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Dirac operator

- On graphs
- On simplicial complexes

Higher-order dynamics of topological signals
driven by the Dirac operator

* Dirac synchronisation
 Dirac signal processing

Topological Dirac equation on lattices



Dirac legacy
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Topological spinor

« Consideragraph G = (V,E) with N = | V| nodesand L = | E| edges
* The graph Laplacian defines diffusion from nodes to nodes through edges

 The one down Hodge Laplacian defines diffusion for edges to edges
through nodes



Topological spinor

The spinor is defined on both nodes and edges of a graph G = (V, E)

asW=yPye C'@ C! or equivalently
¥=(y)
/4
with
e ) defined on nodes, i.e. y € C,

. y defined on edges, i.e. w € C!



Exterior derivative and its dual

« The exterior derivative d : C* — C! is defined as
(AY)e=pij =X —X; 9radient
« It adjoint operator d* : C!' — CV is defined as

(d*y); = Z W, — Z y, divergence

e€E’ e€E”



Hodge Laplacians of a graph

The graph Laplacian and the 1st order Laplacian are defined as
Ly, = d*d (graph Laplacian) L; = dd* (1st order Laplacian)
Properties:

A. The Laplacians L, L, are semi-definite positive and isospectral

B. dim kerL, = [, where [, indicates the nth Betti number.



Co-boundary matrix

@
(%

Coboundary matrix

1_3[1] is a L X N matrix of elements

o 1if £ =[]
©) B (¢.0) =4 —1if £ =i, ]]

| 0 otherwise

B[l] Discrete gradient

BT Discrete divergence The discrete gradient can be represented

[1] by the coboundary matrix B[l]




Hodge Laplacians

Hodge Laplacians

G The Hodge Laplacians describe diffusion
from n-simplices to n-simplices through (n-1) and (n+1) simplices:

for a graph we have

—RBRT B _ P nt
Lo = BBy Ly =BuBj,



Basic definition of the Dirac operator on graphs

The Dirac operator in its simplest form

is the self-adjoint operator D : C' @ C! - CY @ C! defined as

satisfying

D(y @y) =(d+d*)(x @y = (d*y) @ (dy)



Exterior derivation and its adjoint on a graph

The exterior derivative and its adjoint

o (_0 0> e <0 Bgl]>
B, 0 0 0

act on a topological spinor

v- ()




Dirac operator on a graph

Exterior divergence

g <_0 0> e <0 B§1]>
By 0 0 0

Dirac operator is a self-adjoint operator

D =d+d*




Dirac operator on graph

Dirac operator on a graph

o < 0 Bgl])

Action of the Dirac operator on
the topological spinor

DY = < ! BF”) <X




The Dirac as the square-root of the Laplacian

The Dirac operator
can be interpreted as the
“square-root” of the Laplacian

S (0 Bl bl o (o 0
By, O 0 L

The non-zero eigenvalues of the Dirac operator
are the square root of the non-zero eigenvalues of the graph Laplacian.



The spectrum of the Dirac operator

Ligg O
Since D? = & = ( (; ] . ) and L, Ly are isospectral, it follows
[1]

that:

Spectrum: For every positive eigenvalue y of L[O] there is one positive and

one negative eigenvalue A of the Dirac operator D with

A=%./u



Chirality

Let us define 7, = <(1) 01>

obeying the anti commutator relation{D, y,} = 0

e Chirality:If ¥ = (y, t//)T is an eigenvector of the Dirac operator with
eigenvalue 4, i.e. if D¥ = AW then 7, = (¥, — w)' is an eigenvector of
D with eigenvalue — A

* |Indeed from the anti-commutator relation it follows that

Dy¥ = -y, D¥ = — Ay,¥



Eigenvectors of the Dirac operator

* |t follows that the matrix of eigenvectors of the Dirac operator can be

expressed as
® <U[1] U[l] Ugarm 0 >
V[l] _V[l] 0 Ullzarm

« where UM, VU |ndicates the right and left singular vector of the
coboundary operator and Ug“”m, Uil"”"m are the matrices of the harmonic

eigenvectors of Ly, L, respectively.



Index of the Dirac operator

The index of the Dirac operator D is given

by the Euler number y of the graph

ind D = dim ker d — dim ker d* = y,

Indeed




Introducing an algebra

Dirac operator on a network
can be enriched by an algebra

. ( 0 b*Bgl]>

beC, |b|=1




Topological spinor
On a network we consider the topological spinor

()

Characterising the dynamical state of the topological signals of
the network, being a vector with a block structure formed by a
O-cochain and a 1-cochain

()(1\ (l//fl\

X Ye,
X — . 2 VI — o "

\)(N) \l/jfL)



Topological Dirac equation

The topological Dirac equation is then given by

0¥ = XV
with Hamiltonian
A =D+ mp

1 0

0 1> leading to the anti-commutator {D,f} =0

Where f = <



Energy Eigenstates

The energy eigenstates satisfy EW = ZW which leads to

Ey = b*B'y + my,
Ey = bBy — my

It follows that y, y are respectively the right and left eigenvectors of B with
eigenvalue A

and that the dispersion relation is relativistic E? = | A |2 + m?,

i.e. the energy values are givenby E = =% \/ |A]% + m?



