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are expected to have impact in a variety of applications, 

ranging from  

brain research to biological transportation networks 

 Network Topology and  Geometry



Simplicial complex models  
of arbitrary dimension

Emergent Hyperbolic Geometry 
Network Geometry with Flavor (NGF) 

[Bianconi Rahmede ,2016 & 2017]

Maximum entropy model 
Configuration model  

of simplicial complexes 
[Courtney Bianconi 2016]
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Figure 2 A 0-simplex is a node, a 1-simplex is a link, a 2-simplex is a triangle,
a 3-simplex is a tethrahedron and so on.

Source: Reprinted from [38] ©SISSA Medialab Srl. Reproduced by permission of IOP
Publishing. All rights reserved.

Figure 3 The faces of a 3-simplex (tetrahedron) are four 0-simplices (nodes),
six links (1-simplices) and four triangles (2-simplices).

Source: Reprinted from [38] ©SISSA Medialab Srl. Reproduced by permission of IOP
Publishing. All rights reserved.

SIMPLICIAL COMPLEX

A simplicial complex K is formed by a set of simplices that is closed
under the inclusion of the faces of each simplex.
The dimension d of a simplicial complex is the largest dimension of its
simplices.

Simplicial complexes represent higher-order networks, which include interac-
tions between two or more nodes, described by simplices. In more stringent
mathematical terms a simplicial complex K is a a set of simplices that satisfy
the following two conditions:

(a) if a simplex ↵ belongs to the simplicial complex, i.e. ↵ 2 K then any face
↵0 of the simplex ↵ is also included in the simplicial complex, i.e. if ↵0 ⇢ ↵
then ↵0 2 K;

(b) given two simplices of the simplicial complex ↵ 2 K and ↵0 2 K then either
their intersection belongs to the simplicial complex, i.e. ↵ \ ↵0 2 K or their
intersection is null, i.e. ↵ \ ↵0 = ;.

Here and in the future we will indicate with N the total number of nodes
in the simplicial complex and we will indicate with N[m] the total number
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𝒦
If a simplex 𝛼 belongs  
to the simplicial complex  
then every face of  𝛼 
must also belong to  𝒦

𝒦 = {[1], [2], [3], [4], [5], [6],
[1,2], [1,3], [1,4], [1,5], [2,3],
[3,4], [3,5], [3,6], [5,6],
[1,2,3], [1,3,4], [1,3,5], [3,5,6]}



Dimension of a simplicial complex
The dimension of a simplicial complex   
is the largest dimension of its simplices  
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This simplicial complex  
has dimension 2

𝒦

𝒦 = {[1], [2], [3], [4], [5], [6],
[1,2], [1,3], [1,4], [1,5], [2,3],
[3,4], [3,5], [3,6], [5,6],
[1,2,3], [1,3,4], [1,3,5], [3,5,6]}



Pure simplicial complex
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of m-dimensional simplices in the simplicial complex (note that N[0] = N).
Furthermore we will indicate with Qm(N) the set of all possible and distinct
m-dimensional simplices that can be present in a simplicial complexK including
N nodes. With Sm(K) we will indicate instead the set of all m-dimensional
simplices present in K.

Among the simplices of a simplicial complex, the facets play a very relevant
role.

FACET
A facet is a simplex of a simplicial complex that is not a face of any
other simplex. Therefore a simplicial complex is fully determined by the
sequence of its facets.

A very interesting class of simplicial complexes are pure simplicial com-
plexes.

PURE SIMPLICIAL COMPLEXES

A pure d-dimensional simplicial complex is formed by a set of d-
dimensional simplices and their faces.
Therefore pure d-dimensional simplicial complexes admit as facets only
d-dimensional simplices.

This implies that pure d-dimensional simplicial complexes are formed exclusively
by gluing d-dimensional simplices along their faces. In Figure 4 we show an
example of simplicial complex that is pure and an example of simplicial complex
that it is not pure.

An interesting question is whether it is possible to convert a simplicial
complex into a network and viceversa and how much information is lost/retained
in the process. Given a simplicial complex it is always possible to extract a
network known as the 1-skeleton of the simplicial complex by considering
exclusively the nodes and links belonging to the simplicial complex. Conversely,
given a network, it is possible to derive deterministically a simplicial complex
defining its clique complex obtained by taking a converting every (d + 1)-clique
of the network in a simplex of dimension d. The clique complex is a simplicial
complex. In fact, if a simplex is included in a clique complex, then all its
sub-simplices are also included. Moreover any two simplices of the clique
complex have an intersection that is either the null set or it is a simplex of the
clique complex.

Hypergraphs are an alternative representations of higher order networks that
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arsp = {1 if (r, s, p) ∈ 𝒦
0 otherwise

A pure d-dimensional simplicial complex 
is fully determined by an 
adjacency matrix tensor 

with  (d+1) indices. 
For instance this simplicial complex  

is determined by the tensor 



Example
A simplicial complex     is  pure  

if it is formed by d-dimensional simplices  
and their faces  
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PURE SIMPLICIAL COMPLEX SIMPLICIAL COMPLEX  
THAT IS NOT PURE



Cell complexes

12 Series Name

and in general open d-dimensional cells are topological spaces homeomorphic
to an open ball. Therefore 0-dimensional cells are nodes, 1-dimensional cells
are links, and therefore do not di�er from 0-dimensional and 1-dimensional
simplices. However 2-dimensional cells includes m-polygons such as triangles
(2-dimensional simplices), squares, pentagons ect. Similarly 3-dimensional
cells includes the Platonic solids, such as tethrahedra (3-dimensional simplices),
cubes, octahedra, dodecahedra, and icosahedra (see Figure 5). Interestingly in
dimension d = 4 the regular polytopes are more than in dimension d = 3 (being
6), but for any dimension d > 4 there are only three types of regular (convex)
polytopes: the simplex, the hypercube and the orthoplex.

A cell complex K̂ has the following two properties:

(a) it is formed by a set of cells that is closure-finite, meaning that every cell is
covered by a finite union of open cells;

(b) given two cells of the cell complex ↵ 2 K̂ and ↵0 2 K̂ then either their
intersection belongs to the cell complex, i.e. ↵ \ ↵0 2 K̂ or their intersection
is a null set, i.e. ↵ \ ↵0 = ;.

In this book we will discuss mostly the properties of simplicial complexes
however in a number of places we will refer to results applying to more general
cell complexes.

2.2 Generalized degrees of simplicial complexes

For networks a key local structural property is the degree of the nodes. The
degree of a node characterizes only the local structure of the network around the
node, its number of interactions. However the statistical properties associated
with the degree are instead important global properties of the network that
can significantly a�ect its global dynamics as in the case of scale-free degree
distributions [1]. It is therefore natural to desire to extend the notion of degrees
also to simplicial complexes. The generalized degrees [12, 29, 39] are the
fundamental combinatorial properties describing the structure of simplicial
complexes. Interestingly, in simplicial complex not only nodes can be associated
to a generalized degrees, but also links and higher dimensional simplices can be
associated to their generalized degrees.

GENERALIZED DEGREES AND FACET SIZES

The generalized degree [12,29,39] kd,m(↵) of a m-dimensional simplex ↵
indicates the number of d-dimensional simplices incident to the m-simplex
↵.



Combinatorial and statistical 
properties  

of simplicial complexes
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Number of triangles 
incident to the node 𝛼

Number of triangles 
incident to the link 𝛼 

Generalized degrees

[Bianconi & Rahmede (2016)]

k2,0(α)

k2,1(α)

The generalized degree kd,m(𝛼) of a m-face 𝛼  

in a d-dimensional simplicial complex is given by the number  

of d-dimensional simplices incident to the m-face 𝛼. 



The generalized degree kd,m(𝛼) of a m-face 𝛼  

in a d-dimensional simplicial complex is given by the number  

of d-dimensional simplices incident to the m-face 𝛼. 
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Generalized degree

i k2,0(i)
1 3
2 1
3 4
4 1
5 2
6 1

(i, j) k2,1(i, j)
(1,2) 1
(1,3) 3
(1,4) 1
(1,5) 1
(2,3) 1
(3,4) 1
(3,5) 2
(3,6) 1
(5,6) 1



kd,m(α) =
1

( d − m
m′ − m) ∑

α′ ∈𝒬d(N)|α′ ⊇α

kd,m′ 
(α′ ) .

The generalized degrees  of a pure d-dimensional simplicial complex 

can be defined in terms of the adjacency tensor  as


 

The generalized degrees obey a nice combinatorial relation 

as they are not independent of each other. 


In fact  for  m’>m we have 

kd,m(α)
a

kd,m(α) = ∑
α′ ∈𝒬d(N)|α′ ⊇α

aα′ 

Combinatorial properties of the 
generalised degrees



m-connected components
0-connected component  

1-connected components 

2-connected component

Simplicial complexA B

C

D



Geometrical properties  
of simplicial complexes



Incidence number
To each (d-1)-face 𝛼 we associate the  

incidence number 
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[Bianconi & Rahmede (2016)]

(i, j) n(i, j)

(1,2) 0
(1,3) 2
(1,4) 0
(1,5) 0
(2,3) 0
(3,4) 0
(3,5) 1
(3,6) 0
(5,6) 0

nα = kd,d−1(α) − 1



Discrete manifolds



Discrete manifolds 
If      takes only values   

each (d-1)-face is incident at most to two 
d-dimensional simplices. 
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nα ∈ {0,1}nα

NOT A MANIFOLD MANIFOLD



Bulk and area of a discrete manifold
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• it is (d � 1)-connected;
• every two d-simplices ↵, ↵0 belonging to the simplicial complex K,

(i.e. ↵, ↵0 2 Sd�1(M) either overlap on a (d � 1)-face of K, i.e.
↵ \ ↵0 2 Sd�1(K) or do not overlap, i.e. ↵ \ ↵0 = ;.

