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Networks

Simple network




Higher-order networks

Simplicial complex




Higher order network

Collaboration network




Higher-order brain networks
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Simplicial complexes

Simplicial complexes are characterising the interactions between
two ore more nodes and

are formed by nodes, links, triangles, tetrahedra etc.
They have been widely studied in discrete quantum gravity approaches

They allow for topological and geometrical interpretation of higher-
order interactions

d=2 simplicial complex d=3 simplicial complex



Topology of Biomolecules

Wee et al. (2023)
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Topology
of higher-order brain networks
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Petri et al.
Reimann et al.
Cliques of neurons bound into cavities
provide a missing link between structure and function.
Frontiers in Computational Neuroscience 2017

"Homological scaffolds
of brain functional networks."
Journal of the Royal Society Interface

2014
Sizemore et al.

Cliques and cavities in the human connectome
Journal of Computational Neuroscience 2018



Higher-order networks

'(é‘.laer:\nberidge: Network theory
of higher-order networks

Higher Order - _ i
Negtwo,ks Providing a general view of the interplay

An Introduction to between topology and dynamics

Simplicial Complexes

Ginestra Bianconi
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What Is Topology?

Point Circle Sphere Torus

[
po=1 po=1
pr=0 pr=1
ﬂ2:0 ﬂz—o
€

Ghrist 2008



Topological signals

Synaptic signal

Edge signals in the brain

Citations in a collaboration network
Speed of wind at given locations
Currents at given locations in the ocean

Fluxes in biological transportation networks

oo N\ U_

Vat
o N e M
&

Battiston et al. Nature Physics 2021



Can we learn the
dynamics from the
complex system topology?



Can we learn the topology
from the complex system
dynamics?



Complexity challenge
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. Introduction to Homology and Cohomology

. Hodge Laplacian and Introduction to Synchronization

. Topological Kuramoto model

. Weighted homology and Global topological synchronization

. Dirac operator and dynamics



Lesson .
Introduction to Algebraic Topology

< Introduction to simplicial complexes

< Introduction to algebraic topology

- Higher-order operators and their properties
1. Topological signals

2. Homology and boundary operators
3. Cohomology and coboundary operators



Introduction to
Simplicial complexes



Simplices

O-simplex  1-simplex 2-simplex 3-simplex

SIMPLICES

A d-dimensional simplex a (also indicated as a d-simplex «) is formed by
a set of (d + 1) interacting nodes

a = [vo,vi,v2...,val.

It describes a many body interaction between the nodes.
It allows for a topological and a geometrical interpretation of the simplex.



Faces of a simplex

FACES

A face of a d-dimensional simplex « is a simplex @’ formed by a proper
subset of nodes of the simplex, i.e. &’ C «.

3-simplex

Faces

© o—o

4 0-simplices 6 1-simplices 4 2-simplices



Simplicial complex

SIMPLICIAL COMPLEX

A simplicial complex K is formed by a set of simplices that is closed
under the inclusion of the faces of each simplex.
The dimension d of a simplicial complex is the largest dimension of its

simplices.

If a simplex « belongs

to the simplicial complex 7%
then every face of «

must also belong to %

F = ([11,121, 131, [41, [5], [6],
6 [1,21, 1,31, [1,4], [1,5], [2,3],
[3,41, 3,51, [3,6], [5.,6],
[1,2,3],11,3,4],[1,3,5],[3,5,6]}



Dimension of a simplicial complex

The dimension of a simplicial complex #*
IS the largest dimension of its simplices

This simplicial complex
has dimension 2

F = ([11,121, 131, [41, [5], [6],
6 [1,21, 1,31, [1,4], [1,5], [2,3],
[3,41, 3,51, [3,6], [5.,6],
[1,2,3],11,3,4],[1,3,5],[3,5,6]}



Facets of a simplicial complex

FACET

A facet is a simplex of a simplicial complex that is not a face of any
other simplex. Therefore a simplicial complex is fully determined by the

sequence of its facets.