Sketch of the derivation

The eigenvalue problem EW = Z'W¥ is equivalent to
Ey = b*Bly + my,

Ey = bBy — my

Let us re-order obtaining

(E+ m)y = bBy

Therefore

__ ) e This implies E2 = m? + | A
(E +m)(E — myy = BBy = Ly



Matter-Antimatter asymmetry and homology

G(E)

The states at energy states at £ = m
are localised on nodes and they have a

degeneracy given by the Betti number /,

The energy states £ = — m
are localised on links and they have a degeneracy Density of states
given by the Betti number £,



Eigenvectors of the Dirac operator
on real networks




Eigenvectors of the Dirac Operator
on real networks




Metric matrices

We introduce the metric matrices:

« Gy = e metric on the nodes, indicating a N X N matrix

. Gl — ¢ metric on the undirected edges, indicating a L X L matrix



Weighted Dirac operator on a network

A 0 b*By
D= _
bBy, 0

with beC, |b|=1 and Bﬁ] = G,B/, G}'

Do (L[O] 0 )
0 L[l]

with

Loy = BB, Ly, = BB}

F. Baccini, F. Geraci and G. Bianconi (2022)



Normalised Dirac operator

If the matrix Gl_l,Ga I are the diagonal matrices with elements
G\, ¢)=w,I2
Gy'(.i)= ) w,

AT

The weighted Dirac operator is also called normalised Dirac operator and
has eigenvalues bounded in absolute value by one |A| < 1

F. Baccini, F. Geraci and G. Bianconi (2022)



The Dirac operator for treating dynamics of
topological signals



Topological signals

Simplicial complexes and networks can sustain dynamical variables (signals)
not only defined on nodes but also defined on higher order simplices
these signals are called

~




Topological signals

Citations in a collaboration network

Speed of wind at given locations

Currents at given locations in the ocean
Fluxes in biological transportation networks
Synaptic signal

Edge signals in the brain



Kuramoto model on a

network

The Kuramoto model

N
6, = w,+0 Y asin (ej _ 9,,)
i1 With

describes synchronization of
node phases of 0 > o.
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In the Standard Kuramoto model
the free dynamics
of the synchronised state

is uniform over the whole
(connected) network




The Topological Kuramoto model

O12)

How to define
the Topological Kuramoto model
coupling higher dimensional
topological signals?




Topological Kuramoto model

¢[1,2]

0,

v

Standard Kuramoto model Topological Higher-order Kuramoto model
a . T : A . .
0 = ® — 0B sinB,0 ¢ =@ — 0By, ,;sinB] ¢ — 0B/, sinB, @,

A. P. Millan, J.J. Torres and G. Bianconi PRL (2020)



The Topological Kuramoto Model



In the Topological Kuramoto model the free dynamics of the
synchronized state
is localised on the

n-dimensional holes

The free dynamics is localised on harmonic components




Linearized Dynamics

The linearized dynamics is dictated by the Hodge-Laplacian

The harmonic component of the signal oscillates freely

M A
d)harmonic — wharmonic

The other modes freeze asymptotically in time as they obey

b, =0, —ud,

Where u # 0 indicates the eigenvalue of the Hodge Laplacian



Linearised Dynamics

The linearised dynamics is dictated by the graph

The phases and the intrinsic frequencies can be decomposed in the basis of the
eigenvectors of the graph Laplacian

$() =) c, 0,
H
W = Z c?)ﬂuﬂ
U

The dynamical equation in this basis reduce to

¢, = @, — ojc,



Linearised Dynamics
(continuation)

The dynamical equations

¢, =, — ouc,

have solution

Charm(t) = Charm(o) + a/\)harmt
= 28 (1= eom) 4 ¢ (O~
CM()_J( —e c,(0)e

Therefore the harmonic mode undergoes an unperturbed motion,

while the non-harmonic modes are freezing with time.



Topological Kuramoto model on a graph

0, Pp1

Standard Kuramoto model Topological Higher-order Kuramoto model

0=w— O'B[l] sin B[TI]H $=d- UB[Tl] sin By b,

A. P. Millan, J.J. Torres and G. Bianconi PRL (2020)



Topological Kuramoto
model on a graph

Let us define the vectors

Then the node and edge based topological Kuramoto model

can be written in terms of the Dirac operator as

q D = Q — oD sin DD
.




Topological Kuramoto
model on a graph

Let us define the vectors

Then the node and edge based normalised topological
Kuramoto model can be written
in terms of the normalised Dirac operator as

0 = — 0B sinB;,0 . Ao
q D = Q — oD sin DO




Dirac Synchronization

Dirac Synchronization allows to couple locally
and topologically signals defined on nodes and links.

