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Higher-order networks

Higher-order networks are characterising the
interactions between two ore more nodes and

are formed by nodes, links, triangles,
tetrahedra etc.

/[

d=2 simplicial complex d=3 simplicial complex



Simplicial complex models




Network Topology and Geometry
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Are expected to have impact in a variety of applications,
ranging from

brain research to biological transportation networks



Higher-order structure and dynamics
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Lesson ll:
Introduction to Algebraic Topology

< Introduction to algebraic topology
- Higher-order operators and their properties
1. Topological signals

2. The Hodge Laplacian and Hodge decomposition
3. Topology of weighed simplicial complexes



Introduction to
Algebraic Topology
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Betti number 1

Fungi network from Sang Hoon Lee, et. al. Jour. Compl. Net. (2016)



Simplicial complex:notation

We consider a d-dimensional simplicial
complex & having N,

o q ® o . . m
positively oriented simplices a;
(or simply i) of dimension m.

We indicate the set of all the m positively
oriented simplices of the simplicial complex

Q,(F)



Orientation of a simplex

A m-dimensional oriented simplex a is a set of m + 1 nodes

a = [vo, Vi« Vinls 3.1

associated to an orientation wuch that

[VO’ V], ] Vm] = (_1)0'(71') [Vﬂ(0)7 vﬂ'(l)’ ML Vﬂ(m)] (32)

®

where o () indicates the parity of the permutation 7.

Q—>®

® ©

[r,s] = —[s,7]
[I",S,C]] = [S>Q>r] = [CLF’S] :_[SaraQ] =—[61a5,”] :—[l’,q,S]



Oriented simplicial complex
®

A typical choice of orientation
of a simplicial complex,
is to consider the orientation
induced by the node labels,
i.e. each simplex is oriented in an
increasing (or decreasing) order
of the node labels




Oriented simplicial complex

The set of positively
oriented simplices on
this simplicial complex
are:

{[1,2,3],[1,2],2,3],[1,3], [3,4], [1], [2], [3], [4]}

We adopt the convention that
each 0-simplex is positively
oriented



m-Chains

THE m-CHAINS

Given a simplicial complex, a m-chain C,, consists of the elements of a
free abelian group with basis on the m-simplices of the simplicial complex.

Its elements can be represented as linear combinations of the of all oriented

m-simplices
a=[vo,Vi,. ., Vil (3.6)
with coefficients in Z.

m-chainc, € C,,

m m>i °

a; € Qm(‘%)

C, = Z cla, with ¢!, € 7




Oriented simplicial complex
and m-chains

Example of 1-chain @

aecgl

a=1[13]-1[2,3]+[2,4]



Boundary operator

THE BOUNDARY MAP

The boundary map 9, is a linear operator
Om : Cn — Ch—1 (3.8)
whose action is determined by the action on each m-simplex of the

simplicial complex is given by

Omlvo,vi...,vm] = Z(—l)p[vo, VI oo s Vp—l, Vpils - - o> V). (3.9)
p=0



Boundary operator

The boundary map ¢, is a linear operator
0,: €, = €,

whose action is determined by the action on each n-simplex of the simplicial complex

m
0,,[Vo, Vy-- 5 V,] = Z (=1D)[vg, vy oo VoI Vg 1o - o5 v,l.

p=0

®

Therefore we have

Q—>® O ®

0,[1.2] = [2] —[1]. 0,[1,2,3] =[2,3] — [1,3] + [1,2].



Boundary operator

THE BOUNDARY MAP

The boundary map 3,, is a linear operator
Om : Cn — Ch—1 (3.8)

whose action is determined by the action on each m-simplex of the

simplicial complex is given by

m
Omlvo,vi...,vm] = Z(—l)p[vo, VI oo s Vp—l, Vpils - - o> V). (3.9)
p=0
From this definition it follows that the im(d,,) corresponds to the space of
(m — 1) boundaries and the ker(d,,) is formed by the cyclic m-chains.

Special groups .
Boundary group B,, = im(d,,. )

Cycle group Zm = ker(d,,)



The boundary of a
boundary is null

The boundary operator has the property

0,0, =0 Vm> |

Which is usually indicated by saying that the boundary of the
boundary is null.

