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Lesson Va: 
Dirac operator and dynamics of topological signals

Dirac operator  

• On graphs 
• On simplicial complexes 

Higher-order dynamics of topological signals  
driven by the Dirac operator 

• Dirac synchronisation 
• Dirac signal processing 

Topological Dirac equation on lattices 

             



Dirac legacy
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Topological spinor

• Consider a graph  with  nodes and  edges


• The graph Laplacian defines diffusion from nodes to nodes through edges


• The one down Hodge Laplacian defines diffusion for edges to edges 
through nodes


The Dirac operator allows to couple the topological signals associated 
to nodes and edges of the graph.

G = (V, E) N = |V | L = |E |



Topological spinor
The spinor is defined on both nodes and edges of a graph 


as   or equivalently


 


with 


•   defined on nodes, i.e. 


•   defined on edges, i.e. 


G = (V, E)

Ψ = χ ⊕ ψ ∈ C0 ⊕ C1

Ψ = ( χ
ψ)

χ χ ∈ C0

ψ ψ ∈ C1



Exterior derivative and its dual

• The exterior derivative  is defined as 


    gradient


• It adjoint operator   is defined as 


    divergence

d : C0 → C1

(dχ)e=[i,j] = χj − χi

d* : C1 → C0

(d*ψ)i = ∑
e∈E+

i

ψe − ∑
e∈E−

i

ψe



Hodge Laplacians of a graph
The graph Laplacian and the 1st order Laplacian are defined as 


  (graph Laplacian)    (1st order Laplacian)


Properties: 

A. The Laplacians  are semi-definite positive and  isospectral


B.  where  indicates the nth Betti number. 


In a connected network 

L0 = d*d L1 = dd*

L0, L1

dim kerLn = βn βn

β0 = 1,β1 = L − (N − 1)



Co-boundary matrix

Coboundary matrix

B̄[1]

B̄†
[1]

Discrete gradient 

Discrete divergence 

1

2

3

4

The discrete gradient can be represented  
by the coboundary matrix B̄[1]

B̄[1](ℓ, i) =
1 if ℓ = [ j, i]

−1 if ℓ = [i, j]
0 otherwise

 is a  matrix of elementsB̄[1] L × N



Hodge Laplacians

L[0] = B̄†
[1]B̄[1] L[1] = B̄[1]B̄†

[1]

The Hodge Laplacians describe diffusion 


from n-simplices to n-simplices through (n-1) and (n+1) simplices: 


for a graph we have


Hodge Laplacians

1

2

3

4



Basic definition of the Dirac operator on graphs

The Dirac operator in its simplest form 


is the self-adjoint operator   defined as


satisfying 


D : C0 ⊕ C1 → C0 ⊕ C1

D(χ ⊕ ψ) = (d + d*)(χ ⊕ ψ) = (d*ψ) ⊕ (dχ)

D = d + d*



Exterior derivation and its adjoint  on a graph

d = ( 0 0
B̄[1] 0) d* = (0 B̄†

[1]

0 0 )
The exterior derivative and its adjoint

Ψ = ( χ
ψ)

act on a topological spinor



Dirac operator on a graph

d = ( 0 0
B̄[1] 0)

D = d + d*
Dirac operator is a self-adjoint operator

d* = (0 B̄†
[1]

0 0 )

Exterior divergence



Dirac operator on graph

D = (
0 B̄†

[1]

B̄[1] 0 )
ç

Dirac operator on a graph

DΨ = (
0 B̄†

[1]

B̄[1] 0 ) ( χ
ψ) = (

B̄†
[1]ψ

B̄[1] χ)

Action of the Dirac operator on  
the topological spinor



The Dirac operator  
can be interpreted as the  

“square-root” of the Laplacian  

   

 ,                                   

The non-zero eigenvalues of the Dirac operator  
are the square root of the non-zero eigenvalues of the graph Laplacian.

D = (
0 B̄†

[1]

B̄[1] 0 ) D2 = 𝓛 = (
L[0] 0
0 L[1])

The Dirac as the square-root of the Laplacian



The spectrum of the Dirac operator

Since  and  are isospectral, it follows 

that:


Spectrum: For every positive eigenvalue   of  there is one positive and 
one negative eigenvalue  of the Dirac operator  with 


D2 = 𝓛 = (
L[0] 0
0 L[1]) L[0], L[1]

μ L[0]
λ D

λ = ± μ



Chirality
Let us define 


obeying the anti commutator relation 


• Chirality:If  is an eigenvector of the Dirac operator with 
eigenvalue , i.e. if  then  is an eigenvector of 

 with eigenvalue 


• Indeed from the anti-commutator relation it follows that 

γ0 = (1 0
0 −1)

{D, γ0} = 0

Ψ = ( χ, ψ)⊤

λ DΨ = λΨ γ0Ψ = ( χ, − ψ)⊤

D −λ

Dγ0Ψ = − γ0DΨ = − λγ0Ψ



Eigenvectors of the Dirac operator

• It follows that the matrix of eigenvectors of the Dirac operator can be 
expressed as 


• where                    Indicates the right and left singular vector of the 
coboundary operator and  are the matrices of the harmonic 
eigenvectors of  respectively.

Uharm
0 , Uharm

1
L[0], L[1]

Φ = (U[1] U[1] Uharm
0 0

V[1] −V[1] 0 Uharm
1 )

U[1], V[1]



Index of the Dirac operator

The index of the Dirac operator  is given 


by the Euler number  of the graph


D

χE

ind D = dim ker d − dim ker d* = χE

ind D = χE = N − L
Indeed



Introducing an algebra

with

D = (
0 b*B̄†

[1]

bB̄[1] 0 )
b ∈ ℂ, |b | = 1

Dirac operator on a network 
can be enriched by an algebra



Topological spinor
On a network we consider the topological spinor


 


Characterising the dynamical state of the topological signals of 
the network, being a vector with a block structure formed by a 

0-cochain and a 1-cochain                                                     

.

Ψ = ( χ
ψ)

χ =

χ1
χ2
⋮
χN

, ψ =

ψℓ1

ψℓ2

⋮
ψℓL



Topological Dirac equation
The topological Dirac equation is then given by 


 

with Hamiltonian


  


Where    leading to the anti-commutator 

i∂tΨ = ℋΨ

ℋ = D + mβ

β = (1 0
0 −1) {D, β} = 0



Energy Eigenstates 
The energy eigenstates satisfy     which leads to 


                        


It follows that  are respectively the right and left eigenvectors of  with 
eigenvalue  


and that the dispersion relation is relativistic  ,


 i.e. the energy values are given by      

EΨ = ℋΨ

Eχ = b*B̄†ψ + mχ,
Eψ = bB̄χ − mψ

χ, ψ B̄
λ

E2 = |λ |2 + m2

E = ± |λ |2 + m2



Sketch of the derivation
The eigenvalue problem      is equivalent to 


    


Let us re-order obtaining


  


Therefore


                                        This implies  

EΨ = ℋΨ

Eχ = b*B̄†ψ + mχ,
Eψ = bB̄χ − mψ

(E − m)χ = b*B̄†ψ,
(E + m)ψ = bB̄χ

(E − m)(E + m)χ = B̄†B̄χ = L[0] χ,

(E + m)(E − m)ψ = B̄B̄†ψ = Ldown
[1] ψ

E2 = m2 + |λ |2



For  there is symmetry between positive 
energy eigenstates and negative energy 

eigenstates. 