Dirac synchronisation obeys

d = Q — 6D sin((D — 7,zD>)P)

For the node topological signal we introduce a phase lag depending on the
edge signal and vice versa for the edge signal we introduce a phase lag
depending on the node signal

L. Calmon, J. Restrepo, J.J. Torres and G. Bianconi (2022)



Dirac Synchronization
Is explosive

e N

. . . 0.8
Dirac synchronisation obeys

0.6

——R forward
3 «

o — R backward
. A . A A 0.4/ -— TI(:eory - forward
¢ — Q _ GD Sln((D _ YOZD2)¢) 02| ——Theory - backward |
) ) 0 1 2 o 3 4 5
* Node and links signals are
entangled. The order parameters 10
depend on linear combinations of os| "
nodes and link signals .06
o

0.4
0.2

* The synchronization transition is
discontinuous %% 4 2 s 4 s

\_ AN

L. Calmon, J. Restrepo, J.J. Torres and G. Bianconi (2022)



Dependence on z

The phase diagram can display not only a

forward but also a backward discontinuous transition
as a function of z

—— Ru forward

0.8 f
— Ra backward
—Th /

0.6 eory

0.4

0.2

01
0 1 2

—— Rﬂ forward

—— Rﬂ backward

| — Theory

1

0.8

—— Ra forward
— Ra backward
—— Theory

—— Rﬂ forward

—— R‘9 backward

——Theory

—— Ru forward
— Ru backward
| ——Theory

——R , forward
0.8 B
—<—R 8 backward

| ——Theory




Linearised Dynamics

The linearised dynamics is dictated by the Dirac operator

® = Q — 6(D? + zyDV D,

Let us now decompose @, Q on the eigenvectors of the Dirac
operator W ; obtaining

D= W, Q=) oW,
A A



Linearised Dynamics

The harmonic component of the signal oscillates freely

VaN
Charmonic — Qharmonic

The other modes freeze asymptotically at a stable focus in time and

obey
G\_ (@) - A* Al €
C..—/l N a)—;{ _Zﬂ?) /12 C—/l

Where A # 0 indicates a positive eigenvalue of the Dirac operator



Linearised Dynamics
(continuation)

The dynamical equation for the harmonic mode
has solution
Charm(t) = Charm(o) T Ol
Therefore the harmonic modes

undergo an unperturbed motion



Linearised Dynamics
(continuation)

The dynamical equation for the other modes

has solution

C,y(t
< 2 )> =A(t)< 1.) +B(t)<1)

()] —1 1

with
+1 . .
A(r) = ) a_)—/l <1 _ e—a(/l+1z/13)t> + A(0)e—oUHiza )
20(A2% +1zA3)
®; —1w_,

B@)

_ ' (1 _ e—a(/l—iz/13)t> + B(0)e—ct—izd)
2602 + 1223)

Therefore while the non-harmonic modes display a stable focus.



Dirac Synchronization
Is rhythmic

One of the two complex order parameters
develops spontaneous low frequency rhythms
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Dirac Turing patterns

Defining ¥ = (0, @) describing topological
signals on nodes and links and the reaction
diffusion dynamics

® = F(D,DP) — yDD,

Turing patterns on nodes and links can set in
provided suitable topological and dynamical
conditions.

Giambagli et al. (2022)



w

Dirac Turing patterns

(a)

10

3 15

4 16

(b)

10

Hypercubic tessellations of d-
dimensional torus admit Turing
patterns on any dimension

The figure show Turing patterns
on nodes and links on a 2D
Torus.



The Dirac operator on simplicial complexes



The Dirac operator on
simplicial complexes

The Dirac operator allows
to study interacting topological signals of different dimensions
coexisting in the same network topology

Dirac operator Topological signal “spinor”
( o \
0 Bl 0 (S()\ S0  Node signal
D=|B, 0 B!l s = |58 S;  Link signal
— S S - .
\ 0 B2 0 ) \>2 ) 2 Triangle signal




The action of the Dirac operator

The Dirac operator allows cross-talking
between signals of different dimension

W\,

(1]

(4]
13
(5 B
(0 Bi 0
B, 0 Bj
0 B, 0

So
B!|, actsons = | S;

S,

] — Ds

3

\

Bis,
B;s, + Bs,

B,s,

\

)



\ O

(0 B, 0

)

0 0

Dirac decomposition

IlIIEiHHHiHIHIEHHIII'

Here
D[l] only couples node and link signals and

D[z]only couples link and triangle signals

(0 0 9\ Ly 0 0
I)[2] =10 0 B2 D[21] =Zm=10 Lff]W” 0 D[Zz] =
B! 0 0 0
\O 2 0 )




Dirac decomposition

Every topological signal can be decomposed in a unique way
thanks to the Dirac decomposition

(RDS = im(Dy;) @ ker(D) & im(Dy,,) )

therefore every signals defined on nodes, links and triangles
can be decomposed in a unique way as

1] _ +
stH! = D[I]D[l]s

2] _ +
stel = D[z]D[z]s

s = gl + g2l + gharm With




Eigenvalues of the Dirac operator

Due to the Dirac decomposition

the eigenvalues of the Dirac operator D
are the direct sum
of the non-zero eigenvalues

of Dpyyand of Dy,
plus the zero eigenvalue
with degeneracy 3, + B, + p,



Eigenvectors of the Dirac operator

Due to the Dirac decomposition

the eigenvectors of the Dirac operator D
are the eigenvectors
corresponding to non-zero eigenvalues

of Dy or of Dy,
r the harmonic eigenvectors of D
b = ((I)[l] (I)[2] (I)harm)
with @ |ocalised on nodes and links and

®!?! |ocalised on links and triangles



Eigenvalues of D, ,

The eigenstates of D, satisfy

with s = (s, $;,S,)" which leads to

//tsn—l — ann

us, =B's

n—1

It follows that S s, are respectively the left and right singular vectors of B,

n—1-s
with eigenvalue Aand u = = | 1|



Matter-antimatter symmetry...

