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. Higher order networks structure and maximum entropy
models

. Higher-order non-equilibrium network models
and emergent geometry

. Simplicial topology an introduction
. Dynamics of higher-order topological signals

. The Dirac operator and its applications



Higher-order networks
1. Definitions

2. Introduction to the higher-order combinatorial properties

Background on networks and maximum entropy models

Maximum Entropy models of simplicial complexes



Higher-order networks

Higher-order networks are
characterising the interactions
between two or more nodes
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Higher-order network data

Brain data

Ecosystems
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Higher-order networks

; Cambridge:
Elements

The Structure and Dynamics

of Complex Networks

Higher Order
Netwerks

An Introduction to
Simplicial Complexes

Ginestra Bianconi

New book
by Cambridge University Press!!

Providing a general view of the interplay
between topology and dynamics




Edge dynamics

PERSPECTIVE

https://doi.org/10.1038/541567-021-01371-4

") Check for updates

The physics of higher-order interactions in
complex systems

Federico Battiston'®, Enrico Amico?3, Alain Barrat®45, Ginestra Bianconi®57,

Guilherme Ferraz de Arruda®8, Benedetta Franceschiello®%, lacopo lacopini®', Sonia Kéfi"'2,
Vito Latora®é53%5 Yamir Moreno 9851617 Micah M. Murray (99198 Tiago P. Peixoto?,
Francesco Vaccarino©?° and Giovanni Petri (©82'=

Complex networks have become the main paradigm for modelling the dynamics of Interacting systems. However, networks are
Intrinsically limited to describing pairwise Interactions, whereas real-world systems are often characterized by higher-order
Interactions Involving groups of three or more units. Higher-order structures, such as hypergraphs and simplicial complexes,
are therefore a better tool to map the real organization of many soclal, biological and man-made systems. Here, we highlight
recent evidence of collective behaviours induced by higher-order interactions, and we outline three key challenges for the phys-
Ics of higher-order systems.
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Generalized network structures

GINESTRA BIANCONI Ib
MULTILAYER
NETWORKS

(((((((

Going beyond the framework of simple networks
is of fundamental importance
for understanding the relation between structure and

dynamics in complex systems



Collaboration Networks

Each paper includes higher-order interact
Jacovacci, Wu, Bianconi (2015) among the corresponding team



Higher-order interactions
in the brain
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Multilayer brain networks

Synapses
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Bullmore and Sporns (2009)



Ecosystems
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Pairwise interactions 3-way interactions 4-way interactions
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Explosive Epidemic Spreading
on co-location hypergraphs
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Simplicial social contagions and
social contagion on hypergraphs
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Triadic interactions
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Background on network science



Networks
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Randomness and order
Complex networks

LATTICES COMPLEX NETWORKS RANDOM GRAPHS

a Human Disease Netwgrk o ® 0. Py

> |- A1 Aol }

Simple Body-centered Base-centered Face-centered
orthorhombic orthor! h mbic orthorhombic orthorhombic

W G g &

Simple Base-centered Triclinic
Rhombohedral Monoclinic monoclinic

Scale free networks

Small world Totally random

Regular networks With communities Binomial degree

Symmetric ENCODING INFORMATION IN

THEIR STRUCTURE distribution



Universalities

* Small-world: dy=

10"
[Watts & Strogatz 1998] B . B
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* Scale-free: pyy~rrfork>1 ¢t .
[Barabasi & Albert 1999]
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° Modularity: Local communities of nodes
[Fortunato 2010]




Interplay between network
structure and dynamics

Network
structure

Combinatorial
Statistical

Properties

¥

Network
dynamics




Critical phenomena on scale-free networks

Scale free networks:

Percolation: (k=) _
Percolation threshold Pe (ky

Scale free networks are robust to random damage

* Epidemic spreading: ik — 1))
Epidemic threshold g (k) =1

The epidemic threshold is zero on scale-free networks



Higher-order network
structure and dynamics

Higher order

Combln:—._lto_rlal Network
and Statistical Topolo
properties S
Higher-order
dynamics

Network
Geometry




Higher order networks
Structure

Higher order
networks

Network Combinatorial

Geometry and Statistical
properties

Network
Topology



Hyperedges

2-hyperedge 3-hyperedge 4-hyperedge

An m-hyperedge is set nodes

a = [il’ i2, i3, lm]

-it indicates the interactions between the m-nodes



Hypergraphs

A hypergraph G = (V, Eg) is defined by a set V of N nodes and a set Ey
of hyperedges, where a (m + 1)-hyperedge indicates a set of m + 1 nodes

€ = [VO, V1, V2, .o, Vm]’

with generic value of 1 <m < N.
An hyperdge describes the many-body interaction between the nodes.