The facets of this
simplicial complex are

K ={[1,2,3],[1,3,4],[1,3,5],[3,5,6]}




Pure simplicial complex

PURE SIMPLICIAL COMPLEXES

A pure d-dimensional simplicial complex is formed by a set of d-
dimensional simplices and their faces.

Therefore pure d-dimensional simplicial complexes admit as facets only
d-dimensional simplices.

A pure d-dimensional simplicial complex
is fully determined by an
adjacency matrix tensor

with (d+1) indices.
For instance this simplicial complex
is determined by the tensor

1Lif (r,s,peXH
0 otherwise

arsp



Example

A simplicial complex # is pure
if it is formed by d-dimensional simplices
and their faces

PURE SIMPLICIAL COMPLEX SIMPLICIAL COMPLEX
THAT IS NOT PURE



Generalized degree

The generalized degree k., (@)of a m-face «

is given by the number

of m’-dimensional simplices incident to the m-face a.

[Bianconi & Rahmede 2015, Courtney & Bianconi 2016]

kz,o([r])

[r,s]

k2,1([r’ S])

[1]
(2]
[3]
[4]
[5]
[6]

—_ N = R =W

[1,2]
[1,3]
[1,4]
[1,5]
[2,3]
[3,4]
[3,5]
[3,6]
[5,6]

i \® B e e e N e Y )



Simplicial complex skeleton

-

From a simplicial complex is possible to generate a network
salled the simplicial complex skeleton by
considering only the nodes and the links of the simplicial complex



Clique complex

S —

From a network is possible to generate a simplicial complex by
Assuming that each clique is a simplex

Note:
Poisson networks have a clique number that is 3 and actually on a finite
expected number of triangles in the infinite network limit
However
Scale-free networks have a diverging clique number, therefore the clique complex
of a scale-free network has diverging dimension. (Bianconi,Marsili 2006)



Concatenation of the operations

Clique Network
complex a Skeleton

Attention!
By concatenating the operations you are not guaranteed to return to the initial
simplicial complex



Simplicial complex models
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Introduction to
Algebraic Topology



Point

=1
ﬁ1=0
ﬂ2=0

Betti numbers

Circle

o =1
ﬂ1=1
ﬂ2=0

Sphere

=1
ﬂ1=0
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Euler characteristic

d
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Betti number 1

Fungi network from Sang Hoon Lee, et. al. Jour. Compl. Net. (2016)



Take Home Message:
Boundary Operators

© ®

BE_I] Discrete gradient

QE_Z] Discrete Curl

G[l] Discrete divergencex

J

Boundary operators

[1,2,3]
(1,2] [L3] [2,3] [3.4] [1,2] 1

1 -1 -1 0 0 By =013 -1 .
By,=[21 1 0 -1 0, 23] 1
B3] 0 1 1 -1 34] 0

4] O 0 0 1

The boundary of the boundary is null

— T T —
C B[m—l]B[m] - O’ B[m]B[m—l] — )




Simplicial complex:notation

We consider a d-dimensional simplicial
complex & having N,

positively oriented simplices "
(or simply r) of dimension m.

We indicate the set of all the m positively
oriented simplices of the simplicial complex

Q,(F)



Orientation of a simplex

A m-dimensional oriented simplex a is a set of m + 1 nodes

a = [vo, Vi« Vinls 3.1

associated to an orientation wuch that

[VO’ V], ] Vm] = (_1)0'(71') [Vﬂ(0)7 vﬂ'(l)’ ML Vﬂ(m)] (32)

®

where o () indicates the parity of the permutation 7.

Q—>®

® ©

[r,s] = —[s,7]
[I",S,C]] = [S>Q>r] = [CLF’S] :_[SaraQ] =—[61a5,”] :—[l’,q,S]



Oriented simplicial complex
®

A typical choice of orientation
of a simplicial complex,
is to consider the orientation
induced by the node labels,
i.e. each simplex is oriented in an
increasing (or decreasing) order
of the node labels




Oriented simplicial complex

@

The set of positively
oriented simplices on
this simplicial complex
are:

{[1,2,3],[1,2],12,3], [1,3], [3,4], [1], [2], [3], [4]}
We adopt the convention that

each 0-simplex is positively
oriented



m-Chains

THE m-CHAINS

Given a simplicial complex, a m-chain C,, consists of the elements of a
free abelian group with basis on the m-simplices of the simplicial complex.