• all (d � 1)-faces ↵ 2 Sd�1(M) have an incidence number n↵ 2 {0, 1}.

The last condition, imposing that all the incidence numbers of the (d � 1)-faces
of the simplicial complex have value n↵ 2 {0, 1} guarantees that there are no
“fins" in the simplicial complexes (see Figure 21 for a visual representation
of the implications of having n↵ > 1). In a manifold M we will distinguish
between the bulk B and the boundary A including all the simplices that are not
in the bulk.

BOUNDARY AREA AND BULK OF A DISCRETE MANIFOLD

The boundary A of a d-dimensional discrete manifold M is formed by the
set of all (d � 1)-dimensional faces ↵ 2 M with incidence number n↵ = 0
and by all their faces. The area A is the number of (d � 1)-dimensional
faces in the boundary A. The bulk B of a discrete manifold M is formed
by the set of all the faces that are not in the boundary A.

4.2 Curvature

4.2.1 Regge curvature

In di�erential geometry a crucial role is played by the curvature of continuous
manifolds. When treating simplicial network geometry an important problem is
to formulate a good definition for the curvature of discrete simplicial complexes
which can be treated as the discrete counterpart of the notion used in di�erential
geometry. Di�erent definitions have been proposed in the literature [71–74, 74]
of which the Regge curvature is one of the most popular. The Regge curvature
[75, 76] is an important definition of curvature for discrete manifolds. This
definition has been given in [75] in order to propose a discrete version of general
relativity with the correct continuum limit.

REGGE CURVATURE

The Regge curvature [75] is associated to each (d � 2)-dimensional face
↵ 2 Sd�2(M) of a discrete d dimensional manifold M. The Regge



Regge curvature
Extends the notion of Ricci curvature of simplicial complexes 

Applies to discrete manifolds



Regge curvature and generalized degrees

If  the discrete manifold  is formed  
by a set of geometrically identical d-simplices  

the Regge curvature  
is simply related to the generalized degree of the (d-2)-faces, i.e.   

            

where  indicates the  dihedral angle of each d-simplex.

Rα = {
2π − θ0kd,d−2(α) if α ∈ ℬ,
π − θ0kd,d−2(α) otherwise,

θ0



Combinatorial curvature  
for planar triangulations

For planar triangulations the curvature is localised on the nodes. Assuming all triangles equilateral, 
and the curvature expressed in units  we obtain


• For a node in the bulk we have    


The node has zero curvature for  (the node is incident to 6 triangles), negative and positive 
curvature of  respectively


• For a node in the boundary we have    


The node has zero curvature for  (3 triangles), negative and positive curvature of 
 respectively

2π

Ri =
6 − k2,0(i)

6

k2,0 = 6
k2,0(i) > 6,k2,0(i) < 6

Ri =
3 − k2,0(i)

6

k2,0(i) = 3
k2,0(i) > 3,k2,0(i) < 3



Gauss-Bonnet theorem
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curvature of the node is null as locally the manifold can be embedded in
R

2, if however the node is incident to more than 6 equilateral triangles the
curvature of the node is negative; inversely if the node is incident to less than 6
equilateral triangles the curvature of the node is positive. The Regge curvature
has been proposed by Regge in order to formulate a discrete version of general
relativity. In this framework the Einstein-Hilbert action is substituted by the
Regge action.

REGGE ACTION

The Regge action S is given by

S =
’

↵2Sd,d�2(M
V↵R↵ (4.4)

where V↵ is the measure associated to the d � 2 face ↵, for d = 2 V↵ = 1
for each node of the manifold, for d = 3, V↵ indicates the length of the
link ↵, for d = 4, V↵ indicates the area of the triangle ↵.

The Regge action is know to reduce to the Einstein-Hilbert action in the
continuum limit. For this reason the Regge action is adopted for discrete
numerical investigations of classical general relativity, and it is also a reference
for quantum gravity approaches including Causal Dynamical Triangulation [77]
and Regge Calculus among others.

The Regge curvature satisfies the Gauss-Bonnet theorem that has been
originally derived for continuous manifolds.

GAUSS-BONNET THEOREM

According to the Gauss-Bonnet theorem the sum over the Regge curvatures
R↵ of all the (d � 2)-faces ↵ of the discrete d-dimensional manifold M is
a topological invariant proportional to the Euler characteristic � of the
manifold, i.e. ’

↵2Sd,d�1(M)
R↵ = 2⇡�. (4.5)

Therefore geometrical deformations of the simplicial complex such as stretching
or twisting do modify the dihedral angles of the simplicial complex and do
a�ect the Regge curvature locally. However globally the sum of the Regge
curvatures is not a�ected by geometrical deformations and is proportional to
the topological invariant �.

The Gauss-Bonnet theorem relates geometry to topology 
As it  states that that the sum of all the curvatures of a simplicial complex 
Are invariant under stretching and deformation of the underlying manifold



Gromov hyperbolicity

For the actual algorithm see
Albert, R., DasGupta, B. and Mobasheri, N., 2014. 

Topological implications of negative curvature for biological and social networks. 
Physical Review E, 89(3), p.032811.

Global notion of curvature for a networks 
Applies to general networks (also not manifolds)



Examples of 𝛿-hyperbolic networks



Ollivier-Ricci curvature

The Ollivier-Ricci curvature is a local curvature  

defined on each link/edge of a network  

The Ollivier-Ricci curvature is defined as 

Where  is the distance between the nodes  and  and where  is the 

 optimal transport distance  between the two distributions  localised on 

the neighbours of node  and the node  respectively. 

d(i, j) i j W(mi, mj)

mi, mj

i j

κw(i, j) = 1 −
W(mi, mj)

d(i, j)



Ollivier-Ricci curvature 
The distribution  can be for instance defined as (  is defined similarly) 

The optimal transportation distance is defined as 

where  is the mass transported between node i’ and node j’ and  is the optimised 
transport function among all functions that satisfy 

  

mi mj

M(i′ , j′ ) M

∑
j′ 

M(i′ , j′ ) = mi(i′ ) ∑
i′ 

M(i′ , j′ ) = mj( j′ )

mi(i′ ) =
α if i = i′ 

(1 − α)/ki if i′ ∈ N(i)
0 otherwise

W(mα
i , mα

j ) = infM ∑
i′ , j′ ∈V

d(i′ , j′ )M(i′ , j′ )



Hausdorff dimension
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Figure 22 Schematic representation of three nodes of a network skeleton of a
simplicial complex and the “triangle" formed by the shortest paths connecting
them. Networks that are �-hyperbolic have “slim-triangles" that obey Gromov

�-hyperbolicity with a small value of �.

4.3 The Hausdor� dimension of network models

A network is a metric space in which the distances between a pair of nodes
is given by the shortest length of any path connecting the two nodes. If we
have access to a measure of “length" of a link these shortest distances can be
real numbers, however in the majority of cases the hopping distance between
two nodes is considered, which measure the number of links of the shortest
path between them. The Hausdor� dimension is a very fundamental tool to
investigate the properties of continuous metric spaces. This concept can be
adapted to characterize network models in which we can tune the total number
of nodes N .

HAUSDORFF DIMENSION OF NETWORK MODELS

Given a class of network models, such as d-dimensional lattices or
ensembles of networks with given degree distribution, for which we can
consider a series of models with increasing network size N , the Haudor�
dimension dH scales for N � 1

D ⇠ N
1/dH , (4.6)

where D is the diameter of the network model with N nodes, i.e. the
maximum among all the shortest distances between any two pair of nodes
in the network.



Graph Laplacian
The graph Laplacian matrix is defined as 

The graph Laplacian is a semi-positive matrix that in a 
connected network has eigenvalues 

The Laplacian is key for describing diffusion processes and 
the Kuramoto model on networks and constitutes a natural 

link between topology and dynamics 

The Fiedler eigenvalue      is also called spectral gap

Lij = δijki − aij

0 = λ1 ≤ λ2 ≤ λ3 ≤ …λN

λ2



Spectral dimension

λ2 → 0 for N → ∞

In geometrical network models 


and we say that the spectral gap “closes” 

If the density of eigenvalues 𝜌(𝜆) scales like


dS  is called the spectral dimension 


ρ(λ) ∼ λdS/2−1 for λ ≪ 1



Relation among the spectral 
and the Hausdorff dimension

The spectral and the Hausdorff dimension are distinct 
notions.


The Hausdorff and the spectral dimensions are related by 
the inequalities 





A small-world network with infinite Hausdorff dimension 
can have a finite spectral dimension with 

dH ≥ dS ≥ 2
dH

dH + 1

dS ≥ 2



Square d-dimensional 
lattice

The eigenvalues  of the Laplacian 


of  a  d-dimensional lattice are given by  


                                                                                                                              



where  is the wave-number characterising the eigenvectors of the 
Laplacian (Fourier basis) with





λ

λ = ∑
i∈{1,2,3,…,d}

4 sin2(qi /2) ≃ |q |2

q

qi =
2πni

L
The spectral dimension of a -dimensional lattice is d dS = d



Square 1-dimensional 
lattice

The eigenvalues  of the Laplacian 


of  a  1-dimensional lattice are given by  


                                                                                                                              



where  is the wave-number characterising the eigenvectors of the 
Laplacian (Fourier basis) with





λ

λ = 2(1 − cos q) = 4 sin2(q/2) ≃ q2

q

q =
2πn

L



Spectrum of a 1D lattice
The Laplacian of a 1D lattice with periodic boundary conditions (a cycle) has elements 





The eigenvector of the Laplacian are given by the Fourier modes  with wave-number , i.e. 