However the symmetry between positive energy 
states and negative energy states breaks down 

for  

The states at energy states at   
are localised on nodes and they have a 

degeneracy given by the Betti number  

The energy states   
are localised on links and they have a degeneracy 

given by the Betti number 

E2 > m2

|E | = m

E = m

β0

E = − m

β1

1 2 4 4
E

0

0.2

0.4

0.6

0.8

1

G
(E
)

1 2 3 4
E

0

0.2

0.4

0.6

0.8

1

G
(E
)

Matter-Antimatter asymmetry and homology

Density of states 



Eigenvectors of the Dirac operator  
on real networks



Eigenvectors of the Dirac Operator  
on real networks



Metric matrices

We introduce the  metric matrices:


•  metric on the nodes, indicating a  matrix


•  metric on the undirected edges, indicating a  matrix


Typically the metric matrices are taken real and diagonal 

Indicating distances or affinity weights in applied topology

G0 = eA0 N × N

G1 = eA1 L × L



Weighted Dirac operator on a network

with

 D̂ = (
0 b*B̄*[1]

bB̄[1] 0 )

D̂2 = 𝓛 = (
L̂[0] 0

0 L̂[1])
b ∈ ℂ, |b | = 1 B̄*[1] = G0B̄⊤

[1]G
−1
1and

L̂[0] = B̄*1 B̄1, L̂[1] = B̄1B̄*1

with

F. Baccini, F. Geraci and G. Bianconi (2022)



Normalised Dirac operator

If the matrix ,  are the diagonal matrices with elements


 


The weighted Dirac operator is also called normalised Dirac operator and 
has eigenvalues bounded in absolute value by one

G−1
1 G−1

0

G−1
1 (ℓ, ℓ) = wℓ /2

G−1
0 (i, i) = ∑

ℓ∈Ei

wℓ

|λ | ≤ 1

F. Baccini, F. Geraci and G. Bianconi (2022)



The Dirac operator for treating dynamics of 
topological signals



Topological signals
Simplicial complexes and networks can sustain dynamical variables (signals)  

not only defined on nodes but also defined on higher order simplices 
these signals are called topological signals

1

2

4

3



Topological signals
• Citations in a collaboration network


• Speed of wind at given locations


• Currents at given locations in the ocean


• Fluxes in biological transportation networks


• Synaptic signal


• Edge signals in the brain
Topological signals  

are co-chains or vector fields 



Kuramoto model on a 
network

·θr = ωr + σ
N

∑
j=1

arj sin (θj − θr)
1

2

3

4

5
6

7

8

θ1

ω ∼ 𝒩(Ω,1)

The Kuramoto model  

describes  synchronization of  
node phases of σ > σc

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

R

With

R =
1
N

N

∑
r=1

eiθr

Order parameter 



In the Standard Kuramoto model 
the free dynamics  

of the synchronised state  
is  uniform over the whole  

(connected) network 



The Topological Kuramoto model

How to define  
the Topological  Kuramoto model  

coupling higher dimensional  
topological signals?



Topological Kuramoto model

·θ = ω − σB[1] sin B⊤
[1]θ

·ϕ = ω̂ − σB[n+1] sin B⊤
[n+1]ϕ − σB⊤

[n] sin B[n]ϕ,

1

2
3

4

5
6

7
8

θ1 ϕ[1,2]ϕ[1,2]

Topological Higher-order Kuramoto modelStandard Kuramoto model

A. P. Millan, J.J. Torres and G. Bianconi PRL (2020)



The Topological Kuramoto Model 



In the Topological Kuramoto model the free dynamics of the 
synchronized state  
is localised on the  
-dimensional holes 

 

The free dynamics is localised on harmonic components 

n

d⟨uharm, ϕ⟩
dt

= ⟨uharm, ω̂⟩



Linearized Dynamics
The linearized dynamics is dictated by the Hodge-Laplacian


The harmonic component of the signal oscillates freely


The other modes freeze asymptotically in time as they obey


Where  indicates the eigenvalue of the Hodge Laplacian μ ≠ 0

·ϕ = ω̂ − σL[n]ϕ,

·ϕharmonic = ω̂harmonic

·ϕμ = ω̂μ − μϕμ



Linearised Dynamics
The linearised dynamics is dictated by the graph


The phases and the intrinsic frequencies can be decomposed in the basis of the 
eigenvectors of the graph Laplacian





The dynamical equation in this basis reduce to 


ϕ(t) = ∑
μ

cμ(t)uμ

ω̂ = ∑
μ

ω̂μuμ

·ϕ = ω̂ − σL[n]ϕ .

·cμ = ω̂μ − σμcμ



Linearised Dynamics 
(continuation)

The dynamical equations





have solution





Therefore the harmonic mode undergoes  an unperturbed motion, 


while the non-harmonic modes are freezing with time. 

·cμ = ω̂μ − σμcμ

charm(t) = charm(0) + ω̂harmt

cμ(t) =
ω̂μ

σμ (1 − e−σμt) + cμ(0)e−σμt



Topological Kuramoto model on a graph

·θ = ω − σB[1] sin B⊤
[1]θ

·ϕ = ω̂ − σB⊤
[1] sin B[1]ϕ,

1

2
3

4

5
6

7
8

ϕ[1,2]ϕ[1,2]

Topological Higher-order Kuramoto modelStandard Kuramoto model

A. P. Millan, J.J. Torres and G. Bianconi PRL (2020)
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Topological Kuramoto 
model on a graph

Let us define the vectors


Then the node and edge based topological Kuramoto model 
can be written in terms of the Dirac operator as 

·θ = ω − σB̄⊤
[1] sin B̄[1]θ

·ϕ = ω̂ − σB̄[1] sin B̄⊤
[1]ϕ,

·Φ = Ω − σD sin DΦ

Φ = (θ
ϕ), Ω = (ω

ω̂),



Topological Kuramoto 
model on a graph

Let us define the vectors


Then the node and edge based normalised topological 
Kuramoto model can be written                                                

in terms of the normalised Dirac operator as 
·θ = ω − σB̄⊤

[1] sin B̄[1]θ

·ϕ = ω̂ − σB̄[1] sin B̄*[1]ϕ,

·Φ = Ω − σD̂ sin D̂Φ

Φ = (θ
ϕ), Ω = (ω

ω̂),



Dirac Synchronization 

·Φ = Ω − σD̂ sin((D̂ − γ0zD̂2)Φ)

L. Calmon, J. Restrepo, J.J. Torres and G. Bianconi (2022)

Dirac Synchronization allows to couple locally  

and topologically signals defined on nodes and links.  

Dirac synchronisation obeys


For the node topological signal we introduce a phase lag depending on the 
edge signal and vice versa for the edge signal we introduce a phase lag 
depending on the node signal



Dirac Synchronization  
is explosive

Dirac synchronisation obeys


• Node and links signals are 
entangled.  The order parameters 
depend on linear combinations of 
nodes and link signals


• The synchronization transition is 
discontinuous

·Φ = Ω − σD̂ sin((D̂ − γ0zD̂2)Φ)

L. Calmon, J. Restrepo, J.J. Torres and G. Bianconi (2022)



Dependence on z
The phase diagram can display not only a  

forward but also a backward discontinuous transition  
as a function of z



Linearised Dynamics
The linearised dynamics is dictated by the Dirac operator


Let us now decompose  on the eigenvectors of the Dirac 
operator  obtaining 


 


Φ, Ω
Wλ

Φ = ∑
λ

cλWλ Ω = ∑
λ

ωλWλ

·Φ = Ω − σ(D̂2 + zγD̂3)Φ,



Linearised Dynamics

The harmonic component of the signal oscillates freely


The other modes freeze asymptotically at a stable focus in time and 
obey


 


Where  indicates a positive eigenvalue of the Dirac operator λ ≠ 0

·charmonic = Ω̂harmonic

(
·cλ
·c−λ) = ( ωλ

ω−λ) − σ ( λ2 zλ3

−zλ3 λ2 ) ( cλ
c−λ)



Linearised Dynamics 
(continuation)

The dynamical equation for the harmonic mode


has solution





Therefore the harmonic modes  

undergo  an unperturbed motion

charm(t) = charm(0) + ωharmt



Linearised Dynamics 
(continuation)

The dynamical equation for the other modes 


has solution





with





Therefore while the non-harmonic modes display a stable focus. 

( cλ(t)
c−λ(t)) = A(t)( 1

−i) + B(t)(1
i)

A(t) =
ωλ + iω−λ

2σ(λ2 + izλ3) (1 − e−σ(λ+izλ3)t) + A(0)e−σ(λ+izλ3)t

B(t) =
ωλ − iω−λ

2σ(λ2 + izλ3) (1 − e−σ(λ−izλ3)t) + B(0)e−σ(λ−izλ3)t



Dirac Synchronization  
is rhythmic

• TO

One of the two complex order parameters  
develops spontaneous low frequency rhythms 



Dirac Turing patterns

Defining  describing topological 
signals on nodes and links and the reaction 

diffusion dynamics 





Turing patterns on nodes and links can set in 
provided suitable topological and dynamical 

conditions.

Ψ = (θ, ϕ)⊤

·Φ = F(Φ, DΦ) − γDΦ,

Giambagli et al. (2022)



Dirac Turing patterns

• Hypercubic tessellations of d-
dimensional torus admit Turing 
patterns on any dimension


• The figure show Turing patterns 
on nodes and links on a 2D 
Torus.