This property follows directly from the definition of the
boundary, as an example we have

0,0,[r,s,q1 = 0,([r,s] + [s,q] — [r,q]) = [s] = [r] + [q] = [s] — [g] + [r] = O.



Proof

The boundary of the boundary is null.

Proof: Indicating with f/p the pth missing vertex we have

Il
Ms

0,,—10,,[Vos Vs -5 V] (=1D¥o,,[vg,vis ... V,...v, ]

p
p=0
=D ( 1)p2( DP s Vi o+ DDy ]
p=0 =0

Ms

~1y Z (=1 g vy ceBpe B

p=0 p=p+1



Incidence matrices

Given a basis for the m simplices and m-1 simplices
the m-boundary operator
m

0,,[Vps Vi--es V]l = Z (= DPDvos Vis oo s Voo 15 Vg 1o <0 Vil -

p=0
is captured by the N,,_; X N, incidence (or boundary ) matrix B
@ [1,2] [1,3] [2,3] [3.,4]
1] -1 -1 0 0
@ By=[21 I 0 -1 0,
[3] O 1 1 -1
4] O 0 0 1
[1,2,3]
[1,2] 1
By =[13] -1
[2,3] 1

[3,4] 0



Boundary of the boundary
Is null

In terms of the incidence matrices the relation

m-m+

Can be expressed as

[m~+1]7"[m]




Homology groups

THE HOMOLOGY GROUPS
The homology group H,, is the quotient space
ker(0,,)
im(G41)’
denoting homology classes of m-cyclic chains that are in the ker(d,,) and

they do differ by cyclic chains that are not boundaries of (m + 1)-chains,
i.e. they are in im(0,,,41).

H,, = (3.14)

It follows that a € ker(0,)) is in the same homology class
than a + b € ker(d,,) with b € im(9,,., )



Betti numbers

BETTI NUMBERS

The Betti number S, indicates the number of m-dimensional cavities of a
simplicial complex and is given by the rank of the homology group H,,,
i.e.

B = rank(H,,) = rank(ker(9,,)) — rank(im(d,,+1)). (3.15)



Euler characteristic

THE EULER CHARACTERISTIC AND THE EULER-POINCARE FORMULA

The Euler characterisic y is defined as the alternating sum of the number
of m-dimensional simplices, i.e.

X= Sm (3.16)

m=>0
where s, is the number of m-dimensional simplices in the simplicial
complex. According to the Euler-Poincaré formula, the Euler characteristic
x of a simplicial complex can be expressed in terms of the Betti numbers
as

X = (=1)"Bn. (3.17)

m>0



Boundary Operators

Boundary operators

[1,2,3]
(1,2] [L3] [2,3] [3.4] [1,2] 1

@ 1 -1 -1 0 0 By =013 -1 .
By,=[21 1 0 -1 0, 23] 1
B3] 0 1 1 -1 34] 0

4] O 0 0 1

The boundary of the boundary is null

— T T —
( By, 1By =0, By, B, = )




Persistent homology

Filtration: distance/weights

Ghrist 2008

Persistent homology Barcode




Topological clustering

The node neighbourhood is the clique simplicial complex formed by
the set of all the neighbours of a node and their connections

Properties of the node Properties of the node neighbourhood
The degree ki Number of nodes 7
The local clustering coefficient Ci Density of the links  p

AP Kartun-Giles et al. (2019)



0 0.02 = 0.05 0.05 = 0.05 0.1 = 0.05 0.15 £+ 0.05 0.2+ 0.05

=108, 00,003 n=108, p=0.11
A=, §1=0 Bo=T, J1=6

Notre Dame

o Node neighbourhoods
with the same number
o of nodes and the
. same density of links
can have very
different topology
Texan Roads ﬁ

Californian Roads
,C% AP Kartun-Giles et al. (2019)



Topological signals,
coboundary operators



Topological signals

Simplicial complexes and networks can sustain dynamical variables (signals)
not only defined on nodes but also defined on higher order simplices
these signals are called

~




Topological signals

Citations in a collaboration network

Speed of wind at given locations

Currents at given locations in the ocean
Fluxes in biological transportation networks
Synaptic signal