Every hyperedge a formed

by a subset of the nodes
can belong or not
to the hypergraph o~

Z = {[1,2],[3,4],[1,2,3],[1,3,4],[1,3,5], [3,5,6]}



Simplices

O-simplex  1-simplex 2-simplex 3-simplex

SIMPLICES

A d-dimensional simplex a (also indicated as a d-simplex «) is formed by
a set of (d + 1) interacting nodes

a = [vo, Vi, V2...,V4].

It describes a many body interaction between the nodes.
It allows for a topological and a geometrical interpretation of the simplex.



Faces of a simplex

FACES

A face of a d-dimensional simplex « is a simplex o’ formed by a proper
subset of nodes of the simplex, i.e. @’ C a.

3-simplex

Faces

4 0-simplices 6 1-simplices 4 2-simplices



Simplicial complex

SIMPLICIAL COMPLEX

A simplicial complex K is formed by a set of simplices that is closed
under the inclusion of the faces of each simplex.
The dimension d of a simplicial complex is the largest dimension of its

simplices.

If a simplex a belongs

to the simplicial complex 7%
then every face of «

must also belong to %

H = (11,121,131, [41, [5], [6],
6 [1,21,1,3],[1,41, 1,51, 2,31,
[3.,4], 13,51, [3.,61, [5,6],
[1,2,3],[1,3,4],[1,3,5],[3,5,6]}



Dimension of a simplicial complex

The dimension of a simplicial complex %
IS the largest dimension of its simplices

This simplicial complex
has dimension 2

H = (11,121,131, [41, [5], [6],
6 [1,21,1,3],[1,41, 1,51, 2,31,
[3.,4], 13,51, [3.,61, [5,6],
[1,2,3],[1,3,4],[1,3,5],[3,5,6]}



Facets of a simplicial complex

FACET

A facet is a simplex of a simplicial complex that is not a face of any
other simplex. Therefore a simplicial complex is fully determined by the

sequence of its facets.

The facets of this
simplicial complex are

K ={[1,2,3],[1,3,4],[1,3,5],[3,5,6]}




Pure simplicial complex

PURE SIMPLICIAL COMPLEXES

A pure d-dimensional simplicial complex is formed by a set of d-
dimensional simplices and their faces.

Therefore pure d-dimensional simplicial complexes admit as facets only
d-dimensional simplices.

A pure d-dimensional simplicial complex
is fully determined by an
adjacency matrix tensor

with (d+1) indices.
For instance this simplicial complex
is determined by the tensor

1if (r,s,p) € X

P 0 otherwise



Example

A simplicial complex #is pure
if it is formed by d-dimensional simplices
and their faces

PURE SIMPLICIAL COMPLEX SIMPLICIAL COMPLEX
THAT IS NOT PURE



Simplicial complex skeleton

-

From a simplicial complex is possible to generate a network
salled the simplicial complex skeleton by
considering only the nodes and the links of the simplicial complex



Cligue complex

—

From a network is possible to generate a simplicial complex by
Assuming that each clique is a simplex

Note:
Poisson networks have a clique number that 1s 3 and actually on a finite
expected number of triangles in the infinite network limit
However
Scale-free networks have a diverging clique number, therefore the clique complex
of a scale-free network has diverging dimension. (Bianconi,Marsili 2006)



Concatenation of the operations

Clique
complex
Attention!

By concatenating the operations you are not guaranteed to return to the initial
simplicial complex

Network
Skeleton

-




Generalized degrees

The generalized degree ky (o) of a m-face «

in a d-dimensional simplicial complex is given by the number
of d-dimensional simplices incident to the m-face «.