The eigenvalue problem ,   reads

 


with 


For  we have  and hence  

Lij = 2δij − aij = 2δij − δxj,xi+1 − δxj,xi−1

q
ui = eiq⋅xi

∑
j

Lijuj = λui

∑
j

Lijuj = 2ui − ui+1 + ui−1 = (2 − eiq − e−iq)ui = λui

λ = [2 − eiq − e−iq] = 2(1 − cos(q))

|q | ≪ 1 cos(q) = 1 −
1
2

q2 λ ≃ q2



Periodic boundary 
conditions 1D lattice

The periodic boundary conditions imposed


 


Therefore they imply


  


The only admitted wavenumber are given by 


uL = eiq⋅L = u0 = 1

qL = 2πn n ∈ ℕ

q =
2π
L

n n ∈ {0,1,2,…, L − 1}



Square 2-dimensional 
lattice

The eigenvalues  of the Laplacian 


of  a 2-dimensional lattice are given by  


                                                                                                                              



where  is the wave-number characterising the eigenvectors of the 
Laplacian (Fourier basis) with





λ

λ = 4 sin2(qx /2) + 4 sin2(qy /2) ≃ |q |2

q

qi =
2πni

L



Spectrum of a 2D lattice
For a 2D lattice with periodic boundary conditions (a torus)


 the Laplacian has matrix elements        


 


The eigenvectors of the Laplacian has Fourier modes 


From the eigenvalue problem  


We deduce the eigenvalue





Therefore for  we obtain 

Lij = 4δij − aij

ui = eiq⋅ri = ei(qxxi+qyyi)

∑
j

Lijuj = λui

λ(q) = [2 − eiqx − e−iqx] + [2 − eiqy − e−iqy] = 2(1 − cos(qx)) + 2(1 − cos(qy))

|q | ≪ 1 λ(q) ≃ q2
x + q2

y = |q |2



Periodic boundary 
conditions

Imposing the periodic boundary conditions the 
only admitted wavenumber have components


qx =
2π
L

nx n ∈ {0,1,2,…, L − 1}

qy =
2π
L

ny n ∈ {0,1,2,…, L − 1}



Square d-dimensional 
lattice

The eigenvalues  of the Laplacian 


of  a  d-dimensional lattice are given by  


                                                                                                                              



where  is the wave-number characterising the eigenvectors of the 
Laplacian (Fourier basis) with





λ

λ = ∑
i∈{1,2,3,…,d}

4 sin2(qi /2) ≃ |q |2

q

qi =
2πni

L



Spectral dimension of a  
d-dimensional lattice

The number  of models corresponding to wavenumber of absolute value 

is  given by 


In the limit  we have 


Using  we obtain





Therefore the spectral dimension of a -dimensional lattice is 

Δn

|q | , |q | + Δ |q | Δn = ( L
2π )

d

Ωd |q | d−1Δ |q |

L → ∞ ( L
2π )

d

Ωd |q | d−1d |q | = Nρ(λ)dλ

|q | = λ1/2 d |q | =
1
2

λ−1/2dλ

ρ(λ) ∝ λd/2−1

d d



Fiedler eigenvalue of a network 
with spectral dimension

The Fiedler eigenvalue of a connected network with spectral dimension 
can be estimated from


 


Assuming  we get





Therefore the spectral gap closes, i.e.


∫λ<λ2

ρ(λ)dλ =
1
N

ρ(λ) ∝ λ(dS−2)/2

λ2 ∝ N−2/dS

λ2 → 0, as N → ∞



Heat diffusion on a graph

Consider the heat diffusion process  

 

Where   

is decomposed into the eigenvectors of the graph Laplacian. 

Expressing the heat diffusion equation into the basis of the 
eigenvector of the graph Laplacian we obtain 

 with solution  

·x = − L[0]x, x(0) = x0
x(t) = ∑

λ

cλ(t)uλ

·cλ = − λcλ cλ(t) = cλ(0)e−λt



Heat diffusion on a graph

Assume that  is localised on node  then 
we have  

  

Which is called the heat kernel. 

x0 = ei i
cλ(0) = uλ(i)

xj(t) = ∑
λ

e−λtuλ(i)uλ( j) = ht(i, j)

IEEE SIG PROC MAG 10

[IN4] Heat diffusion on non-Euclidean domains: An impor-
tant application of spectral analysis, and historically, the main
motivation for its development by Joseph Fourier, is the solu-
tion of partial differential equations (PDEs). In particular, we
are interested in heat propagation on non-Euclidean domains.
This process is governed by the heat diffusion equation, which
in the simplest setting of homogeneous and isotropic diffusion
has the form

(
ft(x, t) = �c�f(x, t)

f(x, 0) = f0(x) (Initial condition)
(35)

with additional boundary conditions if the domain has a
boundary. f(x, t) represents the temperature at point x at
time t. Equation (35) encodes the Newton’s law of cooling,
according to which the rate of temperature change of a
body (lhs) is proportional to the difference between its own
temperature and that of the surrounding (rhs). The proportion
coefficient c is referred to as the thermal diffusivity constant;
here, we assume it to be equal to one for the sake of simplicity.
The solution of (35) is given by applying the heat operator
Ht = e�t� to the initial condition and can be expressed in
the spectral domain as

f(x, t) = e�t�f0(x) =
X

i�0

hf0,�iiL2(X )e
�t�i�i(x)(36)

=

Z

X
f0(x

0)
X

i�0

e�t�i�i(x)�i(x
0)

| {z }
ht(x,x0)

dx0.

ht(x, x0) is known as the heat kernel and represents the
solution of the heat equation with an initial condition f0(x) =
�x0(x), or, in signal processing terms, an ‘impulse response’.
In physical terms, ht(x, x0) describes how much heat flows
from a point x to point x0 in time t. In the Euclidean case,
the heat kernel is shift-invariant, ht(x, x0) = ht(x � x0),
allowing to interpret the integral in (36) as a convolution
f(x, t) = (f0?ht)(x). In the spectral domain, convolution with
the heat kernel amounts to low-pass filtering with frequency
response e�t�. Larger values of diffusion time t result in lower
effective cutoff frequency and thus smoother solutions in space
(corresponding to the intuition that longer diffusion smoothes

more the initial heat distribution).
The ‘cross-talk’ between two heat kernels positioned at points
x and x0 allows to measure an intrinsic distance

d2t (x, x
0) =

Z

X
(ht(x, y)� ht(x

0, y))2dy (37)

=
X

i�0

e�2t�i(�i(x)� �i(x
0))2 (38)

referred to as the diffusion distance [30]. Note that interpret-
ing (37) and (38) as spatial- and frequency-domain norms
k · kL2(X ) and k · k`2 , respectively, their equivalence is the
consequence of the Parseval identity. Unlike geodesic distance
that measures the length of the shortest path on the manifold
or graph, the diffusion distance has an effect of averaging over
different paths. It is thus more robust to perturbations of the
domain, for example, introduction or removal of edges in a
graph, or ‘cuts’ on a manifold.

max

0

[FIGS4] Examples of heat kernels on non-Euclidean domains (man-
ifold, top; and graph, bottom). Observe how moving the heat kernel
to a different location changes its shape, which is an indication of
the lack of shift-invariance.

a spectral convolutional layer as

gl = ⇠

 
qX

l0=1

�k�l,l0�
>
k fl0

!
, (39)

where the n ⇥ p and n ⇥ q matrices F = (f1, . . . , fp) and
G = (g1, . . . ,gq) represent the p- and q-dimensional input
and output signals on the vertices of the graph, respectively
(we use n = |V| to denote the number of vertices in the
graph), �l,l0 is a k⇥ k diagonal matrix of spectral multipliers
representing a filter in the frequency domain, and ⇠ is a
nonlinearity applied on the vertex-wise function values. Using
only the first k eigenvectors in (39) sets a cutoff frequency

which depends on the intrinsic regularity of the graph and
also the sample size. Typically, k ⌧ n, since only the first
Laplacian eigenvectors describing the smooth structure of the
graph are useful in practice.

If the graph has an underlying group invariance, such a
construction can discover it. In particular, standard CNNs
can be redefined from the spectral domain (see insert IN5).
However, in many cases the graph does not have a group
structure, or the group structure does not commute with the
Laplacian, and so we cannot think of each filter as passing a
template across V and recording the correlation of the template
with that location.

In the figure visualisation of heat kernels Bronstein, et.al, P., 2017. Geometric deep learning:  
going beyond euclidean data.  
IEEE Signal Processing Magazine, 34(4), pp.18-42.



Heat diffusion on a graph

Given the dynamics 

  

The relaxation is toward to homogenous state 

  

since  this limit does not depend on j! 

If there is a spectral gap,  
the characteristic temporal scale for the  relaxation  

to equilibrium is given 

 

However what happens if  ? 

xj(t) = ∑
λ

e−λtuλ(i)uλ( j)

lim
t→∞

xj(t) = u0(i)u0( j)

u0 ∝ 1

τ = 1/λ2
λ2 → 0



Return-time probability

Given an initial condition localised at node  
We have 

  

Averaging over all possible initial conditions we get that 
the probability of return at time t is given by   

  

Assuming that the network has a spectral  
dimension the relaxation is power-law  

rather than exponential! 