For every singular value 4 # O of B[n]

corresponding to the singular vectors u,, v,

the Dirac operator admits
: : : [+] u;
a positive eigenvalue p = || with eigenvector ¢ ™ = v
p

and

u
a negative eigenvalue p = — | 1| with eigenvector (]5&[_] = <_"1, )
p



...and its violation

The zero eigenvectors of D,

are linear combinations of the zero eigenvectors of B,
they can be only localised on n-dimensional
or on (n-1)-dimensional simplices
The degeneracy the zero eigenvalue is given by

the sum of the Betti numbers 5, _| + /3,



Eigenvectors or the Dirac operator

In summary the eigenvectors of the Dirac operator

defined on a simplicial complex of dimension 2 have the structure

( arm

vl Ul o0 0 Uem o 0 )
o = | vyl vyl gzl gl 0 Ullzarm 0
0 0 v —yl2 0 0 Ugarm)

\



Topological Dirac equation on simplicial
complexes

* The topological Dirac equation
can be extended to simplicial
complexes, in the case of zero
mass it is given by

0y = Dy

* |t can be shown that thanks to
the Hodge decomposition this
equation leads to a multi-band
spectrum of the energy states.

10°; R
: s

—hn=0
—n=
Nn=

10”" 10° 10"
E

Multi-band eigenspectrum of the
Topological Dirac equation on a 3-dimensional NGF



Dirac Signal Processing



Signal Processing with the Hodge Laplacians

Given a noisy topological signal defined exclusively on a given dimension of the
simplicial complex: S = s 4+ € with € noise, how can we reconstruct s ?

1. By ensuring the reconstructed § is close to §
2. With a regularisation enforced by the Hodge Laplacian

Hodge Laplacian filter: § = argmin {||§ — §||% + T§TL§}

(Barbarossa et. al., 2020, Schaub et al. 2022)

Topological signals of different dimension are processed independently



Edge signals and the Hodge decomposition

The edge signal can be decomposed Into
harmonic flow, gradient flow ard curl flow thanks to Hodge decomposition

06 (1. -~19

O 1.3 O
06 (3 19

O, 1.7 KD I_s

edge flow harmonic flow gradient flow curl flow

Schaub et al. 2022



Signal Processing with the Hodge Laplacian

Hodge Laplacian filter
S = argmin {||§ — §||% + T§TL§}
has solution

8= [I+7Lg,| '8

The Hodge Laplacian filter processes independently
the solenoidal and the irrotational components of the signal

It is effective in presenting stable curl flows



Dirac Signal Processing

noisy signal reconstructed

> 4

true signal

reconstruction
+ noise

The Dirac operator allows us to filter out nodes and links signals jointly

L. Calmon, M. Schaub and G. Bianconi
Dirac signal processing of topological signals
(2023)



Processing with the Dirac operator

Given a noisy topological signal defined on simplices of different dimension
S = S + € with € noise
Joint-filtering with the Dirac:

S = argmin { IS — 8|3+ 78" (D — mI)2§}

m > 0 — higher cost negative components
m < 0 — higher cost to positive components



Processing with the Dirac operator

Given a noisy topological signal defined on simplices of different dimension

S = S + € with € noise
Joint-filtering with the Dirac:

S = argmin { IS — §||§ + 78" (D - mI)2§}

200 200
150 150
100 100
50 50
-15 -10 -5 0 5 10 15 -10 -5 0 5 10 15 20
A A

Regularization form = 0 Regularization form = 5



Dirac Signal Processing

Hodge Laplacian filter
S = argmin { IS — §||% + 787 (D - mI)2§}
has solution

$=[T+7(D-mI?| s



Interpretation of the parameter m

The parameter m can be interpreted as

s'Ds

sTs

m =

Which allow us to interpret the regularisation as a
minimization of the mean square error of the signal around m

The parameter m can be learned from data



Interpretation of the regularisation term

Let us assume the estimated signal is equal to the true signal, i.e. § = s,

Then regularisation term

s'Ds

R =s'(D —ml)*s with m = — can be written as

S

)
B s'D?%s s"Ds
B s's




The Florentine Families network: [

- Simple network structure, true signal aligned with an eigenvector of D

Dirac signal processing

S = argmin { IS — §||% + 787 (D — mI)2§}

1.0

1.0
\ [
~ 0.6 ~ 0.6
E E
0 0
< 0.4 <04
0.2 0.2
—— mfilter
0.0 (@) m=0 filter 0.0 (b)
-4 -2 0 2 4 -4 -2 0 2 4

m



. T
Learning m m =5 DS
s's
Require: Initial guess m;f’), Convergence threshold 9,
Learning rate 7, Measured data S,
t <0
g (t = 0) + )
while |m, (t) — m,(t —1)| < 6 do
t<—t+1
é[n] — [I -+ T(D[n] — mnI)Q]_lg[n]