2

1

ky o(@) Number of triangles
incident to the node «

k2,1(@) Number of triangles

incident to the link «
6

[Bianconi & Rahmede (2016)]



Generalized degree

The generalized degree ky (o) of a m-face «

in a d-dimensional simplicial complex is given by the number
of d-dimensional simplices incident to the m-face a.
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Pure simplicial complex

A simplicial complex # is pure
if it is formed by d-dimensional simplices
and their faces

A pure d-dimensional simplicial complex
is fully determined by an
adjacency matrix tensor

with (d+1) indices.
For instance this simplicial complex
is determined by the tensor

. {1 if (r,s,p)eH
0 otherwise



Combinatorial properties of the
generalised degrees

The generalized degrees & ,,(a) of a pure d-dimensional simplicial complex
can be defined in terms of the adjacency tensor a as

k(@)= Y ay

a'€@ (N)|a2a

The generalized degrees obey a nice combinatorial relation
as they are not independent of each other.
In fact for m’>m we have

1
k(@) = Y k@),

d—m a'€@(N)|a'2a
m —m




Simplicial complex models
of arbitrary dimension

CODES AVAILABLE AT GITHUB O ginestrab




Information theory of
ensembles of simplicial complexes



Entropy of ensembles of
simplicial complexes

To every simplicial complex % of N nodes we associate a probability
P(%)
The entropy of the ensemble of simplicial complexes is given by

S =— 2 P(H)In P(K)
V4



Constraints

We might consider simplicial complex ensemble
with given
Expected generalized degrees of the nodes
or
Given generalized degrees of the nodes

Soft constraints Hard constraints

2 aa] = I_Cd,O(i) Z Cla — kd,o(l)

adi .
adl

2 P(X)
K

[Courtney & Bianconi (2015)]



Maximum entropy ensembles

The maximum entropy ensembles
of simplicial complexes
are caracterized by a probability measure given by

Soft constraints Hard constraints

1 1 .
P(%) — Ee_zl'liza:)iaa P(%) = 75 <kd,0(l)’ Z Cla)

adi

[Courtney & Bianconi (2015)]



Marginal probability

The marginal probability of a d-dimensional simplex x is given by

e - zrC(Jt l”

Pa =
1+ e Lrca

In presence of a maximum degree K (the structural cutoff)
the marginal can be written as

H kg o(r)
p, = dl—r 2 where K=

(ko)

NG
d!

[Courtney & Bianconi (2015)]



Case d=1

The marginal probability of a 1-dimensional simplex 4 is given by

p.. = —
Tl te

In presence of a maximum degree K (the structural cutoff)
the marginal can be written as

b= kg o(Dk0(J)
" (Ckqo(M)N)

where K = [((kyorN)]

[Courtney & Bianconi (2015)]



Case d=2

The marginal probability of a 2-dimensional simplex 4 is given by

144 hh

pijr =

In presence of a maximum degree K (the structural cutoff)
the marginal can be written as

kd,o(i )kd,o(j )kd,o(” )
P ijr =2

2/3
- where o Ukag(r)N)
(Ckgo(r)N) 2173

[Courtney & Bianconi (2015)]



Entropy of
simplicial complex ensembles

Canonical ensemble Microcanonical ensemble
S== Y [palnp,+ (1 =p)in(l - p,)] =InN
a&€S,(N)

Non-equivalence of the ensembles

[Courtney & Bianconi (2015)] generalizing [Anand & Bianconi (2009)-(2010)] for simple networks



Non-equivalence of ensembles

In the uncorrelated simplicial complex limit we have

YX=InA=5-Q

Where Q Is extensive and given by

N
1
Q=— In k. (7)Kao o=k o(r)
Z, 1 e

[Courtney & Bianconi (2015)]



Asymptotic expression
for the number
of simplicial complexes
with given

generalized degree of the nodes

]d(d+1)

o [

Hivzo kd,o (r) ! (d!)<k)N/(d+1)

exp [—

d!

(k*)

2(d + 1)((k)N yd-1

(

(k)

]

[Courtney & Bianconi (2015)]




Configuration model of simplicial
complexes

SN
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[Courtney & Bianconi (2015)]



Construction of a random simplicial

complex
A B
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CODE AVAILABLE AT GITHUB 0 ginestrab



From models of pure simplicial complexes
to models of hypergraphs

Pure 1-dimensional
simplicial complex

+
Pure 2-dimensional
simplicial complex

HYPERGRAPH

[Bianconi Cambridge University Press (2021)]



Conclusions

Simplicial complexes capture the many-body interactions
of complex systems and reveal the hidden geometry and
topology of data

Pure simplicial complexes can be represented by tensors

The generalised degrees allow to capture important
combinatorial properties of simplicial complexes

Maximum entropy models of simplicial complexes are
unbiased models with given (expected) generalised
degrees



Maximum entropy models
for complex networks

London Taught Course (PhD Level)
on You Tube at

https://www.youtube.com/channel/
UCsHAVdCU5SXLaBYDXoINYZvg