Edge signals in the brain



Boundary Operators

Boundary operators

[1,2,3]
(1,21 [1,3] [2,3] [3:4] 121 1
@ [ -1 -1 0 0 By =[13] -1 .
By=(2 1 0 -1 0, 23] 1
Bl o 1 1 -1 34] 0
4] O 0 0 1
® ®
The boundary of the boundary is null
G[l] Discrete divergence\
_ TpT _
BE_I] Discrete gradient C B[n—llB[n]_O’ B[n]B[n—I] _9

QE_Z] Discrete Curl J




Cochains

m-cochains

A m-dimensional cochain f € C™ is a linear function f : C,, — R, that
associates to every m-chain of the simplicial complex a value in R.

m-cochain f € C"

Given the m-chain c, = Z cLa®, with ¢! € Z

m

cn € G, i€0,(K)

flc,) = Z ¢k f(la"]), with ¢l € Z

i€0,(K)




Oriented simplicial complex
and m-chains

Example of 1-chain ()

a € 6,

a=[13]—-1[2,3] +[2,4]

Example

Given f e(C 1
then

fla) = f([1,3]) = f([2,3]) + A([2,4])




Cochains:properties

m-cochains

A m-dimensional cochain f € C™ is a linear function f : C,, — R, that
associates to every m-chain of the simplicial complex a value in R.

Upon a change of orientation of a simplex the value of the cochain associated to a simplex changes sign

Ao = = f(= "D V" € Q,(F)




Cochains:properties

m-cochains

A m-dimensional cochain f € C™ is a linear function f : C,, — R, that
associates to every m-chain of the simplicial complex a value in R.

fi=[la) Voi" € Q,(F)




L? norm between cochains

We define a scalar product between m-cochains as

(1) =17

Which has an element by element expression

SH= D F

1€Q,,(F)

This scalar product can be generalised by introducing metric matrices (see next)



Coboundary operator

Coboundary operator 6,

The coboundary operator &, : C"™ — C™*! associates to every m-cochain
of the simplicial complex (m + 1)-cochain

0 mf — f O Om+1-
Therefore we obtain

m+1

(S F)V0, V15 - - Vims1] = Z(—l)pf([vo,vl, Vel Vpal o Vinel])
p=0

If follows that if g € C"™*!is givenby g =5 f.

Then g = B;;Hf =B, f



Coboundary operator

Coboundary operator §,,

The coboundary operator &, : C"™ — C™*! associates to every m-cochain
of the simplicial complex (m + 1)-cochain

0 mf — f O Om+1-
Therefore we obtain

m+1

Omf) Vo, vis. s Vima1] = Z(—l)pf([vo,vl, s Vp=1sVpsl - Vins1])
p=0

if follows that

0,11 °0, =0 Vm 2> 1hence B[Tm+1]B[Tm] =0




Discrete Gradient

if f € CY, then g = §,f € C! indicates its discrete gradient

Indeed we have

_nT
g = B[l]f

which implies

8rij1 = Ji — i



Discrete Curl

ffe C!, then g = Off € C? indicates its discrete curl

Indeed we have

_nT
g = Bmf

which implies

g[r,s,t] :f[r,s] _f[s,t] +f[r,t]



Adjoint of the coboundary operator

Adjoint operator &},

The adjont of the coboundary operator 6%, : C™*! — C™ satisfies

(8:0mf) = (Om&> f)
for any f € C™ and g € C"™*.

It follows that if /' = 6/ ¢ thent' = B, |,



Adjoint of the coboundary operator

Adjoint operator §;,

The adjont of the coboundary operator 6%, : C"™*! — C™ satisfies

(& 0mf) = <5;kng»f>
where f € C"™ and g € C"*!.