Its elements can be represented as linear combinations of the of all oriented

m-simplices
a=[vo,Vi,. ., Vil (3.6)
with coefficients in Z.

m-chainc, € C,,

m m=r ?

a,€0,(X)

C, = Z cral, with e, € Z




Oriented simplicial complex
and m-chains

Example of 1-chain @

aecgl

a=1[13]-1[2,3]+[2,4]



Boundary operator

THE BOUNDARY MAP

The boundary map 9, is a linear operator
Om : Cn — Ch—1 (3.8)
whose action is determined by the action on each m-simplex of the

simplicial complex is given by

Omlvo,vi...,vm] = Z(—l)p[vo, VI oo s Vp—l, Vpils - - o> V). (3.9)
p=0



Boundary operator

The boundary map ¢, is a linear operator
0,: €, = €,

whose action is determined by the action on each n-simplex of the simplicial complex

m
0,,[Vo, Vy-- 5 V,] = Z (=1D)[vg, vy oo VoI Vg 1o - o5 v,l.

p=0

®

Therefore we have

Q—>® O ®

0,[1.2] = [2] —[1]. 0,[1,2,3] =[2,3] — [1,3] + [1,2].



Boundary operator

THE BOUNDARY MAP

The boundary map 3,, is a linear operator
Om : Cn — Ch—1 (3.8)

whose action is determined by the action on each m-simplex of the

simplicial complex is given by

m
Omlvo,vi...,vm] = Z(—l)p[vo, VI oo s Vp—l, Vpils - - o> V). (3.9)
p=0
From this definition it follows that the im(d,,) corresponds to the space of
(m — 1) boundaries and the ker(d,,) is formed by the cyclic m-chains.

Special groups .
Boundary group B,, = im(d,,. )

Cycle group Zm = ker(d,,)



The boundary of a
boundary is null

The boundary operator has the property

0,0, =0 Vm>1

Which is usually indicated by saying that the boundary of the
boundary is null.

This property follows directly from the definition of the
boundary, as an example we have

0,0,[r,s,q1 = 0,([r,s] + [s,q] — [r,q]) = [s] = [r] + [q] = [s] — [g] + [r] = O.



Proof

The boundary of the boundary is null.

Proof: Indicating with f/p the pth missing vertex we have

Il
Ms

0,,—10,,[Vos Vs -5 V] (—=1)?0,,_{[vo, vy, ...f)p...vm]

p=0
=D ( 1)p2( DP s Vi o+ DDy ]
p=0 =0

Ms

~1y Z (=1 g vy ceBpe B

p=0 p=p+1



Incidence matrices

Given a basis for the m simplices and m-1 simplices
the m-boundary operator
m

0,,[Vps Vi--es V]l = Z (= DPDvos Vis oo s Voo 15 Vg 1o <0 Vil -

p=0
is captured by the N,,_; X N, incidence (or boundary ) matrix B
@ [1,2] [1,3] [2,3] [3.,4]
1] -1 -1 0 0
@ By=[21 I 0 -1 0,
[3] O 1 1 -1
4] O 0 0 1
[1,2,3]
[1,2] 1
By =[13] -1
[2,3] 1

[3,4] 0



Boundary of the boundary
Is null

In terms of the incidence matrices the relation

m-m+

Can be expressed as

[m~+1]7"[m]




Homology groups

THE HOMOLOGY GROUPS
The homology group H,, is the quotient space
ker(0,,)
im(G41)’
denoting homology classes of m-cyclic chains that are in the ker(d,,) and

they do differ by cyclic chains that are not boundaries of (m + 1)-chains,
i.e. they are in im(0,,,41).

