
m=d-?2 Exponential Power-law Power-law
m<d-3 Power-law Power-law Power-law

The generalized degree distribution depends
on the flavor s and on the dimension m of the faces

[Bianconi & Rahmede (2016)]
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NGF an hyperbolic network geometry

NGF for flavor s=-1 are discrete hyperbolic
manifolds

NGF of any flavor and any dimension are
6-hyperbolic networks

[with 6=1 in the case of simplicial
complexes]



What is a “natural” random geometry?



Randomness and order
Random graph

A fully connected network -trivial/no geometry- where some

random links are selected
p=0.4

Complete graph Random graph



Randomness and order

Percolation
A square lattice -known, given geometry-

where only few links are preserved
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A growing cluster on -emergent- hyperbolic lattice
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Planar projection of the d=3 NGF with s=-1




The relation to
Trees

SRS

Line graph of the NGF



Growing weighted simplicial complex

We considered a weighted
network model in which we
assume:

 that each new node can attach
m simplices to the rest of
network

 that simplices can increase
their weight in time

We found deep correlations
between the weights of the
simplices and the network
topology.

Courtney Bianconi (2017)



Growing weighted simplicial complex

* As long as m = 1 these simplicial
complexes have a finite spectral
dimension.

« For m > 1 these simplicial complexes
acquire a spectral gap, i.e. a finite

Fiedler eigenvalue in the limit N — oo
* This reveals the mean-field nature of

these simplicial complexes with m > 1
(characterised by the loss of the local
attachment of new simplices)




Triangulated Maximally Filtered Graph

Triangulated Maximally Filtered Graphs can be used represent
the backbone of correlation matrices
As NGF they are constructed by adding simplices attached to faces
but they are following a deterministic construction and the new simplices are
attached in order to maximise a gain function based on data

Algorithm 1: TMFG algorithm

input : A dense matrix W with positive weights, e.g. a matrix of squared correlation coefficients

output: A sparse matrix, TMFG, a filtered version of W fulfilling the planarity constraint

// Initialise a tetrahedron th; e.g. by using the highest edge-weights, this gives
four triangles ti, t2, t3, t4 as in Fig. 1

thi < MaxTetrahedron(W) // Tetrahedron with highest overall total gain function

[t1,t2,ts, t4] < Triangles in thy;

Triangles < [t1, 2,3, tal;

VertexList <— List of vertices of W not belonging to thi; @

MaxGain <— Vector indexed by triangles as in Eq.5;

BestVertex < Vector indexed by triangles as in Eq.6;

MaxGain < UpdateMaxGain(VertexList, [t1, t2, t3, ta]); Ty
BestVertex < UpdateBestVertex(VertexList, [t1, t2, t3, ta]); [
p < number of vertices in VertexList; (fl @
// Insert p—4 vertices via T» T
fori=1top—4do
(%)) U3 Vo V3

// Get the triangle with the highest score ...
tave = argmax {MaxGain(teyz)} ;

toyz € Triangles
// ...and the corresponding vertex
w; = BestVertex(tabe) ;
[taystay,tas] < triangles created by the insertion of v; into tabc;
VertexList < VertexList \ v; ;
Triangles < Triangles U {ta,, tas, tas } \ tabe;
Separators < Separators U tapc;
MaxGain  UpdateMaxGain(VertexList, Triangles);
BestVertex < UpdateBestVertex(VertexList, Triangles);
end
return TMFG;

Massara, Di Matteo, Aste 2017



Cell complexes

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)




Network Geometry with Flavor

Consider pure cell complexes formed by gluing identical regular
polytopes along d-1 faces

« Starting from a single d-dimensional regular polytope

(1) GROWTH

At every timestep we add a new d-dimension polytope
glued to an existing (d-1)-face).