The Dirac operator on simplicial complexes 



The Dirac operator on 
simplicial complexes

The Dirac operator allows  
to study interacting topological signals of different dimensions  

coexisting in the same network topology

D =
0 B̄†

1 0
B̄1 0 B̄†

2

0 B̄2 0

, s =
s0
s1
s2

Dirac operator Topological signal “spinor” 

s0
s1
s2

Node signal 
Link signal 
Triangle signal



The action of the Dirac operator 

v [
1,
2]

t

[B
2w

+B
T 1
u]

[1
,2
]

[B
2T
v]

[1
,2
,3]

3

1

4 2

5

3

1

4 2

5

3

1

4 2

5a) b) c)

u [
2]

[B
1
v]

[2
]

t

w
[1
,2
,3
]

t

    , acts on               D =
0 B̄†

1 0
B̄1 0 B̄†

2

0 B̄2 0

s =
s0
s1
s2

→ Ds =
B̄†

1s1

B̄1s0 + B̄†
1s2

B̄2s1

The Dirac operator allows cross-talking  
between signals of different dimension



Dirac decomposition

D = D[1] + D[2]

D[1] =
0 B̄1 0

B̄⊤
1 0 0

0 0 0

D[2] =
0 0 0
0 0 B̄2

0 B̄⊤
2 0

D2
[1] = 𝓛[1] =

L[0] 0 0

0 Ldown
[1] 0

0 0 0

D2
[2] = 𝓛[2] =

0 0 0
0 Lup

[1] 0

0 0 Ldown
[2]

Here  
 only couples node and link signals and  

only couples link and triangle signals

D[1]

D[2]



Dirac decomposition
Every topological signal can be decomposed in a unique way 

thanks to the Dirac decomposition





therefore every signals defined on nodes, links and triangles 
can be decomposed in a unique way as 

ℝDS = im(D[1]) ⊕ ker(D) ⊕ im(D[2])

s = s[1] + s[2] + sharm
s[1] = D[1]D+

[1]s

s[2] = D[2]D+
[2]s

With



Eigenvalues of the Dirac operator

Due to the Dirac decomposition 
the eigenvalues of the Dirac operator  

are the direct sum  
of the non-zero eigenvalues  

of  and of   
plus the zero eigenvalue  

with degeneracy  

D

D[1] D[2]

β0 + β1 + β2



Eigenvectors of the Dirac operator

Due to the Dirac decomposition 
the eigenvectors of the Dirac operator  

are  the eigenvectors  
corresponding to non-zero eigenvalues  

of  or of   

r the harmonic eigenvectors of  
 

With  localised on nodes and links and  
 localised on links and triangles

D

D[1] D[2]

D
Φ = (Φ[1] Φ[2] Φharm)

Φ[1]

Φ[2]



Eigenvalues of D[n]
The eigenstates of  satisfy 


    


with  which leads to                 


       


It follows that  are respectively the left and right singular vectors of  
with eigenvalue  and      

D[n]

μs = D[n]s

s = (s0, s1, s2)⊤

μsn−1 = Bnsn

μsn = B⊤
n sn−1

sn−1, sn Bn
λ μ = ± |λ |



Matter-antimatter symmetry…
For every singular value  of  


corresponding to the singular vectors 


the Dirac operator admits 


a positive eigenvalue   with eigenvector  


and 


a negative eigenvalue   with eigenvector  

λ ≠ 0 B̄[n]

uλ, vλ

μ = |λ | ϕ[+]
λ = (uλ

vλ)

μ = − |λ | ϕ[−]
λ = ( uλ

−vλ)



…and its violation
The zero eigenvectors of  


are linear combinations of the zero eigenvectors of 


they can be only localised on n-dimensional 


or on (n-1)-dimensional simplices    


The degeneracy the zero eigenvalue is given by 


the sum of the Betti numbers  

D[n]

B[n]

βn−1 + βn



Eigenvectors or the Dirac operator

In summary the eigenvectors of the Dirac operator 


defined on a simplicial complex of dimension 2 have the structure


Φ =
U[1] U[1] 0 0 Uharm

0 0 0
V[1] −V[1] U[2] U[2] 0 Uharm

1 0
0 0 V[2] −V[2] 0 0 Uharm

2



Topological Dirac equation on simplicial 
complexes

• The topological Dirac equation 
can be extended to simplicial 
complexes, in the case of zero 
mass it is given by


                   


• It can be shown that thanks to 
the Hodge decomposition this 
equation leads to a multi-band 
spectrum of the energy states.

i∂tψ = Dψ
10-1 100 101

E

10-4

10-2

100

G
[n
](E
)

n=0
n=1
n=2

Multi-band eigenspectrum of the  
Topological Dirac equation on a 3-dimensional NGF



Dirac Signal Processing



Signal Processing with the Hodge Laplacians
Given a noisy topological signal defined exclusively on a given dimension of the 
simplicial complex:  with  noise, how can we reconstruct  ? 

1. By ensuring the reconstructed  is close to  
2. With a regularisation enforced by the Hodge Laplacian 

Hodge Laplacian filter:   

(Barbarossa et. al., 2020, Schaub et al. 2022) 

s̃ = s + ϵ ϵ s

̂s s̃

̂s = argmin {∥s̃ − ̂s∥2
2 + τ ̂sTL ̂s}

Topological signals of different dimension are processed independently



 Edge signals and the Hodge decomposition

Schaub et al. 2022

The edge signal can be decomposed Into  
harmonic flow, gradient flow ard curl flow thanks to Hodge decomposition



Signal Processing with the Hodge Laplacian

Hodge Laplacian filter 
    

has solution 

 

̂s = argmin {∥s̃ − ̂s∥2
2 + τ ̂sTL ̂s}

̂s = [I + τL[n]]−1 s̃

The Hodge Laplacian filter processes  independently  
the solenoidal and the irrotational components of the signal 

It is effective in presenting stable curl flows



Dirac Signal Processing

L. Calmon, M. Schaub and G. Bianconi   
Dirac signal processing of topological signals 

(2023) 

+ noise
reconstruction

The Dirac operator allows us to filter out nodes and links signals jointly 



Processing with the Dirac operator

Given a noisy topological signal defined on simplices of different dimension 
   with  noise 

Joint-filtering with the Dirac: 

 

s̃ = s + ϵ ϵ

̂s = argmin {∥s̃ − ̂s∥2
2 + τ ̂sT (D − mI)2 ̂s}

higher cost negative components 
higher cost to positive components 

m > 0 →
m < 0 →



Processing with the Dirac operator
Given a noisy topological signal defined on simplices of different dimension 

   with  noise 
Joint-filtering with the Dirac: 

 

s̃ = s + ϵ ϵ

̂s = argmin {∥s̃ − ̂s∥2
2 + τ ̂sT (D − mI)2 ̂s}
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200
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Regularization for m = 0 Regularization for m = 5



Dirac Signal Processing

Hodge Laplacian filter 

   

has solution 

 

̂s = argmin {∥s̃ − ̂s∥2
2 + τ ̂sT (D − mI)2 ̂s}

̂s = [I + τ(D − mI)2]−1 s̃

Dirac signal processing is able  
to jointly filters signal of different dimensions 



m =
s⊤Ds
s⊤s

Interpretation of the parameter m

The parameter m can be interpreted as  

Which allow us to interpret the regularisation as a  
minimization of the mean square error of the signal around m 

The parameter m can be learned from data



1
s⊤s

ℛ =
1

s⊤s
sT (D −

s⊤Ds
s⊤s

I)
2

s =
s⊤D2s

s⊤s
− ( s⊤Ds

s⊤s )
2

Let us assume the estimated signal is equal to the true signal, i.e. , 
Then regularisation term 

  with   can be written as   

̂s = s

ℛ = s⊤(D − mI)2s m =
s⊤Ds
s⊤s

Interpretation of the regularisation term



The Florentine Families network:

- Simple network structure, true signal aligned with an eigenvector of 
 

Dirac signal processing

  

D

̂s = argmin {∥s̃ − ̂s∥2
2 + τ ̂sT (D − mI)2 ̂s}



Learning m m =
s⊤Ds
s⊤s
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where we indicate the reconstructed signal as

ŝ = ŝ[1] + ŝ[2]. (36)