If follows that if f € C" is given by f" = 0% g .

r DT _
Thenf’ = B[m+1]g = B[m+1]g



Discrete Divergence

If g € C!, then f = 0,8 € C" indicates its discrete divergence
Indeed we have

which implies

fi= D eun— D, &
j j



Coboundary action

In summary, the coboundary operator and its adjoint act on the cochains
according to the following diagram

Cm+1 55’”” Cm 55’"_1 Cm—l
o o

Cm+1 mi Cm m—la Cm—l



Boundary Operators

Boundary operators

[1,2,3]
(1,21 [1,3] [2,3] [3:4] 121 1
@ [ -t -1 0 0 By =[13] -1 .
By=(2 1 0 -1 0, 23] 1
4] O 0 0 1
® ®
The boundary of the boundary is null
G[l] Discrete divergence\
_ T pT _
BE_I] Discrete gradient C B[m—llB[m] =0, B[m]B[m—I] - D

QE_Z] Discrete Curl J




Hodge Laplacians



Hodge Laplacian

The Hodge-Laplacians
The m-dimensional Hodge-Laplacian L,, is defined as
Ly, = LyP + Ldown

where up and down m-dimensional Hodge Laplacians are given by

L,y = 6,,0m,
Ldown = 5, 15 .



Hodge Laplacians

The Hodge Laplacians describe diffusion
from n-simplices to m-simplices through (m-1) and (m+1)

simplices

—_pT T
( Ly =B, By, + B[m+1]B[m+l]>

The higher order Hodge Laplacian can be decomposed as

_ J down up
( Lppg = Liy" + Lo \

with

down _ pT
Lin" = BB,

[m]
up __ T
K L = BineiBrasy J




Simplicial complexes and
Hodge Laplacians

Hodge Laplacians

The Hodge Laplacians describe diffusion
®

from m-simplices to m-simplices through (m-1) and (m+1) simplices

For a 2-dimensional simplicial complex we have

_ T _ DT T _ DT
( Lo = BB Ly = By By + BBy, Ly = B[le[ZD




Properties of the Hodge
Laplacians

e The Hodge Laplacians L, , L'P, L%"" are semidefinite
positive.

 They obey Hodge decomposition

e The dimension of the kernel of the Hodge Laplacian L, is
the m-Betti number [,



The Hodge-Laplacians are
semi-definitive positive

The Hodge Laplacians L, L', [4o""
are semidefinite positive.

Indeed we have:

(LPF) = {£.556,f) = (8,f-8,f) 2 0
FLE"f) = (f. 8,185 f) = (5% f.6% ) >0
(foLpf) = (FL2F) + (L2 f) 2 0



Hodge decomposition

The Hodge decomposition implies that topological signals can be decomposed

in a irrotational, harmonic and solenoidal components

C" =im(B/,) @ ker(L;,)) ® im®B, ;)

which in the case of topological signals of the links can be sketched as

<> A

Irrotational component Harmonic component Solenoidal component
Gradient Flow Curl Flow



Hodge-decomposition

GiventhatB, B ., =0 B[Tm_l]B[Tm] =0
and that L = B 1B Lo =B, B,
We have:
LiL? =0 imL? C kerL{™

up Y down __ - down up
L[m]L[m] = |mL[m] lerL[m]



Hodge decomposition

The Hodge decomposition can be summarised as

C" =im(B] ) @ ker(L,,) @ im(B,,,,,)

This means that Lm:
simultaneously. In this basis these matrices have the block structure

d . . .
L Lin"are commuting and can be diagonalised

DI 0 0 D" 00 00 0
UL, U= 0 o o | ULE"U=| o o 0| U'LrU=(00 0
0 0 D, 0 00 0 0 D,
* Therefore an eigenvector in the ker of L, is also in the ker of both L~ Liown
. An eigenvector corresponding to an non-zero eigenvalue of Ly,
is either a non-zero eigenvector of L?,I:,]Or a non-zero eigenvector of L%V"




Betti numbers

The dimension of the kernel of the Hodge Laplacian L, is
the m-Betti number [,

Indeed, thanks to Hodge decomposition

dim ker L,,; = dim(ker LE{Z] N ker Lfnoﬁm)
— A UD \__ Al down
= dim(ker L[m]) dim(im L[m] )
= dim(ker LZ"")—dim(im L
= rank#,, = f,



Graph Laplacian in terms of
the incidence matrix

The graph Laplacian of elements
(Loy) ;= Oki = 4
Can be expressed in terms of the 1-incidence matrix

as

_ T
Loy =By By




L.y (i, j) =

Expression of the matrix elements

of the Hodge Laplacians

i=J.