 

i

xi(t) = ∑
λ

e−λtuλ(i)uλ(i)

p(t) =
1
N ∑

λ
∑

i

e−λtuλ(i)uλ(i) ≃ ∫ ρ(λ)e−λtdλ

p(t) ∝ t−dS/2

A drunken man always finds his was home  
while a drunken bird may be lost forever



Higher-order spectral dimension
Some geometrical simplicial complexes 


do not have just a single spectral dimension 


but they display a vector of spectral dimensions 


 


with  one spectral dimension  for each m-order up-Laplacian

dS = (d[0]
S , d[1]

S , …, d[d−2]
S )



Higher-order spectral dimension
In particular the higher-order spectral dimension 


 is observed when the density of non-zero eigenvalues of


 the -order up Hodge Laplacian  


scales as 


m L[m]

ρm(λ) ∝ λd[m]
s /2−1



The possible coexistence  

of several different higher-order spectral dimensions 

 implies that the diffusion  

taking place on simplices of different order  

can have significant differences 

although the simplices belong to the same simplicial complex 



Which structural 
properties determine the 

presence of a spectral 
dimension?



Growing network models



describe 

 the interactions between the elements  

of large complex systems.

Networks



         LATTICES                         COMPLEX NETWORKS                  RANDOM GRAPHS 
    

Regular networks 
Symmetric 

Scale free networks 
Small world 

With communities  
ENCODING INFORMATION IN 

THEIR STRUCTURE

Totally random 
Binomial degree 

 distribution

Randomness and order 
Complex networks



Universalities

• Small-world: 
  [Watts & Strogatz 1998] 

• Scale-free: 
[Barabasi & Albert 1999] 

• Modularity: Local communities of nodes 
[Fortunato 2010] 

€ 

€ 

dH = ∞

P(k) ∼ k−γ for k ≫ 1
with γ ∈ (2,3]

⟨k⟩ → const ⟨k2⟩ → ∞
for N → ∞



Models

• Non-equilibrium growing network models: 
 Explanatory of emergent properties of complex networks 
 -BA model, BB model  

• Deterministic models: 
Hierarchical models 

 -Apollonian network, Pseudo-fractal network 
• Maximum entropy ensembles: 
 Maximum random graphs satisfying a set of constraints 
  -Configuration model, Exponential Random Graphs 



 GROWTH :                                                                  

 At every timestep we add a new node with m edges 
(connected to the nodes already present in the system). 

 UNIFORM ATTACHMENT :                              
The probability Πi that a new node will be connected to 
node i is uniform 

[Barabási & Albert, Physica A (1999)]

Exponential

Growth by uniform attachment of links

Πi =
1
N



Barabasi-Albert model
 GROWTH :                                                                 

 At every timestep we add a new node with m edges 
(connected to the nodes already present in the system). 

 PREFERENTIAL ATTACHMENT :                              
The probability Πi that a new node will be connected to 
node i depends on the degree ki of that node

[Barabási et al. Science (1999)]

P(k) ~k-3

Πi =
ki

∑j kj



Master equation approach for the 
Barabasi-Albert model

Nt+1(k) = Nt(k) + mΠ(k − 1)Nt(k − 1)[1 − δk,m] − mΠ(k)Nt(k) + δk,m

Π(k) =
k
Z
 with Z = ∑

j

kj ≃ 2mt

Nt(k) ≃ tP(k) for t ≫ 1

We write the master equation for the average number of nodes  
that have degree k at time t 

where  

We assume that asymptotically  

Nt(k)



Master equation approach for the 
Barabasi-Albert model

(t + 1)P(k) = tP(k) + m
(k − 1)

2m
P(k − 1)[1 − δk,m] − m

k
2m

P(k) + δk,m

In the asymptotic limit we have therefore 

Which lead to the time independent equations 

Whose solution is 

   

Leading to 

P(k) = 2m
Γ(m + 1)

Γ(m)
Γ(k)

Γ(k + 2)
≃ k−γ  with  γ = 3

P(k) =
(k − 1)

2
P(k − 1)[1 − δk,m] −

k
2

P(k) + δk,m

P(k) =
k − 1
k + 2

P(k − 1) for k > m

P(m) =
2

m + 2



Energies 
of the nodes 

ε5

Not all the nodes are the 
same! 

Let assign to each node i  

an energy ε from a  

g(ε) distribution 

ε1

ε2ε3

ε4

ε5

ε6



The Bianconi-Barabasi model

Growth:    
–At  each time a new node and m links are added to the network. 
–To each node i we assign a energy  εi  from a g(ε) distribution 

Preferential attachment towards  
high degree low energy nodes: 

–Each node connects to the rest  of the network by m links attached preferentially to 
well connected, low energy nodes. 

ε2 ε3

ε1

ε4
ε5

ε6

[G. Bianconi, A.-L. Barabási 2001]

Πi =
e−βϵiki

∑j e−βϵjkj



Self-consistent solution of the  
Bianconi-Barabasi model

Nt+1
ϵ (k) = Nt

ϵ(k) + mΠ(k − 1,ϵ)Nt
ϵ(k − 1)[1 − δk,m] − mΠ(k, ϵ)Nt

ϵ(k) + g(ϵ)δk,m

Π(k, ϵ) =
e−βϵk

Z
 with Z = ∑

j

kje−βϵj

lim
t→∞

Z
2mt

= C = e−βμ

Nt
ϵ(k) ≃ tPϵ(k) for t ≫ 1

We write the master equation for the average number of nodes  
with energy 𝛆 that have degree k at time t 

where  

We assume self consistently that  

and that

Nt
ϵ(k)



We obtain that  

Therefore we can evaluate the degree distribution 

By imposing the self-consistent equation we find that  

Where the Bose-Einstein occupation 

 indicates the number of links attached to nodes of energy 𝛆

P(k) = ∫ dϵg(ϵ)Pϵ(k)

1 = ∫ dϵg(ϵ)
1

eβ(ϵ−μ) − 1

Pϵ(k) = eβ(ϵ−μ) Γ(m + eβ(ϵ−μ))
Γ(m)

Γ(k)
Γ(k + 1 + eβ(ϵ−μ))

≃ k−γϵ  with  γϵ = 1 + eβ(ϵ−μ)

n(ϵ) =
1

eβ(ϵ−μ) − 1

Self-consistent solution of the  
Bianconi-Barabasi model



  Scale-Free       Bose-Einstein  
    Phase                  Condensate Phase

Bose-Einstein condensation  
in complex networks

[G. Bianconi, A.-L. Barabási 2001]

β < βc
β > βc



Quantum statistics  
in growing networks

Scale-free network       Complex Cayley tree 
Bianconi-Barabasi model (2001)                Bianconi (2002)

Bose Einstein statistics   Fermi statistics



The Complex Growing Cayley tree model 

Growth:    
–At  each time attach a old node with ni=0 to  m links are added to the network and 
then we set ni=1.
–To each node i we assign a energy  εi  from a g(ε) distribution

Attachment towards  low energy nodes: 
–The node i to which we attach the new “unitary cell” is chosen with probability

ε1

  

ε2
ε3

ε5

ε4

ε7

ε6

Πi =
e−βϵi (1 − ni)

∑j e−βϵj (1 − nj)



Energy distribution of the nodes at the bulk of the growing 
Cayley tree network 

2



Apollonian networks

[Andrade et al. PRL 2005] 
[Soderberg PRA 1992] 

Apollonian networks are formed by linking the  
centers of an Apollonian sphere packing 

They are scale-free and are described by the Apollonian group



Modularity

Modularity is a measure to characterise the significance of a given community assignment in a graph. 
In particular it measures whether nodes belonging to the same community  

are more connected among themselves than in a null hypothesis. 

Given a network of  nodes with each node  assigned to the community   

and  links the modularity  is defined as  

 

where  is the probability that in the null model node  and node  are linked. 

The typical choice for the null model is the configuration model with  

N i ci

L M

M =
1

2L ∑
i, j

[Aij − pij]δ(ci, cj)

pij i j

pij =
kikj

2L



Emergent properties  
of simplicial complexes



Emergence of communities



• Starting from a finite connected network with n0>2 nodes 

• (1) GROWTH :   At every timestep we add a new node with 2 edges 
(connected to the nodes already present in the system). 

• (2) TRIADIC CLOSURE: The first link is attached to a random 
node, the second link with probability p closes a triangle and with 
probability 1-p is connected  randomly 

Triadic closure



G. Bianconi  et al. 
PRE (2014)

Emergence of communities



Topological moves



Topological moves

Topological moves enumerate the ways of  adding/removing simplices  
without changing the topology of a discrete manifold 

Topological moves in 3D



Topological moves

3D Topological moves  
Projected in 2D



Emergent geometry



  

are expected to have impact in a variety of applications, 

ranging from  

brain research to biological transportation networks 

 Network Topology and  Geometry



Is the network geometry of complex systems 
an a priori pre-requisite  

for the network evolution 
or is an emergent phenomenon of the 

network dynamics? 



Emergent geometry

In the framework of emergent geometry  
 networks with  a geometry 

are generated 
 by non-equilibrium dynamics 
that is purely combinatorial, 

i.e. is independent of the network geometry



Emergent geometry  
in 2-dimensional  

simplicial complexes



Emergent network geometry

The model describes 
the underlying structure of a simplicial complex 
constructed by gluing together triangles by a 

non-equilibrium dynamics.

Every link is incident to
at most k triangles with k>1.