Here, ŝ[1] is a signal associated to im(D[1]) and supported
on nodes and links only, and ŝ[2] 2 im(D[2]) is a signal
solely supported on links and triangles. Similar to the
low-pass setting, to estimate s[n] based on the observed
signals s̃[1] and s̃[2] we now propose to solve an optimiza-
tion problem of the following form

min
ŝ[n]

h
kŝ[n] � s̃[n]k22 + ⌧ ŝ>[n]Q[n]ŝ[n]

i
. (37)

where now, however, Q[n] acts as a quadratic regularizer
that depends on a matrix polynomial Q[n] of the Dirac
operator:

Q[n] =
KX

j=0

ajD
j
[n]. (38)

Here ai are coe�cients, which have to be chosen such
that Q[n] is positive (semi-)definite to yield a well defined
problem. Note that for a2 = 1 and aj = 0 for j 6= 2 this
reduces to the block-diagonal standard Hodge-Laplacian
kernel L [12, 35] (see Eq. (3)), and thus the topological
signals of di↵erent dimension are filtered independently

in this setting.
In the following we focus on a particular positive def-

inite choice of Q[n] suitable for our task of filtering out
signal components with an adjustable frequency (associ-
ated eigenvalue):

Q[n](z) = (D[n] �mnI)
2, (39)

where mn is an a priori unknown constant that can be
used to tune the filtering procedure. The solution of the
optimization problem defined in Eq.(37) is then

ŝ[n] = [I+ ⌧(D[n] �mnI)
2]�1s̃[n]. (40)

which shows that signals aligned with eigenvectors corre-
sponding to eigenvalues � ⇠ mn will be attenuated least.
Observe that, indeed, if we set m1 = m2 = 0, we recov-
ers a standard Hodge Laplacian kernel, which promotes
harmonic signals.

An essential question now is, of course, how we should
set mn in the absence of a priori information about the
true signal. Here we utilize the following observation to
develop our Dirac signal processing algorithm. If we had
access to the true signals s[n], and we knew that these
were associated to predominantly to a specific eigenvalue
�, then we should set mn = �. Equivalently, we could
use the information about s[n] and D[n] to compute mn

as:

mn =
s>[n]D[n]s[n]

s>[n]s[n]
= �, (41)

which follows from simple computations (observe that
we are e↵ectively computing a Rayleigh quotient). Cru-
cially, while the true signal components are of course not

available, for not too large signal-to-noise ratios, we may
compute a proxy of the above statistic from the observed
data.
The optimization problem (37) can be then solved iter-

atively, by first solving the optimization problem finding
ŝ[n] with the currently estimated estimated value m̂n, and
then refining the estimate m̂n using ŝ[n], with

ŝ[n] = [I+ ⌧(D[n] � m̂nI)
2]�1s̃[n],

m̂n =
ŝ>[n]D[n]ŝ[n]

ŝ>[n]ŝ[n]
. (42)

This leads to the following unsupervised Dirac signal

processing algorithm:

Require: Initial guess m̂(0)
n , Convergence threshold �,

Learning rate ⌘, Measured data s̃[n]
t 0
m̂n(t = 0) m̂(0)

n

while |m̂n(t)� m̂n(t� 1)| < � do
t t+ 1
ŝ[n]  [I+ ⌧(D[n] �mnI)2]�1s̃[n]

m̂n(t+ 1) (1� ⌘)m̂n(t) + ⌘
ŝ>[n]D[n]ŝ[n]

ŝ>
[n]

ŝ[n]

end while

Here we indicate the iteration of the algorithm with t,
and require as parameters a convergence threshold �, an

initial guess for mn, denoted by m̂(0)
n , and need to set a

learning rate 0 < ⌘  1 for m̂n.

Note that the initial guess m̂(0)
n may of course be com-

puted by a Rayleigh coe�cient using the observed data
as well. This strategy is in particular well suited if the
signal-to-noise ratio is reasonably large; for a very low
signal to noise ratio a good guess can be crucial to en-
sure e↵ective convergence to a good approximation of the
true mn, however.
An intuitive description of how the algorithm works is

as follows. As discussed, the parameter mn(t) serves as
an estimate of the eigenvalue(s) of the dominant eigenvec-
tor contribution(s) that can be found in the signal. This
estimate mn(t) will then be used for a filtering round
and thus will attenuate the frequencies around mn(t) the
least. For a su�ciently close guess, this will result in
an even better estimate of the dominant signal part, and
thus will lead to a convergence of the algorithm, by ”lock-
ing in” the desired frequency components automatically
in a data driven way. We remark that in practice some
deviation of the true signal from a single frequency is tol-
erable, as long as the set of relevant eigenvalues remains
reasonably compact.
If the true signal s[n] is known, the performance of the

algorithm can be evaluated by monitoring the error

�sn = ks̃[n] � s[n]k2, (43)

within the loop as a function of the iteration count t.
Note that the algorithm above is adaptive in that the

filtering will automatically adjust according to the initial
input provided. This contrast with the preliminary work
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where we indicate the reconstructed signal as

ŝ = ŝ[1] + ŝ[2]. (36)

Here, ŝ[1] is a signal associated to im(D[1]) and supported
on nodes and links only, and ŝ[2] 2 im(D[2]) is a signal
solely supported on links and triangles. Similar to the
low-pass setting, to estimate s[n] based on the observed
signals s̃[1] and s̃[2] we now propose to solve an optimiza-
tion problem of the following form

min
ŝ[n]
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kŝ[n] � s̃[n]k22 + ⌧ ŝ>[n]Q[n]ŝ[n]
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. (37)

where now, however, Q[n] acts as a quadratic regularizer
that depends on a matrix polynomial Q[n] of the Dirac
operator:

Q[n] =
KX

j=0

ajD
j
[n]. (38)

Here ai are coe�cients, which have to be chosen such
that Q[n] is positive (semi-)definite to yield a well defined
problem. Note that for a2 = 1 and aj = 0 for j 6= 2 this
reduces to the block-diagonal standard Hodge-Laplacian
kernel L [12, 35] (see Eq. (3)), and thus the topological
signals of di↵erent dimension are filtered independently

in this setting.
In the following we focus on a particular positive def-

inite choice of Q[n] suitable for our task of filtering out
signal components with an adjustable frequency (associ-
ated eigenvalue):

Q[n](z) = (D[n] �mnI)
2, (39)

where mn is an a priori unknown constant that can be
used to tune the filtering procedure. The solution of the
optimization problem defined in Eq.(37) is then

ŝ[n] = [I+ ⌧(D[n] �mnI)
2]�1s̃[n]. (40)

which shows that signals aligned with eigenvectors corre-
sponding to eigenvalues � ⇠ mn will be attenuated least.
Observe that, indeed, if we set m1 = m2 = 0, we recov-
ers a standard Hodge Laplacian kernel, which promotes
harmonic signals.

An essential question now is, of course, how we should
set mn in the absence of a priori information about the
true signal. Here we utilize the following observation to
develop our Dirac signal processing algorithm. If we had
access to the true signals s[n], and we knew that these
were associated to predominantly to a specific eigenvalue
�, then we should set mn = �. Equivalently, we could
use the information about s[n] and D[n] to compute mn

as:

mn =
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s>[n]s[n]
= �, (41)

which follows from simple computations (observe that
we are e↵ectively computing a Rayleigh quotient). Cru-
cially, while the true signal components are of course not

available, for not too large signal-to-noise ratios, we may
compute a proxy of the above statistic from the observed
data.
The optimization problem (37) can be then solved iter-

atively, by first solving the optimization problem finding
ŝ[n] with the currently estimated estimated value m̂n, and
then refining the estimate m̂n using ŝ[n], with

ŝ[n] = [I+ ⌧(D[n] � m̂nI)
2]�1s̃[n],

m̂n =
ŝ>[n]D[n]ŝ[n]
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This leads to the following unsupervised Dirac signal

processing algorithm:

Require: Initial guess m̂(0)
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initial guess for mn, denoted by m̂(0)
n , and need to set a

learning rate 0 < ⌘  1 for m̂n.