., s om m
L+ ], ~ab,a ~a;

i #j,a]" ~ a7, a" »a

otherwise.

The m-dimensional up- Hodge Laplacian has nonzero elements

m
J d ..
L, j) =

3 =3

m

J

~

only among upper incident m-simplices

(simplices which are faces of a common m+1 simplex)
The eigenvectors have support on the m-connected components

i=j.
i;&j,a/f va;",a
iij,af va/;",a/

otherwise.

The m-dimensional down-Hodge Laplacian has nonzero elements

only among lower incident m-simplices
(simplifies sharing a m-1 face)

The eigenvectors have support on the (m-1)—connected components

1

m
p
i

m

~a™m.
J

+ a.
J



m-connected components

A Simplicial complex B 0-connec ted component

A
A

C 1-connected components

vALA W

D 2-connec ted component

¢




Expression of the matrix elements
of the Hodge Laplacians

st (@) 414 1,
L,
L(i,]) =9 1

0

[ =].

H ; m m m m m m
[ # ], q; faj,ai — o, e ~all
; ; m m m m m m
[ # ], q; faj,ai — ot @t ol

otherwise.

The matrix elements of the Hodge Laplacian is only non zero
among lower adjacent simplices that are not upper-adjacent

forO<m<d



Clique communities

Palla et al. Nature 2005

The m-clique
communities are the

m-connected
components of the
clique complex of the
network



The skeleton of a simplicial complex
and its cligue complex

Clique Network
complex a Skeleton

Attention!
By concatenating the operations you are not guaranteed to return to the initial
simplicial complex




Higher-order communities

Inference of higher-order
o interactions

(a) 2 communities (b) 2 communities (€) 2 communities

®

(b)

color coded by Lg communities

non-zero eigenvectors of L”

up-communities of
A=4 A=3 1-simplices

e
N

e
B

Adjusted Mutual Information

o
o

M: Mr.Hi Club
O: Officer Club

non-zero eigenvectors of L
down-communities of
2-simplices

A=2 A=4 A=3 b o
@‘s @ A c E
< Triangles removed
@ @ v We can infer which higher-order interactions
AN using higher-order communities
A A A and ground-truth community assignments

S. Khrisnagopal and GB (2021)

23-29-32, 28-31
0-2-13, 0-3-13, 1-3-7
0-8-2, 0-3-7, 0-1-7

20-32-33, 23-27-33, 23-32



Weighted simplicial
complexes



Metric matrices

We introduce the N,, X N, metric matrices G,;l typically taken to be diagonal with elements
G, (a;, &) = w(®)

where w(q;) indicates the affinity weight (inverse of a “distance”) associated to the simplex ¢;

For a graph, typical choices of these matrices are

Gl_l([r, s|, [r,s]) = w([r, s]) weight of the link

Gal([r], [r]) = Z w([r, s]) strength (weighted degree) of the node
S€EQY(K)




Scalar product between co-chains

We define a scalar product between mi-cochains as

(f.fy =f'G'f

Which has an element by element expression

FhH= D, fG"f

i€Q,,(F)

For G,, = I we recover the standard L? norm.



Coboundary operator

Coboundary operator 6,

The coboundary operator &, : C"™ — C™*! associates to every m-cochain
of the simplicial complex (m + 1)-cochain

0 mf — f O Om+1-
Therefore we obtain

m+1

(S F)V0, V15 - - Vims1] = Z(—l)pf([vo,vl, Vel Vpal o Vinel])
p=0

If follows that if g € C"™*!is givenby g =5 f.

Then g = B;;Hf =B, f



Adjoint of the coboundary operator

Adjoint operator §;,

The adjont of the coboundary operator 6%, : C"™*! — C™ satisfies

(& 0mf) = <5;kng»f>
where f € C"™ and g € C"*!.