Wu, Menichetti, Rahmede, Bianconi, Scientific Reports (2015)



Saturated and unsaturated links
1

4

5 Unsaturated link
         𝜌23=1

2

3

Saturated link
   𝜌13=0

k=2
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5.2 Emergent 2-dimensional simplicial network
geometry

Let us start by revealing the fundamental mechanism for emergent geometry
in dimension d = 2 by discussing the non-equilibrium simplicial complex model
proposed in Ref. [31]. The model describes the non-equilibrium evolution of a
simplicial complex constructed by gluing triangles along the links of a simpiicial
complex subsequently in time. During their evolution the simplicial complexes
need to satisfy a simple combinatorial rule: at every point in time every link
of the simplicial complex must be incident to at most to k̄ triangles with k̄ > 1.
We classify links [r, s] as unsaturated and saturated depending on the value of
the auxiliary variable ⇢rs defined as

⇢rs =

(
0 if k2,1([r, s]) < k̄,

1 if k2,1([r, s]) = k̄ .
(5.1)

Therefore for each link [r, s] there are two possibilities:

• if ⇢rs = 0 the link is unsaturated , i.e. less than k̄ triangles are incident on it;
• if ⇢rs = 1 if the link is saturated, i.e. the number of incident triangles is given

by k̄.

We define two processes characterizing the di�erent topological moves that
can result from the addition of a single triangle to the simplicial complex.
These moves, schematically represented in Figure 23, define the model for
2-dimensional emergent simplicial geometry as described in the following.

MODEL OF 2-DIMENSIONAL EMERGENT SIMPLICIAL GEOMETRY [31]

At time t = 1 the simplicial complex is formed by a single triangle. At
each time t > 1 two process can occur: process (a) and process (b).

(a) Let us indicate with A the adjacency matrix of the simplicial complex
skeleton. Process (a) is defined as follows. A link [r, s] having r < s is
chosen with probability

⇧[r,s] =
Ars(1 � ⇢rs)Õ

q<q0 Aq,q0(1 � ⇢q,q0), (5.2)

and a new triangle is glued to the link.
This process takes place at each time t > 1 with probability one.

(b) Process (b) is defined as follows. Two adjacent unsaturated links are
chosen and the link connecting the two nodes at distance 2 is added to
the simplicial complex together with all the triangles that this link closes



Process (a)

We choose a link (i,j) with probability
and glue a new triangle the link 

Π(i,j) =
ρij

∑r,s ρrs
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Figure 23 A schematic representation of the 2-dimensional topological moves
that are allowed for the model of emergent geometry proposed in Ref. [31] with
k̄ = 2. The model of emergent 2-dimensional geometry evolves in time by the
subsequent addition of 2-simplices. At each time process (a) [1-2 move] takes

place with probability one, and process (b) [2-1 move] takes place with
probability p < 1.

as long as the move is allowed, i.e. no link is incident to more than k̄

triangles.
This process takes place at each time t > 1 with probability p < 1.

For k̄ = 2 where the incidence number of links takes values n↵ 2 {0, 1} the
generated simplicial complex is a 2-dimensional manifold because the evolving
simplicial complex satisfy all the combinatorial conditions for having a discrete
2-dimensional manifold (defined in Sec. 4.1). This manifold is emerging from
purely combinatorial rules that make no use of its discrete geometry. Therefore
this is a fundamental model of emergent geometry in d = 2. These manifolds
have a Euler characteristics � = 1 and they describe a contractible topology,
however they display a very rich combinatorial and geometrical phenomenology.
Since in the case k̄ = 2 the emergent simplicial complex is a 2-dimensional
manifold (see Figure 24a), we can study the distribution of the Regge curvatures
associated to the nodes, assuming that each triangle is a equilateral triangle. In



Process (b)

We choose a two adjacent unsaturated links
and we add the link between the nodes at distance 2 

and all triangles that this link closes 
as long that this is allowed.
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Figure 23 A schematic representation of the 2-dimensional topological moves
that are allowed for the model of emergent geometry proposed in Ref. [31] with
k̄ = 2. The model of emergent 2-dimensional geometry evolves in time by the
subsequent addition of 2-simplices. At each time process (a) [1-2 move] takes

place with probability one, and process (b) [2-1 move] takes place with
probability p < 1.

as long as the move is allowed, i.e. no link is incident to more than k̄

triangles.
This process takes place at each time t > 1 with probability p < 1.

For k̄ = 2 where the incidence number of links takes values n↵ 2 {0, 1} the
generated simplicial complex is a 2-dimensional manifold because the evolving
simplicial complex satisfy all the combinatorial conditions for having a discrete
2-dimensional manifold (defined in Sec. 4.1). This manifold is emerging from
purely combinatorial rules that make no use of its discrete geometry. Therefore
this is a fundamental model of emergent geometry in d = 2. These manifolds
have a Euler characteristics � = 1 and they describe a contractible topology,
however they display a very rich combinatorial and geometrical phenomenology.
Since in the case k̄ = 2 the emergent simplicial complex is a 2-dimensional
manifold (see Figure 24a), we can study the distribution of the Regge curvatures
associated to the nodes, assuming that each triangle is a equilateral triangle. In



The model

Starting from an initial triangle,
At each time

 
•process (a) takes place 

and
 

•process (b) takes place 
with probability p<1.

•



Discrete Manifolds

    A discrete manifold of 
dimension d=2 is a 
simplicial complex 
formed by  triangles 
such that every link is 
incident to at most two 
triangles.

Therefore the emergent 
network geometry for our 
model with   is a 
discrete 2d manifold.
•

k̄ = 2



Scale-free networks

In the case   
a scale-free network
with high clustering,
significant community
structure, finite 
spectral dimension is
generated.

Planar for p=0. 

k̄ = ∞



Emergent preferential attachment

If we add triangles to link with uniform probability,  

i.e. we add a new triangle to a link  with probability   

,  

the probability  of adding a new link to a node  is given 
by  

 

i.e. obeys preferential attachment

(i, j)

πij =
aij

L
Πi i

Πi = 2
ki

∑j kj



Emergent preferential attachment

If we add triangles to link with uniform probability,  

i.e. we add a new triangle to a link  with probability   

,  

the probability  of adding a new link to a node  is given by  

 

Using  

  

we obtain 

(i, j)

πij =
aij

L
Πi i

Πi = ∑
j

πij = ∑
j

aij

L

ki = ∑
j

aij L =
1
2 ∑

j

kj

Πi = 2
ki

∑j kj



Curvature distribution

Planar  
Exponential degree distribution 

Exponential negative tail of  
Local curvatures 

 

⟨R⟩ = 1

⟨R2⟩ < ∞ as N → ∞

Planar  
Scale-free degree distribution 

Power-law negative tail of  
Local curvatures 

⟨R⟩ = 1

⟨R2⟩ → ∞ as N → ∞

Non-planar 
Broad  

degree distribution



Spectral dimension of emergent 
geometry

k̄ = m

This emergent geometries display  a finite spectral dimension



Properties of emergent network 
geometries

•Small world
•Finite clustering
•High modularity

•Finite spectral dimension
Which are properties of many 

real network datasets.



Properties of real datasets



Network Geometry with Flavor



Bianconi & Rahmede (2016)

1

6

5 4

2

3

Network Geometry with Flavor
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Figure 24 The network skeleton of the model of emergent 2-dimensional
geometry is shown for a realization in which k̄ = 2, p = 0.9 (panel a) and for a

realization in which k̄ = 1, p = 0 (panel b).
Source: Reprinted figure from [31].

5.3 Network Geometry with Flavor (neutral model)

5.3.1 The de�nition of the NGF model (neutral model)

From the previous model of emergent geometry in dimension d = 2 we now
move to the very general framework of emergent hyperbolic geometry called
Network Geometry with Flavor (NGF) [29] for emergent simplicial geometry in
any topological dimension d. This model is a non-equilibrium model of growing
simplicial complexes in which d-dimensional simplices are subsequently glued
to (d � 1) dimensional faces. The model depends on a parameter called flavor
s taking values s 2 {�1, 0, 1}. There are two variants of the NGF model the
neutral model and the model with fitnesses of the faces. Both variants of the
model display notable combinatorial, topological and geometrical properties
reflecting the a very rich interplay between these di�erent descriptions of the
emergent hyperbolic geometry. The neutral model can be also extended to
treat cell complexes leading to further additional considerations of the interplay
between the topology and the geometry of NGFs. Let us start to discuss the
neutral NGF simplicial complex model.

NETWORK GEOMETRY WITH FLAVOR (NEUTRAL MODEL) [29]

At time t = 1 the NGF is formed by a single d-dimensional simplex. At
each time t > 1 the model evolves according to the following principles.
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Figure 25 The NGF model in d = 3 dimension, evolves in time by the
subsequent addition of 3-simplices (tethrahedra) to a 2-dimensional faces

(triangles). For s = �1 every (d � 1)-dimensional face can be incident to at
most a two d-dimensional simplices. Here we schematically show a single

topological move for d = 3, s = �1 (panel a) and its planar projection on the
plane formed by the (d � 1)-dimensional face (triangle) (panel (b)). In this

planar projection, the attachment of the new tetrahedron to the initial triangle
induces a triangulation of the initial triangle in three distinct triangles. For this

reason this topological move is also called 1 � 3 topological move.

• GROWTH : At every timestep a new d-dimensional simplex formed
by one new node and an existing (d � 1)-face is added to the simplicial
complex.

• ATTACHMENT: The probability that the new d-simplex is glued to a
(d � 1)-dimensional face ↵ depends on the flavor s 2 {�1, 0, 1} and is
given by

⇧[s]
↵ =

(1 + sn↵)Õ
↵0(1 + sn↵0) . (5.6)

The role of the flavor parameter is to change the attachment probability. In
particular we have that the attachment probability can be expressed, depending
on the value of the flavor s, as

⇧[s]
↵ =

(1 + sn↵)Õ
↵0(1 + sn↵0) /

8>>><
>>>:

1 � n↵ if s = �1,
const if s = 0,
kd,d�1(↵) if s = 1.