Note that the initial guess m̂(0)
n may of course be com-

puted by a Rayleigh coe�cient using the observed data
as well. This strategy is in particular well suited if the
signal-to-noise ratio is reasonably large; for a very low
signal to noise ratio a good guess can be crucial to en-
sure e↵ective convergence to a good approximation of the
true mn, however.
An intuitive description of how the algorithm works is

as follows. As discussed, the parameter mn(t) serves as
an estimate of the eigenvalue(s) of the dominant eigenvec-
tor contribution(s) that can be found in the signal. This
estimate mn(t) will then be used for a filtering round
and thus will attenuate the frequencies around mn(t) the
least. For a su�ciently close guess, this will result in
an even better estimate of the dominant signal part, and
thus will lead to a convergence of the algorithm, by ”lock-
ing in” the desired frequency components automatically
in a data driven way. We remark that in practice some
deviation of the true signal from a single frequency is tol-
erable, as long as the set of relevant eigenvalues remains
reasonably compact.
If the true signal s[n] is known, the performance of the

algorithm can be evaluated by monitoring the error

�sn = ks̃[n] � s[n]k2, (43)

within the loop as a function of the iteration count t.
Note that the algorithm above is adaptive in that the

filtering will automatically adjust according to the initial
input provided. This contrast with the preliminary work



Dirac signal processing on the Network 
Geometry with Flavor



Dirac signal processing on buoys data



Dirac equation lattices:  
combing the Dirac operator with algebra

G. Bianconi,  
Topological Dirac equation on networks and simplicial complexes JPhys Complexity (2021) 
G.Bianconi, 
 Dirac gauge theory for topological spinors in 3+ 1 dimensional networks. arXiv preprint 
arXiv:2212.05621 (2022). 



Directional Dirac operator on  lattices

x-link  

y-link

(a) x-link  

y-link

z-link

(b)

On a lattice links have different directions 

The Directional Dirac operator induces a  
phase rotation of the topological signal depending on the direction of the links 



Topological spinor for  
3-dimensional  lattice

In order to treat every type of link differently  

by inducing different rotations of the topological spinor,  

in 3-d we need to consider the spinor  formed by two 0-cochains and two 1-cochains, i.e. 




with


                                                                


Ψ

Ψ = (Φ
X),

Φ = (ϕ(1)

ϕ(2)), X = (χ (1)

χ (2))



Directional Boundary operators and graph Laplacians on  
3-dimensional  lattice

[B(w)]iℓ =
1 if ℓ = [ j, i] and ℓ is a type  w−link

−1 if ℓ = [i, j] and ℓ is a type  w−link
0 otherwise

L(w) = B(w)B⊤
(w)

L = L(x) + L(y) + L(z)

[L(w), L(w′ )] = 0

We consider directional boundary operators only acting between nodes and w-type links

This allows to define the directional graph Laplacians

whose sum gives the graph Laplacian of the network

Note that on square lattices we have that the directional Laplacian commute



Directional Dirac operators on  
3-dimensional  lattice

σ1(F) = (0 F
F 0), σ2(F) = ( 0 −iF

iF 0 ), σ3(F) = (F 0
0 −F) .

D(w) = (
0 ℬ(w)

ℬ†
(w) 0 )

ℬ(x) = σ1(B(x)), ℬ(y) = σ2(B(y)), ℬ(z) = σ3(B(z)),

In 3d the Directional Dirac operators are defined as 

with

where we make use of the Pauli matrices



Topological Dirac equation on  
3-dimensional  lattice

D = ∑
w∈{x,y,z}

D(w)

i∂tΨ = (D + mβ)Ψ

The Topological Dirac equation in 3d lattice is given by 

where 

β = (1 0
0 −1)and 



Dispersion relations and  
anti-commutation relations

The dispersion relation remain relativistic


with  indicating the eigenvalue of the directional boundary operator 


despite the directional Dirac operators do not commute or anti-commute


λ(w) B(w)

{D(x), D(y)} = (
0 0
0 iσz(B†

(x)B(y) − B†
(y)B(x)))

E2 = m2 + |λx |2 + |λy |2 + |λz |2

[D(x), D(y)] = (
0 0
0 iσz(B(x)B†

(y) + B(y)B†
(x)))



The Directional Dirac operator of  
Multiplex Networks



Multilayer Networks

Multilayer connectome of c.elegans, Bentley et al (2016) G. Bianconi PRE (2013)

ginestra bianconi

structure and function

MULTILAYER
NETWORKS

�



Application to multiplex networks

The dispersion relation is relativistic  

With  indicating the eigenvalue of  

Note however that in practically all 
multiplex networks the graphical 
Laplacians do not commute

μ

Multilink  
(1,1) 

Multilink  
(1,0) 

Multilink  
(0,1) 

E2 = m2 + μ

L = L(1,0) + L(0,1) + L(1,1)

[L ⃗m , L ⃗m′ ] ≠ 0

We can “blindly” use the directional Dirac operators of 3d lattices for                         
multiplex networks where one distinguish between different types of multilinks



Conclusions

• The Dirac operator can be used to treat topological signals  defined on 
simplices of different dimensions (nodes, links, triangles, etc) 

• The Dirac operator is a powerful way to couple dynamics on different 
dimension including Dirac synchronisation and Dirac Turing patterns 

• Dirac signal processing allows to filter simultaneously topological signals on 
nodes links and triangles 

• The Dirac operator can be efficiently combined with a suitable algebra in 
order to take into account for different directionalities of the links 



Lesson Vb: 
Effect of geometrical and combinatorial  properties of 

higher-order  networks on dynamics

Interplay between network geometry and dynamics 

• The effect of the spectral dimension on sychronization 
• Percolation on hyperbolic geometry 

Triadic interactions and triadic percolation 



Higher-order structure and dynamics
Higher -order 

networks

Simplicial 
 Topology

Simplicial 
Geometry

Higher-order 
dynamics 

Combinatorial 
Statistical  
Properties



Synchronization  
on simplicial complex skeletons  
with finite spectral dimension



The role of dimensionality 
in neuronal dynamics

Uloa Severino et al. Scientific Reports (2016)



Kuramoto model on a 
network

·θi = ωi + σ
N

∑
j=1

aij sin (θj − θi)1

2

3

4

5
6

7

8

θ1

ω ∼ 𝒩(Ω,1)

Given a network of N nodes  
defined by an adjacency matrix a 

we assign to each node a phase obeying 

where the internal frequencies of the nodes  
are drawn randomly from 

and  the coupling constant is 𝜎 

The oscillators are non-identical



Order parameter for 
synchronization

We consider the global order parameter 


which indicates the 


synchronisation transition such that for


 


R

|σ − σc | ≪ 1

R =
1
N

N

∑
i=1

e θi𝕚

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

R

R = {
0  for σ < σc

c(σ − σc)1/2  for σ ≥ σc
Kuramoto (1975)



Starting from a single d-dimensional simplex  

GROWTH :                                                                  

At every timestep we add a new d-dimensional simplex 

(formed by one new node and an existing (d-1)-face). 

ATTACHMENT:                              

 The probability that a new node will be connected to a face µ depends on the 
flavor s=-1,0,1 and is given by 

Bianconi & Rahmede (2016)

1

6

5 4

2

3

Network Geometry with Flavor

Π[s]
α =

(1 + snα)
∑α′ 

(1 + snα′ )



Emergent Hyperbolic geometry
The emergent hidden geometry is the hyperbolic Hd space  

Here all the links have equal length

d=2



d=3

Emergent hyperbolic geometry

d=3



-dimensional NGF  of flavor   
can be interpreted as   topologies 

if we neglect the volume of -simplices

d s = − 1
D = d − 1

d



Spectral dimensions of  
NGF and s=-1

€ NGF have finite spectral dimension with 

€ 

ρ(λ) ∼ λdS /2−1 for λ ≪ 1

ρc(λ) ∼ λdS /2 for λ ≪ 1

dS ∼ d for d = 2,3,4

In order to test that these networks  
have a finite spectral dimension  

and a density of eigenvalues 

We consider the cumulative density  
of eigenvalues 

Millan et al. Sci. Rep. (2018); Millan et al. PRE (2019)



Frustrated synchronisation
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Linearized Kuramoto model

The Kuramoto model describes the dynamics of phases that obey 

Close to the synchronisation transition 

when the phases obey  

  

the dynamics can be linearised obtaining the equations 

·θi = ωi + σ
N

∑
j=1

aij sin (θj − θi)

·ϕi ≃ ωi − Ω − σ
N

∑
j=1

Lijϕj

θi = Ωt + ϕi with ϕi ≪ 1



Fully synchronized phase 
and the spectral dimension

 The  synchronized phase is not 
thermodynamically achieved  

 for networks with spectral dimension  

  

€ 

In Complex Network Manifolds with D=3  
the fully synchronized state is marginally stable 

dS ≤ 4

Millan et al. Sci. Rep. (2018); Millan et al. PRE (2019)



Synchronization of different 
communities
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Correlations among communities
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Percolation on  
Hyperbolic networks  

 simplicial and cell complexes



Robustness of  a network

We assume that a fraction 1-p of links is damaged.
We evaluate the robustness of the network by calculating the fraction  R

of nodes in the giant component after this inflicted damage.