Ajoint operator 0"

We define the matrix B;‘; as the matrix representing o7,

+1
i.e.if f =6%, then =B

m+1g

From the definition it follows that

B* =G,B, G\ =G,B,. G,

m-m+1 > m+1 m+1

Henceif G, =1, G, =1thenB* =B, ,



Proof

We define the matrix B;’;H as the matrix representing o0,

Le.if ' =g%g then  f=B* g

We have the scalar product (8,5,f) =gG,;. B, +1f

(658, 1) = g(B*)m+1

If follows that for any fand g gG, . B, f = gB%),

m+1 m+1

Hence — G BT Gg-!

m-m+1 " m+1 —

=G Bm+1G

m+1



Weighed Hodge Laplacian

The Hodge-Laplacians
The m-dimensional Hodge-Laplacian L,, is defined as
L, = L,P + Ldovwn

where up and down m-dimensional Hodge Laplacians are given by

LZ’LP = 6:;151%9
Ldovn = 5., 18% .

The weighted Hodge Laplacian obeys Hodge decomposition



Hypergraphs or simplicial complexes?

The dilemma about the respresentation of higher-order network data



Hyperedges

.. A X

2-hyperedge 3-hyperedge 4-hyperedge

An m-hyperedge is set nodes

-it indicates the interactions between the m-nodes



Hypergraphs

A hypergraph G = (V, Eg) is defined by a set V of N nodes and a set Ey
of hyperedges, where a (m + 1)-hyperedge indicates a set of m + 1 nodes

e =[vo,vi,va, ..., vl

with generic value of 1 < m < N.
An hyperdge describes the many-body interaction between the nodes.

2 Every hyperedge « formed

by a subset of the nodes
can belong or not
to the hypergraph o

Z ={[1,2],[3,4],[1,2,3],[1,3,4],[1,3,5], [3,5,6] }



Simplices

O-simplex  1-simplex 2-simplex 3-simplex

SIMPLICES

A d-dimensional simplex a (also indicated as a d-simplex «) is formed by
a set of (d + 1) interacting nodes

a = [vo,vi,v2...,val.

It describes a many body interaction between the nodes.
It allows for a topological and a geometrical interpretation of the simplex.



Faces of a simplex

FACES

A face of a d-dimensional simplex « is a simplex @’ formed by a proper
subset of nodes of the simplex, i.e. &’ C a.

3-simplex

Faces

o o—o

4 0-simplices 6 1-simplices 4 2-simplices



Simplicial complex

SIMPLICIAL COMPLEX

A simplicial complex K is formed by a set of simplices that is closed
under the inclusion of the faces of each simplex.
The dimension d of a simplicial complex is the largest dimension of its

simplices.

If a simplex « belongs
to the simplicial complex 7%
then every face of «

must also belong to %

F = ([11,121, 131, [41, [5], [6],
6 [1,21, 1,31, [1,4], [1,5], [2,3],
[3,41, 3,51, [3,6], [5.,6],
[1,2,3],11,3,4],[1,3,5],[3,5,6]}



Bare affinity weights
Bare affinity weights (blue) w, > 0
indicate which
higher-order interactions
are present in the data
The set of simplices with positive
bare affinity weights

does not need to be closed
under the inclusion of faces

Faccini et al. (2022)



Weighted simplicial complexes of d=1

Faccini et al. (2022)

Topological weights

For a d-dimensional simplex (link) at=[ij]

Wij — a)l'j >0

For a n-dimensional simplex a with n < d (node) o = i

ji



Weighted simplicial complexes

Faccini et al. (2022)
Topological weights

For a d-dimensional simplex a
w, = w, >0
For a n-dimensional simplex a with n < d

w, = w,+ Zwa/>0

aDa

Where ' is an n + 1 dimensional simplex



The relation between the bare affinity weights
and the topological weights is invertible!!

With this convention weighted simplicial complexes
do not involve any loss of information!!



Representation power of
weighted simplicial complexes

(a)

Bare affinity weights (blue) w, > 0
2 Articles: [A,B,C]
1 Article: [A,B] 2 Articles: [A,B,C] 1 Article:  [B,C,D]
3 Articles: [B,D]

Topological weights (black) | w, =, + ) w, >0

adDa

Faccini et al. (2022)



Lesson ll:
Introduction to Algebraic Topology

< Introduction to algebraic topology
- Higher-order operators and their properties
1. Topological signals

2. The Hodge Laplacian and Hodge decomposition
3. Topology of weighed simplicial complexes