H,, = (3.14)

It follows that a € ker(0,)) is in the same homology class
than a + b € ker(d,,) with b € im(9,,., )



©

Homology

®

The two 1-chains

a=1[24]-[3,4] -1[2,3]

b=1[12]+[2,4]-[3,4] —[1,3]

are in the same homology class
a~b
in fact

b=a+0,[1,2,3] =[2,4] — [3,4] — [2,3] + [1,2] + [2,3] — [1,3]



Betti numbers

BETTI NUMBERS

The Betti number S, indicates the number of m-dimensional cavities of a
simplicial complex and is given by the rank of the homology group H,,,
i.e.

B = rank(H,,) = rank(ker(9,,)) — rank(im(d,,+1)). (3.15)



Betti number

The two 1-chains

a=1[24]-[3,4] -1[2,3]

b=1[12]+[2,4]-[3,4] —[1,3]

are in the same homology class
a~b
in fact

b=a+0,[1,2,3] =[2,4] — [3,4] — [2,3] + [1,2] + [2,3] — [1,3]




Euler characteristic

THE EULER CHARACTERISTIC AND THE EULER-POINCARE FORMULA

The Euler characterisic y is defined as the alternating sum of the number
of m-dimensional simplices, i.e.

X= Sm (3.16)

m=>0
where s, is the number of m-dimensional simplices in the simplicial
complex. According to the Euler-Poincaré formula, the Euler characteristic
x of a simplicial complex can be expressed in terms of the Betti numbers
as

X = (=1)"Bn. (3.17)

m>0



Boundary Operators

Boundary operators

[1,2,3]
(1,2] [L3] [2,3] [3.4] [1,2] 1

@ 1 -1 -1 0 0 By =013 -1 .
By,=[21 1 0 -1 0, 23] 1
B3] 0 1 1 -1 34] 0

4] O 0 0 1

The boundary of the boundary is null

— T T —
( By, 1By =0, By, B, = )




Persistent homology

Filtration: distance/weights

Ghrist 2008

Persistent homology Barcode




Topological clustering

The node neighbourhood is the clique simplicial complex formed by
the set of all the neighbours of a node and their connections

Properties of the node Properties of the node neighbourhood
The degree kr Number of nodes 7
The local clustering coefficient C,, Density of the links p

AP Kartun-Giles et al. (2019)



0 0.02 = 0.05 0.05 = 0.05 0.1 = 0.05 0.15 £+ 0.05 0.2+ 0.05

=108, 00,003 n=108, p=0.11
A=, §1=0 Bo=T, J1=6

Notre Dame

o Node neighbourhoods
with the same number
o of nodes and the
. same density of links
can have very
different topology
Texan Roads ﬁ

Californian Roads
,C% AP Kartun-Giles et al. (2019)



Topological signals,
coboundary operators



Topological signals

Beyond the node centered description of network dynamics
The dynamical state of a simplicial complex includes
node, edge, and higher-order topological signals

4 A

Or21(0) Pr141(t) $11231()

t t t
TN T X
w(t) = ¢(t) @ @ @ ) @ @
() o ® ®



Topological signals

Citations in a collaboration network

Speed of wind at given locations

Currents at given locations in the ocean
Fluxes in biological transportation networks
Synaptic signal

Edge signals in the brain



Boundary Operators

Boundary operators

[1,2,3]
[1,2] [1,3] [2.3] [34] 1,21 1
@ [y -1 -1t 0 0 By =013 -1 .
By=(2 1 0 -1 0, 23] 1
4] O 0 0 1
® ®
The boundary of the boundary is null
G[l] Discrete divergence\
_ T pT _
BE_I] Discrete gradient C B[m—l]B[m] =0, B[m]B[m—I] - )

QE_Z] Discrete Curl J




Cochains

m-cochains

A m-dimensional cochain f € C™ is a linear function f : C,, — R, that
associates to every m-chain of the simplicial complex a value in R.

m-cochain f € C"

Given the m-chain c, = 2 cra’, with ¢/ € Z

m m=r 2

cn € G, reQ,(¥)

flc,) = Z " f([a™), with ¢/ € Z

reQ, (F)




Oriented simplicial complex
and m-chains

Example of 1-chain ()

a € 6,

a=[13]—-1[2,3] +[2,4]

Example

Given f e(C 1
then

fla) = f([1,3]) = f([2,3]) + A([2,4])




Cochains:properties

m-cochains

A m-dimensional cochain f € C™ is a linear function f : C,, — R, that
associates to every m-chain of the simplicial complex a value in R.