Robustness of  a network

×× ×

×

×

We assume that a fraction 1-p of links is damaged.
We evaluate the robustness of the network by calculating the fraction R 

of nodes in the giant component after this inflicted damage.



Robustness of  a network

×× ×

×

×

After the damage

We assume that a fraction 1-p of links is damaged.
We evaluate the robustness of the network by calculating the fraction R 

of nodes in the giant component after this inflicted damage.



Percolation transition
As links are damaged with probability f=1-p 


the fraction R of nodes in the giant component 


of an infinite network has a transition from a non-zero to a zero value

R



Percolation on a  random 
uncorrelated network 

Consider a random uncorrelated network with degree distribution 


Percolation displays a single percolation threshold  at 


For 


 


For  the giant component is extensive 


(contains a finite fraction of nodes)


The transition is continuous

P(k)

pc pc =
⟨k⟩

⟨k(k − 1)⟩

|p − pc | ≪ 1

R ≃ {a(p − pc)β for p > pc

0 for p ≤ pc

p > pc



Let us define the generating functions


 


The fraction of nodes  in the giant component when links 
are removed with probability  obeys


with

G0(x) = ∑
k

P(k)xk, G1(x) = ∑
k

k
⟨k⟩

P(k)xk−1

R
q = 1 − p

S = 1 − G1 (1 − pS)

R = 1 − G0(1 − pS)

Percolation on a  random 
uncorrelated network 



Hybrid transitions
• Generalised percolation 

problems which involve a 
cooperative behaviour such a 
k-core percolation, or 
interdependent percolation 
often lead to discontinuous  
hybrid transition


• Dorogovstev, Goltsev, 
Mendes, Rev. Mod. Phys. 
2008
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Critical behavior of  
hybrid transitions

0 1 2 3 4 5
0

1

2

3

4

cp

cS

R ≃ {Rc + a(p − pc)β for p > pc

0 for p ≤ pc

The critical behavior of hybrid 
transitions is characterized  
by a discontinuity and  
a singularityR



Percolation on  
Hyperbolic networks  

 simplicial and cell complexes



Percolation in hyperbolic networks

Percolation in hyperbolic networks is known 
to have two percolation thresholds pl and 
pu. 

– For p<pl no infinite cluster exist 
– For pl<p<pu the maximum cluster is infinite 

but sub-extensive 
– For p>pu the maximum cluster is extensive



Link Percolation in 2d 
hyperbolic manifolds



2d Hyperbolic Manifolds

n=0 n=1 n=2

m=3

m=4

random



The dual is a tree

(a) (b) (c)



Link percolation in d=2 hyperbolic 
simplicial complex 

€ 

=       +

[Boettcher,Singh, Ziff 2012] 

The probability Tn+1that the two initial nodes  
are connected at iteration n+1 is given by the RG 

equation

A RG study of the generating functions 
show that the upper percolation transition 
Is discontinuous at p=0.5 and non-trivial. 

Tn+1 = p + (1 − p)T2
n



The linking probability
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T = p + (1 − p)
∞

∑
m=3

qmTm−1

p → 1 − p
T → 1 − S

qm →
k

⟨k⟩
P(k)

S = p [1 − ∑
k
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Fixed m discontinuous phase transition
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[Kryven, Ziff Bianconi 2018]
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cΔp

[Kryven, Ziff Bianconi]



Power-law 

γ > 4 P∞(pc) + αγΔp ln Δp

γ = 4 P∞(pc) + αγΔp[ln Δp]2
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Topological damage

On networks  
damage can occur only  
on nodes or on links. 

On simplicial complexes  
topological damage can be directed also  

to higher dimensional simplicies,  
such as  

triangles, tetrahedra etc.



Topological percolation
On d=2 simplicial complexes we distinguish  
4 types of topological percolation problems: 

Link percolation: Links are removed with probability q=1-p.  
 Nodes are connected to nodes through intact links 

Triangle percolation: Triangles are removed with probability q=1-p.  
 Links are connected to links through intact triangles. 

Node percolation: Nodess are removed with probability q=1-p.  
 Links are connected to links through intact nodes 

Upper link percolation: Links are removed with probability q=1-p.  
Triangles are connected to triangles though intact links 

On d=3 simplicial complexes we distinguish  
6 types of topological percolation problems: 

Link percolation, Triangle percolation, tetrahedron percolation 

Node percolation, upper link percolation, Upper triangle percolation
[Bianconi and Ziff 2018]



Hyperbolic Simplicial complexes

d=2 HYPERBOLIC SIMPLICIAL COMPLEX 

We start from a link. 
At each iteration we glue a triangle  
to any link added at the previous iteration 

d=3 HYPERBOLIC SIMPLICIAL COMPLEX 

We start from a triangle. 
At each iteration we glue a tetrahedron  
to any triangle added at the previous 
 iteration 



The d=3 Hyperbolic Simplical Complex

At the level of the network skeleton  
the d=3 Hyperbolic Simplicial Complex  

reduces to the Apollonian network



The line graph of the Apollonian network 
is the Sierpinski gasket

[Bianconi and Ziff 2018]



The line graph of the d=3 Hyperbolic Simplicial Complex  
is the multiplex Sierpinski gasket



Triangle percolation for the d=3 
hyperbolic simplicial complex

The order parameter is the fraction of links 
 connected to the initial three links  through intact triangles



The RG equations

The RG equations can be written 
down 

diagramatically  
using  the multiplex Sierpinski 

gasket  

[Bianconi and Ziff 2018]

€ 

€ 

The probability Tn+1, Sn+1, Wn+1that  
 three, two or none of the initial links  

are connected at iteration n+1 is given by the RG 
equation

Tn+1 = p + (1 − p)(T3
n + 6T2

n Sn + 3TnS2
n)

Sn+1 = (1 − p)[T2
n(Sn + Wn) + TnSn(7Sn + 2Wn) + S2

n(4Sn + Wn)]
Wn+1 = 1 − Tn+1 − 3Sn+1



Berezinskii-Kosterlitz-Thouless 
transition
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Triangle percolation on the d=3 hyperbolic simplicial complex  
undergoes a BKT transition 

with the order parameter scaling like 

€ 

[Bianconi and Ziff 2018]

Mn ∝ e−A/|p−pc|
1/2



Topological percolation for d=2 
hyperbolic simplicial complex

All transitions are discontinuous. Only link percolation is non-trivial

[Bianconi and Ziff 2018]
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TABLE I. Lower pl and upper pu percolation thresholds for
topological percolation on the d = 2 and d = 3 hyperbolic mani-
folds under consideration. The section of the paper in which each
percolation problem is treated is also indicated.

Section pl pu

d = 2
Link percolation (V A) 0 1

2
Triangle percolation (V B) 1

2 1
Node percolation (V C) 0 1
Upper-link percolation (V D) 1

2 1

d = 3
Link percolation (VI A) N/A 0
Triangle percolation (VI B) 0 0.307981 . . .

Tetrahedron percolation (VI C) 1
3 1

Node percolation (VI D) 0 1
Upper-link percolation (VI E) 0 1
Upper-triangle percolation (VI F) 1

3 1

(1) For p < pl no cluster has infinite size.
(2) For pl < p < pu the network has an infinite but

subextensive maximum cluster of average size R,

R ∼ Nψ , (3)

with 0 < ψ < 1. Here N indicates the number of nodes of the
network and ψ is called the fractal critical exponent.

(3) For p > pu the network has an extensive cluster, i.e.,
the fraction M of nodes in the giant component scales like

M " R

N
= O(1). (4)

Here we find that these general properties of node and
link percolation on hyperbolic lattices remain valid also for
the higher-dimensional problems for topological percolation
on simplicial complexes (see Table I). However, we find that
the value of the thresholds, the critical fractal exponent, and
the nature of the transition can change significantly for the
different versions of the topological percolation and with the
overall dimension d of the manifold as will be detailed in the
next sections.