Mp(t+1) < (1 —n)my(t) +n

end while
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Dirac sighal processing on the Network
Geometry with Flavor
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Dirac signal processing on buoys data
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Dirac equation lattices:
combing the Dirac operator with algebra

G. Bianconi,
Topological Dirac equation on networks and simplicial complexes JPhys Complexity (2021)
G.Bianconi,

Dirac gauge theory for topological spinors in 3+ 1 dimensional networks. arXiv preprint
arXiv:2212.05621 (2022).



Directional Dirac operator on lattices

b) S rmmses

@ QO———O | x-link

x-link

o y-link
- I I _— —
y-link
O O é z-link




Topological spinor for
3-dimensional lattice

In order to treat every type of link differently

by inducing different rotations of the topological spinor,

in 3-d we need to consider the spinor \Il formed by two 0-cochains and two 1-cochains, i.e.



Directional Boundary operators and graph Laplacians on
3-dimensional lattice

We consider directional boundary operators only acting between nodes and w-type links

[Blir = 5

-

1if Z=1j,i] and 7 is a type w-link
—1ifZ=1i,j] and 7 is a type w-Ilink

0 otherwise

L

This allows to define the directional graph Laplacians

_ T
L, = B,B,

whose sum gives the graph Laplacian of the network

L =L+ L, + L,

Note that on square lattices we have that the directional Laplacian commute

(L) Lyl =0



Directional Dirac operators on
3-dimensional lattice

In 3d the Directional Dirac operators are defined as

0 A W)
Di)=1 _:
A (W) 0

By =01B), B =0Bg), B =03B),

where we make use of the Pauli matrices

c|(F) = <g g)’ o,(F) = <lg aiF>, o;(F) = <

F 0
0 —-F

)



Topological Dirac equation on
3-dimensional lattice

The Topological Dirac equation in 3d lattice is given by

0¥ = (B + mp)¥

where

10

D= 2 D) and P=\o _q

=
m
=
<
A
|l
N



Dispersion relations and
anti-commutation relations

The dispersion relation remain relativistic

E*=m?+ |47+ A1+ 1417
with 4,y indicating the eigenvalue of the directional boundary operator B,

despite the directional Dirac operators do not commute or anti-commute

0 0
[D .y, Dyl = - ) ) D, Dy} = : X B
@ () (0 i6,(BB(,) + B)B(,) Dy, Dy} 0 io,(B, B, — B[ B)
z X y)— X



The Directional Dirac operator of
Multiplex Networks



GINESTRA BIANCONI

Networks
of Networks
' in Biology

f ols and App

-

Multilayer Networks e

L

MULTILAYER
NETWORKS

@ @® ®

= o o o o o o e e © © © ©
—_ = aee er = = =t cee eee eee —_— = ==
Syn — >t e —q > —_ = > —_— = > — >
(b) 2 3 4 5 6 7 8 9 10 1 12 3 “ 15 16 17 18 19 20
1 2 2 5 4 5 B Monoamine (MA) multilinks C Dopamine (DA) multilinks

Layer1 : : sofeu Ny

Layer 2 S

Multilink  Multilink  Multilink il
(1,1) (1!0) (0,1) 301 1Y, 3o ¥,

E——. P P
SYM R EEADAIIIDILLLDS SV RO LARARILOTLLLSDS

Motif ID Motif ID

Z-score
(=]
¥
N
3
*al
I
H
H
.
N
4
Z-score
o
<
[

G. Bianconi PRE (2013) Multilayer connectome of c.elegans, Bentley et al (2016)



Application to multiplex networks

We can “blindly” use the directional Dirac operators of 3d lattices for
multiplex networks where one distinguish between different types of multilinks

The dispersion relation is relativistic O O
E*=m’+p O O
With [ indicating the eigenvalue of O O O

L = L(I,O) + L(O,l) + L(l,l)

Note however that in practically all
multiplex networks the graphical
Laplacians do not commute

L. L—]#0 Multilink Multilink Multilink
e (1,1) (1,0) (0,1)



Conclusions

The Dirac operator can be used to treat topological signals defined on
simplices of different dimensions (nodes, links, triangles, etc)

The Dirac operator is a powerful way to couple dynamics on different
dimension including Dirac synchronisation and Dirac Turing patterns

Dirac signal processing allows to filter simultaneously topological signals on
nodes links and triangles

The Dirac operator can be efficiently combined with a suitable algebra in
order to take into account for different directionalities of the links



Lesson Vb:
Effect of geometrical and combinatorial properties of
higher-order networks on dynamics

< Interplay between network geometry and dynamics

* The effect of the spectral dimension on sychronization
* Percolation on hyperbolic geometry