Upon a change of orientation of a simplex the value of the cochain associated to a simplex changes sign

™) = = (=) V" € Q,(F)




Topological signals

Beyond the node centered description of network dynamics
The dynamical state of a simplicial complex includes
node, edge, and higher-order topological signals

4 A

Or21(0) Pr141(t) $11231()

t t t
TN T X
w(t) = ¢(t) @ @ @ ) @ @
() o ® ®



Cochains:properties

m-cochains

A m-dimensional cochain f € C™ is a linear function f : C,, — R, that
associates to every m-chain of the simplicial complex a value in R.

L= V" € Q,(F)




L? norm between cochains

We define a scalar product between m-cochains as

Ly =11

Which has an element by element expression

FhH= D f

reQ, (%)

This scalar product can be generalised by introducing metric matrices (see lecture lll)



Coboundary operator

Coboundary operator 6,

The coboundary operator &, : C"™ — C™*! associates to every m-cochain
of the simplicial complex (m + 1)-cochain

0 mf — f O Om+1-
Therefore we obtain

m+1

(S F)V0, V15 - - Vims1] = Z(—l)pf([vo,vl, Vel Vpal o Vinel])
p=0

If follows that if g € C"™*!is givenby g =5 f.

Then g = B;;Hf =B, f



Coboundary operator

Coboundary operator §,,

The coboundary operator &, : C"™ — C™*! associates to every m-cochain
of the simplicial complex (m + 1)-cochain

0 mf — f O Om+1-
Therefore we obtain

m+1

Omf) Vo, vis. s Vima1] = Z(—l)pf([vo,vl, s Vp=1sVpsl - Vins1])
p=0

if follows that

0,11 °0, =0 Vm 2> 1hence B[Tm+1]B[Tm] =0




Discrete Gradient

if f € C°, then g = 8,f € C! indicates its discrete gradient

Indeed we have g = B[l]f which implies gy, =f—1

h

radient
J /

f
; ) g
4 \ /



Discrete Curl

f fe Cl, then h = 6, ¢ € C? indicates its discrete curl
18

Indeed we have g = B[Tz]f which implies

Nys.al = 81rs1 + 8ls.gl — 81rgl




Adjoint of the coboundary operator

Adjoint operator &},

The adjont of the coboundary operator 6%, : C™*! — C™ satisfies

(8:0mf) = (Om&> f)
for any f € C™ and g € C"™*.

It follows that if /' = 6/ ¢ thent' = B, |,



Adjoint of the coboundary operator

Adjoint operator §;,

The adjont of the coboundary operator 6%, : C"™*! — C™ satisfies

(& 0mf) = <5;kng»f>
where f € C"™ and g € C"*!.

If follows that if f € C" is given by f" = 0% g .

r DT _
Thenf’ = B[m+1]g = B[m+1]g



Discrete Divergence

fg € C!, thenf = 0,8 € C" indicates its discrete divergence

Indeed we have f = Bmg which implies f. = Z 8[sr] — Z 8[rs]
S S

divergence




Boundary Operators

Boundary operators

[1,2,3]
(1,21 [1,3] [2,3] [3:4] 121 1
@ [ -t -1 0 0 By =[13] -1 .
By=(2 1 0 -1 0, 23] 1
4] O 0 0 1
® ®
The boundary of the boundary is null
G[l] Discrete divergence\
_ T pT _
BE_I] Discrete gradient C B[m—llB[m] =0, B[m]B[m—I] - D

QE_Z] Discrete Curl J