(2) ATTACHMENT :

The probability that the new polytope will be connected to a face «
depends on the flavor s=-1,0,1 and is given by

1 — (1 +sn,)
v X (L+sny)




Power-law exponent v

depends also on the nature of the regular polytope that
constitute
the building block of the cell complex

s=—1 s=0 s=1

« Simplicial complexes with
power-law degree distribution ' N/A NA 3
are always scale free

d=2

p-polygon N/A P 1+ %5
e Other cell complexes are ferrabedron 3 21 21
o cube 5 3.—1; 3
scale-free only if they have e o 2
flavor s=1 (preferential icosshedron 7 53 5
attachment) i_d
:)entachoron i-l; §$ 5-1{
esseract 1 E .
. lélji(;clllccachoron g % gé) g
« Some cell complexes in 120-cel o, % 31
d=2,3,4 are not even scale-
free for flavor s=1 Cimplex 2iqly 2444 244
cube 3+d’;:2 3+r11 3

orthoplex 3+ _,73?15',_—1 3+ 57— 3




Modularity of NGFs

Network Geometry with Flavor
Displays emergent community structure

Simplices Hypercubes Orthoplexes

0.85 [|—4— s=-1
—{— s=0
—@— s=1




Hausdorff dimension

NGFs as well as Apollonian and pseudo-fractal simplicial complexes

have an infinite Hausforff dimension
dH =0
Therefore the spectral dimension satisfies
dg > 2
The Area of these simplicial complexes

(number of (d-1)-faces with zero incidence number)

is

Ax N



Laplacian spectrum of NGFs

s=1
Simplicial
Complexes
10 102 10° 102 10 102 10° 102
A
()
Hypercubes
10_4 e 10_4 OXY)
10 102 10° 102 10 102 10° 102 10 1072 10° 102
A
10°
. (9) (h) (i)
<, 1072
N Orthoplexes
1 0_4 S8 10- 4 SE 10- 4 &E
10 102 10° 102 10 1072 10° 102 10 1072 10° 102
A A A

The spectral dimension depends
on d, on the flavor s and on the building block of the cell complex
Different colors indicate different dimensions d



Spectral dimension of NGF

s=-1 s=0 s=1
12 12 12 o
(@) (b) ©) Simplicial
o 6 / o 6 o 6 Complexes
0 0 0
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
d d d
3 3 3
@ () ®_zzs++| Hypercubes
&2 /IJ/I—-I‘H 22 I/I/I—I‘I—f o,
1 1 1
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
d d d
3 3 3
© (n) () Z/I/H*E%
» 5 /Z/I/P}f » 5 ;/I/I/H% » 5 Orthoplexes
© © ©
1 1 1
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8



Higher-order spectral dimension of NGF

dg = (@), d;", ....d")

. . 10° r
Different Higher-order ®) |
%i" 1072 ,’,
Spectral dimensions . /
102 1010'2 10" 10° 10’
A
coexist for the same L~ P
d=3 dimensional NGF »
10-4 2 1 0 1
102 10 10° 10 10
Corresponding to orders o '
10 e
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O(blue), 1(red) 2 (yellow) £, 107 “
10 ’
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NGF and non-universal spectral dimension

The spectral dimension of NGF can change
depending on:

« The dimension d of the simplicial complex

* The nature of the cell constituting the building block of
NGF (simplex, hypercube, orthoplex)

 The order of the Laplacian



Renormalization group predictions
of the spectral dimension
on Apollonian and pseudo-fractal

simplicial complexes



Apollonian and pseudo-fractal
simplicial complexes

(@) (b)

* We start at
* Ateach time t>1, we glue a d-simplex

A. to every (d-1)-face added at the previous time (Apollonian
simplicial complexes)

B. to every (d-1)-face of the simplicial complex (pseudo-fractal
simplicial complexes)



Spectral dimension of Apollonian
networks and effect of randomness

d=2 d=3

PN

pc(4)

d =2 ' 3

57 T1n(9/5)

Asymptotic expression for/ > 1

Ind 3
d =-2 ~ 21n(d)|d - = + 0(1/d)| .
In[1 — 1/d — 1/d?)] 2

[G. Bianconi and S.N. Dorogovstev (2020)]