~ Triadic interactions and triadic percolation
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Synchronization
on simplicial complex skeletons
with finite spectral dimension



The role of dimensionality
in neuronal dynamics
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Kuramoto model on a
network

Given a network of N nodes
defined by an adjacency matrix a
we assign to each node a phase obeying

9—a)+62a s1n< >

where the internal frequencies of the nodes
are drawn randomly from

w ~ N(Q,1)

and the coupling constantis ¢

The oscillators are non-identical



Order parameter for
synchronization

We consider the global order parameter R

1.0
N
0.8
e’
i=1 0.6
L o
which indicates the
0.4
synchronisation transition such that for 0l
lo—0.| <1 0.0
0 1

0 fors <o,

c(o — ac)l/2 foro > o,

Kuramoto (1975)



Network Geometry with Flavor

Starting from a single d-dimensional simplex

GROWTH

At every timestep we add a new d-dimensional simplex

(formed by one new node and an existing (d-1)-face).

ATTACHMENT :

The probability that a new node will be connected to a face u depends on the
flavor s=-1,0,1 and is given by

[1is] — (1 +sn)
4 ¢ Za,(l + Sl’lar)

Bianconi & Rahmede (2016)










d-dimensional NGF of flavor s = — 1
can be interpreted as D = d — 1 topologies
if we neglect the volume of d-simplices



Spectral dimensions of
NGF and s=-1

1 In order to test that these networks
have a finite spectral dimension
101 and a density of eigenvalues
- p() ~ 24"~ for A < 1
<
- 102" . . . .
@) We consider the cumulative density
Q 2 of eigenvalues
1073} 3| -
4 p(A) ~ A% for A < 1
-4 . . ‘ .
10% 103 102 10t 1 10

A

NGF have finite spectral dimension with

dy~dford=234
Millan et al. Sci. Rep. (2018); Millan et al. PRE (2019)



Frustrated synchronisation

(e)
s | & | _
& 0.5 & 051 | 1
' _ M
\ ; J 0 0 :
100 300 500 100 300 500 100 300 500
t t

Millan et al. Sci. Rep. (2018); Millan et al. PRE (2019)



Linearized Kuramoto model

The Kuramoto model describes the dynamics of phases that obey

6—w+02a sm( >

Close to the synchromsatlon transition

when the phases obey

0,=Qt+ ¢, with ¢, < 1
the dynamics can be linearised obtaining the equations

N
Qbizwi_g_dzl‘ijgbj

j=1




Fully synchronized phase
and the spectral dimension

The synchronized phase is not
thermodynamically achieved

for networks with spectral dimension

dg < 4

In Complex Network Manifolds with D=3
the fully synchronized state is marginally stable
Millan et al. Sci. Rep. (2018); Millan et al. PRE (2019)
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Percolation on
Hyperbolic networks
simplicial and cell complexes



Robustness of a network

We assume that a fraction 1-p of links is damaged.
We evaluate the robustness of the network by calculating the fraction R
of nodes in the giant component after this inflicted damage.



Robustness of a network

We assume that a fraction 1-p of links is damaged.
We evaluate the robustness of the network by calculating the fraction R
of nodes in the giant component after this inflicted damage.



Robustness of a network

After the damage \i&
>

We assume that a fraction 1-p of links is damaged.
We evaluate the robustness of the network by calculating the fraction R
of nodes in the giant component after this inflicted damage.




Percolation transition

As links are damaged with probability f=1-p
the fraction R of nodes in the giant component

of an infinite network has a transition from a non-zero to a zero value




Percolation on a random
uncorrelated network

Consider a random uncorrelated network with degree distribution P(k)

(k)
(k(k — 1))

Percolation displays a single percolation threshold p_.at p. =

For |[p—p.| <1

po dap=p)  forp>p,
0 forp < p.

For p > p.the giant component is extensive

(contains a finite fraction of nodes)

The transition is continuous



Percolation on a random
uncorrelated network

Let us define the generating functions

k
Gox) = Y Plkx*, G =) <—k>P(k)x"‘1
k k

The fraction of nodes R in the giant component when links
are removed with probability g = 1 — p obeys

R=1-Gy1 - pS)

with
S=1-G,(1-pS)




Hybrid transitions

* Generalised percolation
problems which involve a
cooperative behaviour such a
k-core percolation, or
interdependent percolation
often lead to discontinuous
hybrid transition

* Dorogovstev, Goltsev,
5 Mendes, Rev. Mod. Phys.
2008




Critical behavior of
hybrid transitions

The critical behavior of hybrid
transitions is characterized

by a discontinuity and

a singularity

R Rc+a(p—pc)ﬁ for p > p.
0 for p < p.




Percolation on
Hyperbolic networks
simplicial and cell complexes



Percolation in hyperbolic networks

Percolation in hyperbolic networks is known
to have two percolation thresholds p! and

p.