V. TOPOLOGICAL PERCOLATION ON d = 2
HYPERBOLIC MANIFOLD

In this section we will consider topological percolation
on the d = 2 Farey simplicial complex in detail. We will
summarize known results on link percolation [23] and we will
show the critical behavior of node, triangle, and upper-triangle
percolation.

A. Link percolation

In link percolation, links are removed with probability q
and the connected component are formed by nodes connected
to nodes through intact links. This transition in the d = 2
Farey simplicial complex has been studied by Boettcher,
Singh, and Ziff in Ref. [23].

The probability T̂n+1 that the two nodes which appeared in
the simplicial complex at iteration n = 0 are connected at the

generation n + 1 is given by [23]

T̂n+1 = p + (1 − p)T̂ 2
n . (5)

In fact, they are either directly connected (event which occurs
with probability p) or if they are not directly connected
(event which occurs with probability q = 1 − p), they can be
connected if each node is connected to the node arrived in the
network at iteration n = 1 (event which occur with probability
T̂ 2

n ). In the limit n → ∞ this equation has the steady-state
solution

T̂∞ =
{ p

1−p
for p < 1

2
1 for p ! 1

2

.

Since we have T̂∞ > 0 for any p > 0 and T̂∞ = 1 for p ! 1
2 ,

the lower pl
1 and the upper pu

1 critical thresholds are given by

pl
1 = 0, pu

1 = 1
2 . (6)

To investigate the nature of the phase transition, Boettcher,
Singh, and Ziff in Ref. [23] have proposed a theoretical ap-
proach based on the generating functions Tn(x) and Sn(x, y).
In a Farey simplicial complex at iteration n the function
Tn(x) is the generating function of the number of nodes in
the connected component linked to both initial nodes. The
function Sn(x, y) is the generating function for the sizes of
the two connected components linked exclusively to one of
the two initial nodes. These generating functions are given by

Tn(x) =
∞∑

"=0

tn(")x",

Sn(x, y) =
∑

","̄

sn(", "̄)x"y "̄. (7)

Here we consider the d = 2 hyperbolic manifold at iteration
n, and we indicate with tn(") the distribution of the number of
nodes " connected to the two initial nodes and with sn(", "̄)
we indicate the joint distribution of the number of nodes "
connected exclusively to a given initial node and the number
of nodes "̄ connected exclusively to the other initial node.

The recursive equations for Tn(x) and Sn(x, y) start from
the initial condition T0(x) = p and S0(x, y) = 1 − p and read
[23]

Tn+1(x) = p
{
xT 2

n (x) + 2xTn(x)Sn(x, x)

+ Sn(1, x)Sn(1, x)
}

+ (1 − p)xT 2
n (x)

Sn+1(x, y) = (1 − p){xTn(x)Sn(x, y) + ySn(x, y)Tn(y)

+ Sn(1, x)Sn(1, y)}, (8)

with

T̂n = Tn(1) = 1 − Sn(1, 1). (9)

The size Rn of the connected component linked to the initial
two nodes at iteration n is given by

Rn = dTn(x)
dx

∣∣∣∣
x=1

. (10)

By explicitly deriving Rn from Eq. (8) in Ref. [23] it has been
proven that for n & 1, Rn scales like

Rn ∼
[
N (0)

n

]ψ
, (11)

052308-5

Discontinuous non-trivial 
Discontinuous trivial 
Discontinuous trivial 
Discontinuous trivial



Topological percolation for d=3 
hyperbolic simplicial complex

[Bianconi and Ziff 2018]
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TABLE I. Lower pl and upper pu percolation thresholds for
topological percolation on the d = 2 and d = 3 hyperbolic mani-
folds under consideration. The section of the paper in which each
percolation problem is treated is also indicated.

Section pl pu

d = 2
Link percolation (V A) 0 1

2
Triangle percolation (V B) 1

2 1
Node percolation (V C) 0 1
Upper-link percolation (V D) 1

2 1

d = 3
Link percolation (VI A) N/A 0
Triangle percolation (VI B) 0 0.307981 . . .

Tetrahedron percolation (VI C) 1
3 1

Node percolation (VI D) 0 1
Upper-link percolation (VI E) 0 1
Upper-triangle percolation (VI F) 1

3 1

(1) For p < pl no cluster has infinite size.
(2) For pl < p < pu the network has an infinite but

subextensive maximum cluster of average size R,

R ∼ Nψ , (3)

with 0 < ψ < 1. Here N indicates the number of nodes of the
network and ψ is called the fractal critical exponent.

(3) For p > pu the network has an extensive cluster, i.e.,
the fraction M of nodes in the giant component scales like

M " R

N
= O(1). (4)

Here we find that these general properties of node and
link percolation on hyperbolic lattices remain valid also for
the higher-dimensional problems for topological percolation
on simplicial complexes (see Table I). However, we find that
the value of the thresholds, the critical fractal exponent, and
the nature of the transition can change significantly for the
different versions of the topological percolation and with the
overall dimension d of the manifold as will be detailed in the
next sections.

V. TOPOLOGICAL PERCOLATION ON d = 2
HYPERBOLIC MANIFOLD

In this section we will consider topological percolation
on the d = 2 Farey simplicial complex in detail. We will
summarize known results on link percolation [23] and we will
show the critical behavior of node, triangle, and upper-triangle
percolation.

A. Link percolation

In link percolation, links are removed with probability q
and the connected component are formed by nodes connected
to nodes through intact links. This transition in the d = 2
Farey simplicial complex has been studied by Boettcher,
Singh, and Ziff in Ref. [23].

The probability T̂n+1 that the two nodes which appeared in
the simplicial complex at iteration n = 0 are connected at the

generation n + 1 is given by [23]

T̂n+1 = p + (1 − p)T̂ 2
n . (5)

In fact, they are either directly connected (event which occurs
with probability p) or if they are not directly connected
(event which occurs with probability q = 1 − p), they can be
connected if each node is connected to the node arrived in the
network at iteration n = 1 (event which occur with probability
T̂ 2

n ). In the limit n → ∞ this equation has the steady-state
solution

T̂∞ =
{ p

1−p
for p < 1

2
1 for p ! 1

2

.

Since we have T̂∞ > 0 for any p > 0 and T̂∞ = 1 for p ! 1
2 ,

the lower pl
1 and the upper pu

1 critical thresholds are given by

pl
1 = 0, pu

1 = 1
2 . (6)

To investigate the nature of the phase transition, Boettcher,
Singh, and Ziff in Ref. [23] have proposed a theoretical ap-
proach based on the generating functions Tn(x) and Sn(x, y).
In a Farey simplicial complex at iteration n the function
Tn(x) is the generating function of the number of nodes in
the connected component linked to both initial nodes. The
function Sn(x, y) is the generating function for the sizes of
the two connected components linked exclusively to one of
the two initial nodes. These generating functions are given by

Tn(x) =
∞∑

"=0

tn(")x",

Sn(x, y) =
∑

","̄

sn(", "̄)x"y "̄. (7)

Here we consider the d = 2 hyperbolic manifold at iteration
n, and we indicate with tn(") the distribution of the number of
nodes " connected to the two initial nodes and with sn(", "̄)
we indicate the joint distribution of the number of nodes "
connected exclusively to a given initial node and the number
of nodes "̄ connected exclusively to the other initial node.

The recursive equations for Tn(x) and Sn(x, y) start from
the initial condition T0(x) = p and S0(x, y) = 1 − p and read
[23]

Tn+1(x) = p
{
xT 2

n (x) + 2xTn(x)Sn(x, x)

+ Sn(1, x)Sn(1, x)
}

+ (1 − p)xT 2
n (x)

Sn+1(x, y) = (1 − p){xTn(x)Sn(x, y) + ySn(x, y)Tn(y)

+ Sn(1, x)Sn(1, y)}, (8)

with

T̂n = Tn(1) = 1 − Sn(1, 1). (9)

The size Rn of the connected component linked to the initial
two nodes at iteration n is given by

Rn = dTn(x)
dx

∣∣∣∣
x=1

. (10)

By explicitly deriving Rn from Eq. (8) in Ref. [23] it has been
proven that for n & 1, Rn scales like

Rn ∼
[
N (0)

n

]ψ
, (11)
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(1) For p < pl no cluster has infinite size.
(2) For pl < p < pu the network has an infinite but

subextensive maximum cluster of average size R,

R ∼ Nψ , (3)

with 0 < ψ < 1. Here N indicates the number of nodes of the
network and ψ is called the fractal critical exponent.