Higher-order spectral dime

nsi

Apoﬁ%

N

nian
dim d=2 d=3 d=4 d=5 d=6 d=1 d=8 d=9 simplicial
m—d—3 — 37813 4sM2 51979 570072 611932 64ma9 61596  complexes
m=d—-4 —  — 739962 848212 935664 100913 107253  11.2833
m=d-5 —  — — 11729 129719 140179 149217 157178
m=d-6 —  — — — 165732 179293 191017  20.1346
m=d-1 —  — - — — 218337 232741 245434
m=d-8 —  — — — — — 274423 28.9478
m=d-9 —  — — — — — — 333496
dim d=2 d=3 d=4 d=5 d=6 d=1 d=8 d=9
m=d-2 316993 40 464386 5.16993 561471 60 633985 6.64386
m=d-3 — 531562 586924 628083 660535 687191 7.0975 7.2928l
m=d-4 — — 837610 899732 949705 991547 10276  10.5934 -
m=d-5 — — — 127140 137232 144689 15057  15.5463 Pseudo-fractal
m=d-6 — — — — 173048 185860 19.5562 20.3283 : f i
m=d-1 — — — — — 222618 237403  24.897 simplicial
m=d-8 — — — — — —  27.5667 29.1935
m=d-9 — — — — — — 7 na complexes

V. Reitz, G. Bianconi (2020)]



Network Geometry with Flavor

With fithess of the faces



Energy of the m-faces

ENERGY AND FITNESS OF THE FACES OF THE NGF SIMPLICIAL
COMPLEXES [29]

The energy &, of the m-dimensional face @ indicates its intrinsic (non-
topological) properties. The energy &[,) of a node r is a non negative
number drawn from a given distribution g(e). The energy of a face a of
dimension m > 0 is the sum of the energies of the nodes belonging to it,

i.e.
Ea = ) Elrl. (5.14)

The fitness associated to a m-dimensional face @ describes the rate at
which the face increases its generalized degree and is given by

I (5.15)

where B > 0 is a parameter called inverse temperature. For g = 0 all
the fitnesses are the same, and equal to one, while for g > 1 the small
difference in energy leads to big differences in the fitnesses of the faces.

Energy of a link

Ene

©)

@ &1+ &

rgy of a triangle

E1 T & T &

=)



Network Geometry with Flavor

NETWORK GEOMETRY WITH FLAVOR (WITH FITNESS) [29]

At time ¢ = 1 the simplicial complex is formed by a single d-dimensional
simplex. Each node r of this simplex has energy &[] drawn from a g(&)
distribution. The energies of the higher-dimensional faces are calculated
according to Eq. (5.14).

* GROWTH : At every timestep a new d-dimensional simplex formed
by one new node and an existing (d — 1)-face is added to the simplicial
complex. Each new node r has energy &[,; drawn from a g(¢) distribu-
tion. The energies of the new higher-dimensional faces are calculated
according to Eq. (5.14).

* ATTACHMENT: At every timestep the probability that the new d-
simplex is connected to the existing (d — 1)-dimensional face a depends
on the flavor s € {—1,0, 1} and on the inverse temperature B > 0 and is
given by

5 e Pea(1 + sny)

S Y e P (14 sng)

For g = 0 the NGF (with fitness of the m-faces) reduces to the neutral
NGF model, i.e. H([f I reduces to Eq. (5.6).

!

(5.16)

Bianconi & Rahmede (2016)



The average of the generalized degree
of the NGF over 6-faces of energy ¢

<[kd,m(a) —1]le, = 8>

follows
a regular pattern

Flavor s=-1 s=0 s=1

m=d-1 Fermi-Dirac Boltzmann Bose-Einstein
m=d-?2 Boltzmann Bose-Einstein Bose-Einstein
m<d-3 Bose-Einstein Bose-Einstein Bose-Einstein
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Conclusions

Non-equilibrium models of simplicial complex are a fundamental
framework to address the problem of emergent geometry and
emergent community structure

NGF display statistical properties depending on the dimension of
the faces that are considered

NGF display a dependence of their spectral dimension with the
nature topological dimension, the dimension of the building block
from which they are formed, and the order at which the diffusion
is studied

NGF with fitness of the faces display emergent quantum statistics



Higher-order structure and dynamics
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