— For p<p! no infinite cluster exist

— For pl<p<pu the maximum cluster is infinite
but sub-extensive

— For p>pv the maximum cluster is extensive



Link Percolation in 2d
hyperbolic manifolds



2d Hyperbolic Manifolds

n=1 h=2




The dual is a tree

(c)

(b)

(a)




Link percolation in d=2 hyperbolic
simplicial complex

The probability T, that the two initial nodes

are connected at iteration n+1 is given by the RG

[Boettcher,Singh, Ziff 2012] equation

Ta=p+1-pT;

A RG study of the generating functions 06 [
show that the upper percolation transition = ,,| ]
Is discontinuous at p=0.5 and non-trivial. |

0




1.2

The linking probability

- (a
1.0- (a)
0.8
- 0.6 — m=3
[ m=4
0.4
[ m=5
0.2F
Q== .
0.0 0.2 0.4 0.6 0.8 1.0
p
12—
(b
1.0- (b)
0.8}
- 0.6 — y=4.5
[ =3.5
0.4 Y
i y=2.5
0.2
Q= .
0.0 0.2 0.4 0.6 0.8 1.0

[Kryven, Ziff Bianconi 2018]

T=p+(l-p) )Y g,

m=3

p—>1—-p
T—->1-S5

— iP(k)
dm )

k
S=p|1- ;WP(k)(l — §)k-!

Upper Percolation Threshold P, = ] ———



Fixed m discontinuous phase transition

0.727 L R . . s s " 1
0.70" '

__0.68

Y I

= 0.66 ,

0.64} e Numerical |

0.62 Ce 3(m-1)
060 ’

Popo) = €7D

P_(p)= P (pe 4P AP for p > p.
> 0 for p < p,

[Kryven, Ziff Bianconi 2018]



Critical scaling m=3,4

P.[pc + Ap]

n=500

(@
n=1000
TN n=2000
\~\\ ----- -4Log[Ap]+c] Poo(pc)e_hAp In(Ap/r) for p > D,
| P (p) = -
| 0 0 for p < p.
-10 -9 -8 —‘7 -6 _‘;A -4
Log[Ap]
(b) ‘ n=500 dP
n=1000 —— diverges logarithmically with
N n=2000 dp
el - -4Log[Ap]+c]
| Ap at  popf

Log[Ap]

[Kryven, Ziff Bianconi]



Power-law ¢, =Cm™" m >3

1
Upper Percolation Threshold p. = ] ——
(m—1)
Range y P, «(p) for p > p,
y >4 P.(p,) +a,Apln Ap Discontinuous
=4 P.(p.) + a,Ap[In Ap]? Discontinuous
y € (3,4) P (p.) + a,[Ap]~> Discontinuous
y =3 a,e =PI Continuous
y € (2,3) a[Ap) Continuous

[Kryven, Ziff Bianconi]



Topological damage

On networks
damage can occur only
on nodes or on links.

On simplicial complexes
topological damage can be directed also
to higher dimensional simplicies,
such as
triangles, tetrahedra etc.



Topological percolation

On d=2 simplicial complexes we distinguish
4 types of topological percolation problems:

Link percolation: Links are removed with probability g=1-p.
Nodes are connected to nodes through intact links

Triangle percolation: Triangles are removed with probability g=1-p.
Links are connected to links through intact triangles.

Node percolation: Nodess are removed with probability g=1-p.
Links are connected to links through intact nodes

Upper link percolation: Links are removed with probability g=1-p.
Triangles are connected to triangles though intact links

On d=3 simplicial complexes we distinguish
6 types of topological percolation problems:

Link percolation, Triangle percolation, tetrahedron percolation

Node percolation, upper link percolation, Upper triangle percolation
P PP P PP gep [Bianconi and Ziff 2018]



Hyperbolic Simplicial complexes

d=2 HYPERBOLIC SIMPLICIAL COMPLEX

We start from a link.
At each iteration we glue a triangle
to any link added at the previous iteration

d=3 HYPERBOLIC SIMPLICIAL COMPLEX

We start from a triangle.

At each iteration we glue a tetrahedron
to any triangle added at the previous
iteration

1?;{0 J7



The d=3 Hyperbolic Simplical Complex

At the level of the network skeleton
the d=3 Hyperbolic Simplicial Complex
reduces to the Apollonian network




The line graph of the Apollonian network
is the Sierpinski gasket

[Bianconi and Ziff 2018]



The line graph of the d=3 Hyperbolic Simplicial Complex
is the multiplex Sierpinski gasket




Triangle percolation for the d=3
hyperbolic simplicial complex

The order parameter is the fraction of links
connected to the initial three links through intact triangles

Y




The RG equations

The probability T, ., S,.,, W,.,that

three, two or none of the initial links
are connected at iteration n+1 is given by the RG
equation

T, =p+ 1 —p)T3+6T2S,+3T,S?)
S,.1 = =pITXS,+ W)+ T,S,(7S,+2W,) + S3(4S, + W,)]
+1 = 1 - Tn+1 - 3Sn+l

n

W,

n

The RG equations can be written

down -
diagramatically AN . £ , oy . A . A
using the multiplex Sierpinski A\ A
gaSket (a) (b) (c) (d) (e)

[Bianconi and Ziff 2018]



Berezinskii-Kosterlitz-Thouless
transition

Triangle percolation on the d=3 hyperbolic simplicial complex
undergoes a BKT transition
with the order parameter scaling like

172
M, e~ Alp—r.|

103 :
—n=800
- - n=400
2| n=200 |
§ 10 ........ n=1 00
R —0=0.50
|
107 TN
0 ‘
10
107 10 103 10”!