(5.7)

Therefore depending on the value of the flavor the NGF implements di�erent
combinatorial rules.

• For s = �1 the attachment probability ⇧[�1]
↵ is non zero if n↵ = 0 but becomes

zero as soon as n↵ = 1. Therefore we obtain simplicial complexes that are



Π[s]
α =

(1 + snα)
∑α′ 

(1 + snα′ )
∝

1 − nα  if s = − 1
1 if s = 0
kd,d−1(α)  if s = 1

Attachment probability 

The attachment probability to (d-1)-dimensional faces  is given by 

For s=-1   we obtain discrete manifolds 

For s=0 we have uniform attachment 

For s=1 we have a generalised preferential attachment

nα = 0,1

nα = 0,1,2,3,4...
nα = 0,1,2,3,4...



Pachner move 1-d for NGF with s=-1



Emergence of preferential attachment

Πd,δ(k) =

2 − k
(d − 1)t

 for d + s − δ − 1 = − 1

(d − δ − 1 + s)k + 1 − s
(d + s)t

 for d + s − δ − 1 ≥ 0

The probability of attaching a d-dimensional simplex  
to a   -dimensional face is given by  

Therefore for                       we observe a generalised preferential attachment 
as a consequence of the geometry and dimensionality of of the NGF  

d − δ > 1 − s

δ



i
i

t=3              t=4

Node i has generalized degree 3       Node i has generalized degree 4 
Node i  is incident to 5  faces with n=0     Node i is incident to 6 faces with n=0 

Effective preferential attachment in 
d=3 s=-1



       Chain          Exponential   BA model

Dimension d=1
Manifold         Uniform             Preferential 

                attachment            attachment



Exponential     Scale-free     Scale-free

Dimension d=2
Manifold         Uniform             Preferential 

                attachment            attachment



Scale-free     Scale-free     Scale-free

Dimension d=3
Manifold         Uniform             Preferential 

                attachment            attachment



NGF are always scale-free for d>1-s 

• For s=1 NGF are always scale free  
• For s=0 and d>1 the NGF are scale-free 
• For s=-1 and d>2 the NGF are scale-free

Degree distribution 

€ 

€ 

For d+s=1 

For d+s>1

P[s]
d (k) = ( d

d + 1 )
k−d 1

d + 1

P[s]
d (k) =

d + s
2d + s

Γ[1 + (2d + s)/(d + s − 1))]
Γ[d /(d + s − 1)]

Γ[k − d + d /(d + s − 1)]
Γ[k − d + 1 + (2d + s)/(d + s − 1)]

[Bianconi & Rahmede (2016)]



Degree distribution of NGF

CODE AVAILABLE AT GITHUB PAGE                       ginestrab



Generalized degree distributions
The generalized degree distribution depends on both d and m 


and can be calculated with the master equation approach 


getting the following exact asymptotic results


P[s]
d,m(k) = 𝒞

Γ[k + (1 − s)/(d − m + s − 1)]
Γ[k + 1 + (d + 1)/(d − m + s − 1)]

,

P[s]
d,m(k) = ( d − m

d + 1 )
k m + 1

d − m
.

P[s]
d,m(k) = {(d − 1)/d for k = 1,

1/d for k = 2.
For m+d+s=0 

For m+d+s=1 

For m+d+s>1
[Bianconi & Rahmede (2016)]



€ 

Generalized degree distribution 

[Bianconi & Rahmede (2016)]

The generalized degree distribution depends  
on the flavor s and on the dimension m of the faces
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can glue a new d dimensional simplex increases, leading to a generalized
preferential attachment. Using the Eq. (5.8) it is straightforward to calculate

Table 1 Distribution of generalized degrees of faces of dimension m in a
d-dimensional NGF of flavor s at � = 0. For d � 2m + 2 � s the power-law

distributions are scale-free, i.e. the second moment of the distribution diverges.

Flavor s = �1 s = 0 s = 1
m = d � 1 Bimodal Exponential Power-law
m = d � 2 Exponential Power-law Power-law
m  d � 3 Power-law Power-law Power-law

the distribution P
[s]
d,m(k) of the generalized degrees of the m-dimensional faces

for any value of d and s. These generalized degree distribution follow a regular
pattern depending on d,m and s (see Table 1). The details of this derivation
are provided in Appendix F. In particular the generalized degree distribution is
bimodal for d � m + s = 0, exponential for d � m + s = 1 and power-law for
d � m + s > 1. Therefore if we consider a NGF with d = 3 and s = �1 the
triangles (2-dimensional faces), the links (1-dimensional faces) and the nodes
(0-dimensional faces) have a bimodal, exponential and scale-free generalized
degree distribution respectively. From these results we can draw two important
conclusions regarding the statistical properties of emergent manifolds:

• Provided the dimension d is su�cently high, i.e. d � 3, the generation of
scale-free manifolds is the natural outcome of the NGF neutral model. This
show that the complexity of these structures arise from the very simple and
therefore fundamental rules for emergent geometry captured by the NGF
model with s = �1 [39].

• Despite the very strong power-law fluctuations observed in the generalized
degree of faces of dimension m  d � 2, the NGF manifolds are characterized
by a more moderate exponential fluctuation of the generalized degree of
faces of dimension m = d � 2. This is interesting in light of the fact that
the generalized degrees of faces of dimension m = d � 2 are related to the
Regge curvature according to Eq. (4.3) in the hypothesis in which all the
simplices of the NGF are identical. Therefore, even in dimensions d � 3,
the distribution of the Regge curvature of the NGF manifolds remains always
exponential, as long as we assume that the simplices are all identical.

On the NGF, the degree of kr of a node r is related to its generalized
degree kd,0([r]) by the simple relation kr = kd,0([r]) + (d � 1). Therefore it is
straightforward to derive the degree distribution of the NGF from the generalized

Simplicial complexes can have generalised degree distribution  
following different statistics  

depending on the dimension of the faces considered



Emergent Hyperbolic geometry
The emergent hidden geometry is the hyperbolic Hd 

space  
Here all the links have equal length

d=2



d=3

Emergent hyperbolic geometry

d=3



NGF an hyperbolic network geometry

NGF for flavor s=-1 are discrete hyperbolic 
manifolds 

NGF of any flavor and any dimension are  
𝛿-hyperbolic networks  

[with 𝛿=1 in the case of simplicial 
complexes]



What is a “natural” random geometry?



Randomness and order 
Random graph

p=1            p=0.4

Complete graph     Random graph

A fully connected network -trivial/no geometry- where some 
random links are selected



Randomness and order 
Percolation

p=1            p=0.4

A square lattice -known, given geometry-  

where only few links are preserved  



d=3

Emergent hyperbolic geometry

d=3

A growing cluster on -emergent- hyperbolic lattice



The pseudo-fractal geometry of  
the surface of the  

3d manifold  
(random Apollonian network)

Planar projection of the d=3 NGF with s=-1



The relation to  
Trees

Line graph of the NGF



Growing weighted simplicial complex

We considered a weighted 
network model in which we 
assume: 
•  that each new node can attach 

m simplices to the rest of 
network 

• that simplices can increase 
their weight in time 

We found deep correlations 
between the weights of the 
simplices and the network 
topology.

(b)

(a)

w+ 0

w+ 0

w+ 0
w+ 0

Courtney Bianconi (2017)



• As long as  these simplicial 
complexes have a finite spectral 
dimension. 

• For  these simplicial complexes  
acquire a spectral gap, i.e. a finite 
Fiedler eigenvalue in the limit   

• This reveals the mean-field nature of 
these simplicial complexes with 
(characterised by the loss of the local 
attachment of new simplices)

m = 1

m > 1

N → ∞

m > 1

Growing weighted simplicial complex

(b)

(a)

w+ 0

w+ 0

w+ 0
w+ 0



Triangulated Maximally Filtered Graph 

10

Algorithm 1: TMFG algorithm

input : A dense matrix W with positive weights, e.g. a matrix of squared correlation coe�cients
output: A sparse matrix, TMFG, a filtered version of W fulfilling the planarity constraint
// Initialise a tetrahedron th1 e.g. by using the highest edge-weights, this gives

four triangles t1, t2, t3, t4 as in Fig. 1
th1  MaxTetrahedron(W) // Tetrahedron with highest overall total gain function
[t1, t2, t3, t4] Triangles in th1;
Triangles [t1, t2, t3, t4];
VertexList List of vertices of W not belonging to th1;
MaxGain Vector indexed by triangles as in Eq.5;
BestVertex Vector indexed by triangles as in Eq.6;
MaxGain UpdateMaxGain(VertexList, [t1, t2, t3, t4]);
BestVertex UpdateBestVertex(VertexList, [t1, t2, t3, t4]);
p number of vertices in VertexList;
// Insert p� 4 vertices via T2

for i = 1 to p� 4 do
// Get the triangle with the highest score ...
tabc = argmax

txyz2Triangles
{MaxGain(txyz)} ;

// ...and the corresponding vertex
vi = BestVertex(tabc) ;
[ta1 , ta2 , ta3 ] triangles created by the insertion of vi into tabc;
VertexList VertexList \ vi ;
Triangles Triangles [ {ta1 , ta2 , ta3} \ tabc;
Separators Separators [ tabc;
MaxGain UpdateMaxGain(VertexList,Triangles);
BestVertex UpdateBestVertex(VertexList,Triangles);
end
return TMFG;

and without T1 and A. In many cases the application of the swap operator S results in higher
overall gains. This operator has the advantage of leaving the overall topology unchanged but its
use should be regulated by few local or heuristic criteria to avoid an increase in the complexity
of the algorithm due to the increasing number of possible combinations. The case that we have
implemented requires the evaluation of all the possible combinations of the four vertices involved
in the execution of a T2 operation. This requires some further changes to the cache vectors, but
– being applied locally – it does not increase the overall computational complexity that remains
O(p2).