(3) For p > pu the network has an extensive cluster, i.e.,
the fraction M of nodes in the giant component scales like

M " R

N
= O(1). (4)

Here we find that these general properties of node and
link percolation on hyperbolic lattices remain valid also for
the higher-dimensional problems for topological percolation
on simplicial complexes (see Table I). However, we find that
the value of the thresholds, the critical fractal exponent, and
the nature of the transition can change significantly for the
different versions of the topological percolation and with the
overall dimension d of the manifold as will be detailed in the
next sections.

V. TOPOLOGICAL PERCOLATION ON d = 2
HYPERBOLIC MANIFOLD

In this section we will consider topological percolation
on the d = 2 Farey simplicial complex in detail. We will
summarize known results on link percolation [23] and we will
show the critical behavior of node, triangle, and upper-triangle
percolation.

A. Link percolation

In link percolation, links are removed with probability q
and the connected component are formed by nodes connected
to nodes through intact links. This transition in the d = 2
Farey simplicial complex has been studied by Boettcher,
Singh, and Ziff in Ref. [23].

The probability T̂n+1 that the two nodes which appeared in
the simplicial complex at iteration n = 0 are connected at the

generation n + 1 is given by [23]

T̂n+1 = p + (1 − p)T̂ 2
n . (5)

In fact, they are either directly connected (event which occurs
with probability p) or if they are not directly connected
(event which occurs with probability q = 1 − p), they can be
connected if each node is connected to the node arrived in the
network at iteration n = 1 (event which occur with probability
T̂ 2

n ). In the limit n → ∞ this equation has the steady-state
solution

T̂∞ =
{ p

1−p
for p < 1

2
1 for p ! 1

2

.

Since we have T̂∞ > 0 for any p > 0 and T̂∞ = 1 for p ! 1
2 ,

the lower pl
1 and the upper pu

1 critical thresholds are given by
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1 = 0, pu

1 = 1
2 . (6)

To investigate the nature of the phase transition, Boettcher,
Singh, and Ziff in Ref. [23] have proposed a theoretical ap-
proach based on the generating functions Tn(x) and Sn(x, y).
In a Farey simplicial complex at iteration n the function
Tn(x) is the generating function of the number of nodes in
the connected component linked to both initial nodes. The
function Sn(x, y) is the generating function for the sizes of
the two connected components linked exclusively to one of
the two initial nodes. These generating functions are given by

Tn(x) =
∞∑

"=0

tn(")x",

Sn(x, y) =
∑

","̄

sn(", "̄)x"y "̄. (7)

Here we consider the d = 2 hyperbolic manifold at iteration
n, and we indicate with tn(") the distribution of the number of
nodes " connected to the two initial nodes and with sn(", "̄)
we indicate the joint distribution of the number of nodes "
connected exclusively to a given initial node and the number
of nodes "̄ connected exclusively to the other initial node.

The recursive equations for Tn(x) and Sn(x, y) start from
the initial condition T0(x) = p and S0(x, y) = 1 − p and read
[23]

Tn+1(x) = p
{
xT 2

n (x) + 2xTn(x)Sn(x, x)

+ Sn(1, x)Sn(1, x)
}

+ (1 − p)xT 2
n (x)

Sn+1(x, y) = (1 − p){xTn(x)Sn(x, y) + ySn(x, y)Tn(y)

+ Sn(1, x)Sn(1, y)}, (8)

with

T̂n = Tn(1) = 1 − Sn(1, 1). (9)

The size Rn of the connected component linked to the initial
two nodes at iteration n is given by

Rn = dTn(x)
dx

∣∣∣∣
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By explicitly deriving Rn from Eq. (8) in Ref. [23] it has been
proven that for n & 1, Rn scales like

Rn ∼
[
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, (11)
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Comments
Nodes and link percolation  
cannot be used to predict  

the other topological percolation problems 

• In d=2 Hyperbolic simplicial complex all transitions are 
discontinuous while in d=3 link and triangle percolation are 
continuous 

• Link percolation in d=2 displays a non trivial discontinuous 
transition while no such transition is observed in d=3 

• Triangle percolation in d=3 is a BKT transition while no such 
transition is observed in d=2



Higher-order structure and dynamics
Higher-order 

networks

Simplicial 
 Topology

Simplicial 
Geometry

Higher-order 
dynamics

Combinatorial 
Statistical 
 Properties



Triadic interactions

A triadic interaction occurs  
when a node  

affects the interaction  
between other two nodes



Sign of triadic interactions

A triadic interactions can be positive or negative  
The presence of a third species can enhance or can inhibit the interaction between 

two species 
The presence of a glia can change the synaptic interactions between two neurons



Robustness of  a network

We assume that a fraction 1-p of links is damaged.
We evaluate the robustness of the network by calculating the fraction  R

of nodes in the giant component after this inflicted damage.



Robustness of  a network

×× ×

×

×

We assume that a fraction 1-p of links is damaged.
We evaluate the robustness of the network by calculating the fraction R 

of nodes in the giant component after this inflicted damage.



Robustness of  a network

×× ×

×

×

After the damage

We assume that a fraction 1-p of links is damaged.
We evaluate the robustness of the network by calculating the fraction R 

of nodes in the giant component after this inflicted damage.



Percolation transition
As links are damaged with probability f=1-p 


the fraction R of nodes in the giant component 


of an infinite network has a transition from a non-zero to a zero value


S = 1 − G1 (1 − pS)
R = 1 − G0(1 − pS)R



Higher-order network with 
triadic interactions

Node 

Structural link 

Positive regulation 

Negative regulation H. Sun, F. Radicchi, J. Kurths, and G. Bianconi (2020)



Activity of nodes and 
structural links

Regulatory interactions  
determine which links are active. 

Structural links are active if they are connected to a 
least a active positive regulator node and they are not 

connected to any active negative regulator node 

Structural interactions  
determine which nodes are active. 

A node is active if it belongs to the giant component of 
the structural network 



Dynamic nature of 
percolation

• Agorithm:


• Step 1: Evaluate the nodes in the giant component of the 
structural network. Nodes are active if and only if they 
belong to the giant component of the network


• Step 2: Deactivate the links that are connected to at least 
one active negative regulator node or that are not 
connected to any active positive regulator node. All the 
other links are damaged with probability q=1-p.


• Repeat from Step 1



……

t=1 

t=2 

t=3 

t=4

Step 1                     Step 2



S(t) = 1 − G1 (1 − p(t−1)
L S(t))

R(t) = G0(1 − p(t−1)
L S(t))

p(t)
L = pG0 (1 − R(t)) [1 − G0 (1 − R(t))]

Theory
Step 1

Step 2

R(t) = f(p(t−1))

p(t)
L = g(R(t))



Blinking of the network
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Blinking  



Chaotic pattern of the order 
parameter of percolation

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0

0 25 50 75 100
0.0
0.2
0.4
0.6
0.8
1.0



Chaos in connectivity of 
the network



Route to chaos in  
scale-free networks 
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Theoretical prediction Monte Carlo simulations

Absence of triadic  
interactions

In presence of triadic  
interactions



The map of triadic 
percolation
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The map  Rt+1 = h(Rt)



Route to chaos
The map   

is in the universality class of the logistic map 

Indeed  close to the maximum  
for   the map displays the quadratic form 

  

which according to  
Feigenbaum classic renormalisation group result proves  

that the universality class of the map is the same as the one of the logistic map

Rt+1 = h(Rt)

R ≃ R⋆

h(R) ≃ h(R⋆) −
1
2

h′ ′ (R⋆)(R − R⋆)2



Blinking and chaos in 
mouse brain network

Mouse brain network+ random regulatory interactions
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Only positive regulations

0 25 50 75 100
0.46

0.48

0.5

0.52

0.54

0.56

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

The dynamics always reaches a steady state The percolation transition is discontinuous and hybrid



Triadic interactions in more 
complex settings

Hypergraphs  

A

Multiplex nets 



Conclusions
In presence of higher-order interactions the interplay between 
structure and dynamics is mediated by network topology, and 
network geometry in addition to network statistical properties 

Network geometry can have an important effect on dynamics: for 
instance a finite spectral dimension can change the stability of the 

synchronised state of the Kuramoto model 
And hyperbolic network geometry can change the critical property of 

percolation 

Higher-order interaction include triadic interactions 
Signed triadic interactions inspired by neurone-glia interactions can 

turn percolation  
into a fully-fledged dynamical process. 
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