Ap [Bianconi and Ziff 2018]



Topological percolation for d=2
hyperbolic simplicial complex

p' p"
d=2
Link percolation 0 % Discontinuous non-trivial
Triangle percolation ) 1 Discontinuous trivial
Node percolation 0 1 Discontinuous trivial
Upper-link percolation ! 1 Discontinuous trivial

All transitions are discontinuous. Only link percolation is non-trivial

[Bianconi and Ziff 2018]



Topological percolation for d=3
hyperbolic simplicial complex

pP pP
d=3
Link percolation N/A 0 Continuous SF
Triangle percolation 0 0.307981 .. Continuous BKT
Tetrahedron percolation % 1 Discontinuous trivial
Node percolation 0 1 Discontinuous trivial
Upper-link percolation 0 1 Discontinuous trivial
Upper-triangle percolation 3 1 Discontinuous trivial

[Bianconi and Ziff 2018]



Comments

Nodes and link percolation
cannot be used to predict
the other topological percolation problems

* In d=2 Hyperbolic simplicial complex all transitions are

discontinuous while in d=3 link and triangle percolation are
continuous

» Link percolation in d=2 displays a non trivial discontinuous

transition while no such transition is observed in d=3

Triangle percolation in d=3 is a BKT transition while no such
transition is observed in d=2
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Triadic Iinteractions

@ : ®

A triadic interaction occurs
when a node
affects the interaction
between other two nodes



Sign of triadic interactions

* *

he presence of a third species can enhance or can inhibit the interaction between
two species
'he presence of a glia can change the synaptic interactions between two neurons



Robustness of a network

We assume that a fraction 1-p of links is damaged.
We evaluate the robustness of the network by calculating the fraction R
of nodes in the giant component after this inflicted damage.



Robustness of a network

We assume that a fraction 1-p of links is damaged.
We evaluate the robustness of the network by calculating the fraction R
of nodes in the giant component after this inflicted damage.



Robustness of a network

After the damage \i&
>

We assume that a fraction 1-p of links is damaged.
We evaluate the robustness of the network by calculating the fraction R
of nodes in the giant component after this inflicted damage.




Percolation transition

As links are damaged with probability f=1-p
the fraction R of nodes in the giant component

of an infinite network has a transition from a non-zero to a zero value

S=1-G,(1-pS)

s e R=1-G(l=pS)




Higher-order network with
triadic interactions

-
" S~

~
~
- -
S e “="
-----

O Node
4 Structural link
=== Positive regulation

> Negative regulation H. Sun, F. Radicchi, J. Kurths, and G. Bianconi (2020)



Activity of nodes and
structural links

Regulatory interactions
determine which links are active.

Structural links are active if they are connected to a
least a active positive regulator node and they are not
connected to any active negative regulator node

Structural interactions
determine which nodes are active.

A node is active if it belongs to the giant component of
the structural network



Dynamic nature of
percolation

Agorithm:

Step 1: Evaluate the nodes in the giant component of the
structural network. Nodes are active if and only if they
belong to the giant component of the network

Step 2: Deactivate the links that are connected to at least
one active negative regulator node or that are not
connected to any active positive regulator node. All the
other links are damaged with probability g=1-p.

Repeat from Step 1
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Theory

Step 1

SO =1-G, (1 —pihs®)

RO — Go(1 —pg_l)S(”) |

Step 2

p® = pG, (1 - R?) [1 — Gy (1 —R@)]



Blinking of the network
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Chaotic pattern of the order
parameter of percolation
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Chaos in connectivity of
the network




Route to chaos In
scale-free networks

Absence of triadic In presence of triadic
interactions interactions

Theoretical prediction Monte Carlo simulations
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The map of triadic

percolation
The map R*™! = h(R")
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Route to chaos

Indeed close to the maximum
for R ~ R™ the map displays the quadratic form

h(R) ~ h(R*) — %h”(R*)(R — R*)?

which according to
Feigenbaum classic renormalisation group result proves
that the universality class of the map is the same as the one of the logistic map



Blinking and chaos in
mouse brain network

Mouse brain network+ random regulatory interactions
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Only positive regulations

The dynamics always reaches a steady state The percolation transition is discontinuous and hybrid
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Triadic interactions in more
complex settings

Hypergraphs Multiplex nets

: oy



Conclusions

In presence of higher-order interactions the interplay between
structure and dynamics is mediated by network topology, and
network geometry in addition to network statistical properties

Network geometry can have an important effect on dynamics: for
instance a finite spectral dimension can change the stability of the
synchronised state of the Kuramoto model
And hyperbolic network geometry can change the critical property of
percolation

Higher-order interaction include triadic interactions
Signed triadic interactions inspired by neurone-glia interactions can
turn percolation
into a fully-fledged dynamical process.

CODE AVAILABLE AT GITHUB O ginestrab
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