The TMFG algorithm is not greedy with respect to edge insertion in the sense that the best
possible move is chosen from a subset of all the feasible edge insertions that preserve planarity
and therefore we don’t have a theoretical performance guarantee as in section IIA 1. However,
we shall see that TMFG performs as well as – or better than – the PMFG for a large class
of weight matrices, including squared correlation coe�cient matrices from empirical time series
which are relevant from modeling [42].

B. Dynamical adaptability

The TMFG is built through local moves: T1, T2, A and the S operator that is operating locally
in the current version of the algorithm. Due to their local nature, by means of T1, T2, T

�1
2 , A

and S one can continuously modify the network allowing ‘online’ adaptability while new data are
generated. This is of practical importance because in real, big data, applications information is

5

v1

v2 v3

T2

T�1
2

v1

v2 v3

v4

FIG. 1: T2 move: addition of one vertex within a triangular face [16, 23, 24, 38, 39]. Its inverse, T�1
2 ,

removes a vertex from inside a three-clique (in this case the clique {v1, v2, v3}).

We note that w(ej) +
P

i2I\j w(ei) �
P

d2D w(ed) > 0 because otherwise there is no gain in
adding ej and

P
i2I\j w(ei) 

P
d2D w(ed) because the graph was optimal before adding ej and

if
P

i2I\j w(ei) >
P

d2D w(ed) we could delete all the edges in D and add all the edges in I \ j
and find a planar subgraph better than the optimal one.

Let’s assess the gain in adding ej to S [ ek under the assumption that the weights are positive
and that ek belongs to the maximal planar graph contained in S [ ek (the case where ek does
not belong to the maximal planar graph is trivial, because then eq. 1 holds with equality). Also
we assume that ej has to be added at the cost of deleting ek (the other case being trivial, too).
We have:

w(S [ ek [ ej)� w(S [ ek) = w(ej) +
X

i2I\j

w(ei)�
X

d2D

w(ed) =

w(ej)+
X

i2I\j

w(ei)�
X

d2D\ek

w(ed)�w(ek)  w(ej)+
X

i2I\j

w(ei)�
X

d2D\ek

w(ed)  w(S[ej)�w(S) .

(4)

The last inequality in Eq. 4 proves submodularity for the function w because w(ej)+
P

i2I w(ei)�P
d2D\{k} w(ed) represents a legitimate way to insert ej which leads to an increase in w. As

a consequence PMFG, that is a greedy algorithm for the WMPG problem, has performance
guaranteed ratio 1� 1/e.

B. Deltahedron heuristic

The deltahedron heuristic [28, 29] searches for approximate solutions of the WMPG problem
starting from a tetrahedron, K4, which is planar. Then, at each step a vertex is added into a
triangular face and three edges are added connecting the newly inserted vertex to the vertices
of the triangular face. This vertex insertion in a triangular face is called T2 move (see Fig.1
and [16, 23, 24, 38, 39]). It is easy to see that the T2 operator acts without breaking planarity
ensuring that the final network is planar. The triangular face is chosen in order to maximise
the sum of the newly connected edges, while the vertices to be inserted are extracted from a
pre-sorted list. The vertex list can be sorted according to two functions of the edge weights
incident to the vertex, yielding two possible variants of the deltahedron heuristic:(i) the sum of

Massara, Di Matteo, Aste 2017

Triangulated Maximally Filtered Graphs can be used represent 
 the backbone of correlation matrices  

As NGF they are constructed by adding simplices attached to faces 
but they are following a deterministic construction and the new simplices are  

attached in order to maximise a gain function based on data



Cell complexes

12 Series Name

and in general open d-dimensional cells are topological spaces homeomorphic
to an open ball. Therefore 0-dimensional cells are nodes, 1-dimensional cells
are links, and therefore do not di�er from 0-dimensional and 1-dimensional
simplices. However 2-dimensional cells includes m-polygons such as triangles
(2-dimensional simplices), squares, pentagons ect. Similarly 3-dimensional
cells includes the Platonic solids, such as tethrahedra (3-dimensional simplices),
cubes, octahedra, dodecahedra, and icosahedra (see Figure 5). Interestingly in
dimension d = 4 the regular polytopes are more than in dimension d = 3 (being
6), but for any dimension d > 4 there are only three types of regular (convex)
polytopes: the simplex, the hypercube and the orthoplex.

A cell complex K̂ has the following two properties:

(a) it is formed by a set of cells that is closure-finite, meaning that every cell is
covered by a finite union of open cells;

(b) given two cells of the cell complex ↵ 2 K̂ and ↵0 2 K̂ then either their
intersection belongs to the cell complex, i.e. ↵ \ ↵0 2 K̂ or their intersection
is a null set, i.e. ↵ \ ↵0 = ;.

In this book we will discuss mostly the properties of simplicial complexes
however in a number of places we will refer to results applying to more general
cell complexes.

2.2 Generalized degrees of simplicial complexes

For networks a key local structural property is the degree of the nodes. The
degree of a node characterizes only the local structure of the network around the
node, its number of interactions. However the statistical properties associated
with the degree are instead important global properties of the network that
can significantly a�ect its global dynamics as in the case of scale-free degree
distributions [1]. It is therefore natural to desire to extend the notion of degrees
also to simplicial complexes. The generalized degrees [12, 29, 39] are the
fundamental combinatorial properties describing the structure of simplicial
complexes. Interestingly, in simplicial complex not only nodes can be associated
to a generalized degrees, but also links and higher dimensional simplices can be
associated to their generalized degrees.

GENERALIZED DEGREES AND FACET SIZES

The generalized degree [12,29,39] kd,m(↵) of a m-dimensional simplex ↵
indicates the number of d-dimensional simplices incident to the m-simplex
↵.



Network Geometry with Flavor
Consider pure cell complexes formed by gluing identical regular 

polytopes along d-1 faces 
• Starting from a single d-dimensional regular polytope  

(1) GROWTH :                                                                  
 At every timestep we add a new   d-dimension polytope  
 glued to an existing (d-1)-face). 

(2) ATTACHMENT:                              
 The probability that the new polytope will be connected to a face  𝛼 

depends on the flavor s=-1,0,1 and is given by  

 
Π[s]

α =
(1 + snα)

∑α′ 
(1 + snα′ )



Power-law exponent γ

• Simplicial complexes with 
power-law degree distribution 
are always scale free 

  
•  Other  cell complexes are 

scale-free only if they have 
flavor  s=1 (preferential 
attachment) 

• Some cell complexes in 
d=2,3,4 are not even scale-
free for flavor s=1

depends also on the nature of the regular polytope that 
constitute 

 the building block of the cell complex  



Modularity of NGFs

Network Geometry with Flavor  
Displays emergent community structure
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Hausdorff dimension
NGFs as well as Apollonian and pseudo-fractal simplicial complexes 


have an infinite Hausforff dimension





Therefore the spectral dimension satisfies





The Area of these simplicial complexes 


(number of (d-1)-faces with zero incidence number)


is


dH = ∞

dS ≥ 2

A ∝ N



Laplacian spectrum of NGFs
s=-1                            s=0                            s=1

Simplicial 
Complexes

Hypercubes

Orthoplexes

The spectral dimension depends  
on , on the flavor  and on the building block of the cell complex 

Different colors indicate different dimensions 
d s

d



Spectral dimension of NGF
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Higher-order spectral dimension of NGF 

Different Higher-order  

Spectral dimensions 

coexist for the same  

d=3 dimensional NGF 

Corresponding to orders  

0(blue), 1(red) 2 (yellow)

J.Phys.Complex. 1 (2020) 015002 (11pp) J J Torres and G Bianconi

Figure 2. The cumulative density of eigenvalues ρc(λ) of the n-order Laplacian and the cumulative density of non-zero
eigenvalues ρup

c (λ) of the n-order up-Laplacians are shown for the NGF of dimension d = 3 and flavor s = −1 (panels a and b),
s = 0 (panels c and d) and s = 1 (panels e and f). Here the blue solid lines indicate n = 0, the red dashed lines indicate n = 1, the
yellow dotted line indicates n = 2 and the purple dot-dashed lines indicates n = 3. The NGF under consideration are single
instance of NGFs with N[0] = 2000 nodes N[1] = 5994 links N[2] = 5992 triangles and N[3] = 1997 tetrahedra.

higher-order spectral dimensions are reported in table 1 for different values of the order n and the flavor s of
the three-dimensional NGF. From this table it can be clearly shown that the values of the higher-order spectral
dimension d[n]

S increase with n i.e.
d[n+1]

S > d[n]
S (28)

for any value of the flavor s and have values greater than two. We note that our numerical results (not shown)
clearly show that while the higher-order spectral dimension of up-Laplacian remains finite also for d "= 3, the
values of the spectral dimension might not be monotonic, so they might not satisfy equation (28).

Since the n-order up-Laplacian is the transpose matrix of the (n + 1)-order down-Laplacian (as given in
equation (18)) the two matrices have the same spectrum. It follows directly that the (n + 1)-order down-
Laplacian has spectral dimension d[n]

S .
From these results on the higher-order up-Laplacian we can easily determine the scaling of the density of

eigenvalues for the higher-order Laplacian of NGFs. In particular for 0 < n < d we have

ρc(λ) =
N[n−1]

N[n]
C[n−1]λ

d[n−1]
S /2

+
N[n]

N[n]
C[n]λ

d[n]
S /2, (29)

for n = 0 we have instead

ρc(λ) = C[0]λ
d[0]

S /2, (30)

and for n = d we have

ρc(λ) = C[d−1]λ
d[d−1]

S /2. (31)

7

s=-1 

s=0 

s=1

dS = (d[0]
S , d[1]

S , …, d[d−2]
S )



NGF and non-universal spectral dimension

The spectral dimension of NGF can change 
depending on: 

• The dimension  of the simplicial complex


• The nature of the cell constituting the building block of 
NGF (simplex, hypercube, orthoplex)


• The order of the Laplacian

d



Renormalization group predictions  

of the spectral dimension  

on Apollonian and pseudo-fractal  

simplicial complexes



Apollonian and pseudo-fractal  
simplicial complexes

• We start at time t=1 with a single d-simplex


• At each time t>1, we glue a d-simplex 


A. to every (d-1)-face added at the previous time (Apollonian 
simplicial complexes) 


B. to every (d-1)-face of the simplicial complex (pseudo-fractal 
simplicial complexes) 



Spectral dimension of Apollonian 
networks and effect of randomness
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Apollonian d=2
NGF s=-1 d=2
theory dS=2
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Apollonian d=3
NGF  s=-1 d=3
theory dS=3.73

ds = − 2
ln d

ln[1 − 1/d − 1/d2)]
≃ 2 ln(d )[d −

3
2

+ O(1/d )] .

ds = 2
ln 3

ln(9/5)
ds = 2

d=2 d=3

Asymptotic expression for d ≫ 1

[G. Bianconi and S.N. Dorogovstev (2020)] 

𝝆 c
(𝝀

)



Higher-order spectral dimensionApollonian  
simplicial 

complexes 

Pseudo-fractal 
simplicial  

complexes
[M. Reitz, G. Bianconi (2020)]



Network Geometry with Flavor 

With fitness of the faces



Energy of the m-faces

  Energy of a link      is  

  

    Energy of a triangle     is    

ε2ε1

ε1 ε2

ε3

ε1 + ε2

ε1 + ε2 + ε3

Elements Name 77

In this paragraph we will address the Network Geometry of Flavor (NGF)
formed by d-dimensional simplicial complexes whose faces are associated an
intrinsic property called energy which describes the non-topological features
associated to them [29]. From the energy of a face one can determine its fitness
which describes the rate at which the face increases its generalized degree. The
NGF model with fitness of the faces generalizes the Bianconi-Barabási model
by associating to each m-dimensional face an energy and a fitness.

ENERGY AND FITNESS OF THE FACES OF THE NGF SIMPLICIAL

COMPLEXES [29]

The energy "↵ of the m-dimensional face ↵ indicates its intrinsic (non-
topological) properties. The energy "[r] of a node r is a non negative
number drawn from a given distribution g("). The energy of a face ↵ of
dimension m > 0 is the sum of the energies of the nodes belonging to it,
i.e.

"↵ =
’
r⇢↵
"[r]. (5.14)

The fitness associated to a m-dimensional face ↵ describes the rate at
which the face increases its generalized degree and is given by

⌘↵ = e
��"↵ (5.15)

where � > 0 is a parameter called inverse temperature. For � = 0 all
the fitnesses are the same, and equal to one, while for � � 1 the small
di�erence in energy leads to big di�erences in the fitnesses of the faces.

Figure 37 Schematic representation indicating how the energies associated to
the links and to the triangles of an NGF are calculated starting from the node

energies.

Figure 37 describes schematically how the energies are assigned to higher-



Bianconi & Rahmede (2016)
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6
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Network Geometry with Flavor

Π[s]
α =

e−βεα (1 + snα)
∑α′ 

e−βεα′ (1 + snα′ )

78 Series Name

dimensional faces of the NGF simplicial complex. The NGF evolution can be
modified to take into consideration the e�ect of assigning di�erent fitness of the
NGF faces.

NETWORK GEOMETRY WITH FLAVOR (WITH FITNESS) [29]

At time t = 1 the simplicial complex is formed by a single d-dimensional
simplex. Each node r of this simplex has energy "[r] drawn from a g(")
distribution. The energies of the higher-dimensional faces are calculated
according to Eq. (5.14).

• GROWTH : At every timestep a new d-dimensional simplex formed
by one new node and an existing (d � 1)-face is added to the simplicial
complex. Each new node r has energy "[r] drawn from a g(") distribu-
tion. The energies of the new higher-dimensional faces are calculated
according to Eq. (5.14).

• ATTACHMENT: At every timestep the probability that the new d-
simplex is connected to the existing (d � 1)-dimensional face ↵ depends
on the flavor s 2 {�1, 0, 1} and on the inverse temperature � > 0 and is
given by

⇧[s]
↵ =

e
��"↵ (1 + sn↵)Õ

↵0 e��"↵0 (1 + sn↵0) . (5.16)

For � = 0 the NGF (with fitness of the m-faces) reduces to the neutral
NGF model, i.e. ⇧[s]

↵ reduces to Eq. (5.6).

The role of the inverse temperature � > 0 is to bias the evolution of the
simplicial complex, in such a way that faces with lower energy are increasing
their generalized degree faster. This model for d = 1 and s = 1 reduces to
the Bianconi-Barabási model [95, 106] which display emergent Bose-Einstein
statistics and the Bose-Einstein condensation of complex networks. The Bose-
Einstein condensation observed in this model is a topological phase transition
in which the network is dominated by a succession of super-hub nodes, i.e.
nodes with a degree growing linearly with time time with at most a logarithmic
correction. In the next paragraphs we will discuss how this scenario changes
for NGFs. We will discover notable statistical and topological properties of
NGFs with fitness of the faces and inverse temperature � > 0. In particular we
will show that not only the Bose-Einstein statistics but also the Fermi-Dirac
statistics describe the statistical properties of the NGF faces and we will reveal
that in the same NGF the statistics followed by faces of di�erent dimension
can vary. Moreover we will discuss the relation between the total energy of



The average of the generalized degree 
of the NGF over δ-faces of energy ε 

 
  

follows 
a regular pattern

€ 

⟨[kd,m(α) − 1] |εα = ε⟩

82 Series Name

Table 3 The average
⌦
kd,m � 1|"

↵
of the generalized degrees kd,m � 1 of

m-faces with energy " in a d-dimensional NGF of flavor s follows either the
Fermi-Dirac, the Boltzmann or the Bose-Einstein statistics depending on the

values of the dimensions d and m.

Flavor s = �1 s = 0 s = 1
m = d � 1 Fermi-Dirac Boltzmann Bose-Einstein
m = d � 2 Boltzmann Bose-Einstein Bose-Einstein
m  d � 3 Bose-Einstein Bose-Einstein Bose-Einstein

Table 4 Distribution of generalized degrees of faces of dimension m in a
d-dimensional NGF of flavor s = �1/k̄ at � = 0. Only for d � 2m � 2 + 3/k̄

the power-law distributions are scale-free, i.e. the second moment of the
distribution diverges. The average

⌦
kd,m � 1|"

↵
of the generalized degrees

kd,m of m-faces with energy " minus one in a d-dimensional NGF of flavor
s = �1/k̄ and inverse temperature � > 0 follows either the Fermi-Dirac or the
Bose-Einstein statistics depending on the values of the dimensions d and m.

Flavor Generalized degree
distribution

Statistics

m = d � 1 Bounded k  k̄ + 1 Fermi-Dirac
m  d � 2 Power-law Bose-Einstein

the Bose-Einstein distribution and therefore is given by
⌦
[k1,0([r]) � 1]|"[r] = "

↵
= nB(", µ1,0). (5.29)

The chemical potentials µd,m(s) in Eq. (5.28) and Eq. (5.29) and are self-
consistent parameters that must satisfy the condition⌧Õ

↵2Sd,m(K) kd,m(↵)
N[m]

�
=

d + 1
m + 1

. (5.30)

The value of the inverse temperature at which these conditions cannot be satisfied
any more, indicates the critical temperature �c . At �c there is a topological
phase transition characterized by the lack of a stationary state for the generalized
degree distributions which we will describe in the next paragraph.

The NGF model can be also generalized by considering fractional negative
values of the flavor s = �1/k̄ which enforce an upper bound of k̄ + 1 to
the generalized degree of the (d � 1)-dimensional faces [38]. The statistical
properties of this variant of the NGF are summarized in Table 4. Interestingly
in this case the (d � 1)-faces of the simplicial complex have

⌦
kd,m � 1|"

↵
that



Topological transitions 

β=0.01 β=5

Emergent Hyperbolic Geometry 
Network Geometry with Flavor (NGF) 

[Bianconi Rahmede ,2016 & 2017]
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Emergent geometry  
at  high temperature  

s=-1 
d=3 
β=0.01

s=-1 
d=3 
β=5



s=-1 

s=1



Conclusions

• Non-equilibrium models of simplicial complex are a fundamental 
framework to address the problem of emergent geometry and 
emergent community structure 

• NGF display statistical properties depending on the dimension of 
the faces that are considered 

• NGF display a dependence of their spectral dimension with the 
nature topological dimension, the dimension of the building block 
from which they are formed, and the order at which the diffusion 
is studied 

• NGF with fitness of the faces display emergent quantum statistics
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