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 Higher-order networks are characterising the 
interactions between two ore more nodes and   

 are  formed by nodes, links, triangles, 
tetrahedra etc.

d=2 simplicial complex     d=3 simplicial complex

Higher-order networks



Simplicial complex models

Emergent Geometry 
Network Geometry with Flavor (NGF) 

[Bianconi Rahmede ,2016 & 2017]

Maximum entropy model 
Configuration model  

of simplicial complexes 
[Courtney Bianconi 2016]
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Lesson IIa: 
Hodge Laplacians 

Introduction to algebraic topology: 
Hodge Laplacians 
-Graph Laplacian 
-Properties of the Hodge Laplacian 
-Connection with topology 



Topological signals
Beyond the node centered description of  network dynamics 

The dynamical state of a simplicial complex includes  
node, edge, and higher-order topological signals
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Topological signals
• Citations in a collaboration network


• Speed of wind at given locations


• Currents at given locations in the ocean


• Fluxes in biological transportation networks


• Synaptic signal


• Edge signals in the brain
Topological signals  

are cochains or vector fields 
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3.3 <-cochains

<-cochains
A <-dimensional cochain 5 2 ⇠

< is a linear function 5 : C< ! R, that
associates to every <-chain of the simplicial complex a value in R.

Since the cochain indicates a linear function we have

5 (2<) =
’

82&< (K)
2
<
8 5 (U<

8 ). (3.23)

Note that thanks to the linearity of the cohain 5 we always have 5 (U<
8 ) =

�G(�U<
8 ). Given a basis the simplices of the simplicial complexes, we have

that the co-chain 5 is fully captured by the vector f = ( 51, 52 . . . 5#< )> with
58 = 5 (U<

8 ).

4 Scalar product between co-chains and metric

< 5 , 5 >= 5 ⌧
�1

5 (4.1)

4.1 Co-boundary operator X<

Co-boundary operator X<

The coboundary operator X< : ⇠< ! ⇠
<+1 associates to every <-cochain

of the simplicial complex (< + 1)-cochain

X< 5 = 5 � m<+1 (4.2)

(X< 5 ) [E0, E1, . . . , E<+1] =
<+1’
?=0

(�1) ? 5 ( [E0, E1, . . . , E?�1, E?+1 . . . E<+1])

The coboundary operator acts o The adjont of the coboundary operator X⇤< is
obatined by imposing

hX 5 , 6i = h 5 , X⇤6i (4.3)

obtaining

f(cm) = ∑
r∈Qm(𝒦)

cr
m f(αm

r ),  with cr
m ∈ ℤ

m-cochain f ∈ Cm

cm = ∑
r∈Qm(𝒦)

cr
mαm

r ,  with cr
m ∈ ℤGiven the m-chain 

cm ∈ Cm
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3.3 <-cochains

<-cochains
A <-dimensional cochain 5 2 ⇠

< is a linear function 5 : C< ! R, that
associates to every <-chain of the simplicial complex a value in R.

Since the cochain indicates a linear function we have

5 (2<) =
’

82&< (K)
2
<
8 5 (U<

8 ). (3.23)

Note that thanks to the linearity of the cohain 5 we always have 5 (U<
8 ) =

�G(�U<
8 ). Given a basis the simplices of the simplicial complexes, we have

that the co-chain 5 is fully captured by the vector f = ( 51, 52 . . . 5#< )> with
58 = 5 (U<

8 ).

4 Scalar product between co-chains and metric

< 5 , 5 >= 5 ⌧
�1

5 (4.1)

4.1 Co-boundary operator X<

Co-boundary operator X<

The coboundary operator X< : ⇠< ! ⇠
<+1 associates to every <-cochain

of the simplicial complex (< + 1)-cochain

X< 5 = 5 � m<+1 (4.2)

(X< 5 ) [E0, E1, . . . , E<+1] =
<+1’
?=0

(�1) ? 5 ( [E0, E1, . . . , E?�1, E?+1 . . . E<+1])

The coboundary operator acts o The adjont of the coboundary operator X⇤< is
obatined by imposing

hX 5 , 6i = h 5 , X⇤6i (4.3)

obtaining

fr = f(αm
r ) ∀αm

r ∈ Qm(𝒦)

Given a basis for the m-simplices of the simplicial complex,  
A m-cochain can be expressed as a vector  of elementsf



 norm between cochainsL2

We define a scalar product between -cochains as 





Which has an element by element expression





This scalar product can be generalised by introducing metric matrices (see lecture III)

m

⟨ f, f⟩ = f⊤f

⟨ f, f⟩ = ∑
r∈Qm(𝒦)

f2
r



Coboundary operator

If follows that if  is given by  . 


Then 

g ∈ Cm+1 g = δm f

g = B⊤
m+1f ≡ B̄m+1f
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associates to every <-chain of the simplicial complex a value in R.

Since the cochain indicates a linear function we have

5 (2<) =
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Note that thanks to the linearity of the cohain 5 we always have 5 (U<
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that the co-chain 5 is fully captured by the vector f = ( 51, 52 . . . 5#< )> with
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4 Scalar product between co-chains and metric

< 5 , 5 >= 5 ⌧
�1

5 (4.1)

4.1 Coboundary operator X<

Coboundary operator X<

The coboundary operator X< : ⇠< ! ⇠
<+1 associates to every <-cochain

of the simplicial complex (< + 1)-cochain

X< 5 = 5 � m<+1.

Therefore we obtain

(X< 5 ) [E0, E1, . . . , E<+1] =
<+1’
?=0

(�1) ? 5 ( [E0, E1, . . . , E?�1, E?+1 . . . E<+1])



Discrete Gradient
If , then  indicates its discrete gradient


Indeed we have    which implies  

f ∈ C0 g = δ0 f ∈ C1

g = B⊤
[1]f g[r,s] = fs − fr

f1

f2

f3

f4

gradient



Discrete Curl
If , then  indicates its discrete curl


Indeed we have   which implies 


f ∈ C1 h = δ1g ∈ C2

g = B⊤
[2]f

h[r,s,q] = g[r,s] + g[s,q] − g[r,q]

g
[12]

g
[23]

g
[24] g

[34]

Curl



Coboundary operator

We have  that 


δm+1 ∘ δm = 0 ∀m ≥ 1 hence B⊤
[m+1]B

⊤
[m] = 0



Adjoint of the coboundary operator




42 Series Name

The coboundary operator acts o

Adjoint operator X⇤<

The adjont of the coboundary operator X⇤< : ⇠<+1 ! ⇠
< satisfies

h6, X< 5 i =
⌦
X
⇤
<6, 5

↵
for any 5 2 ⇠

< and 6 2 ⇠
<+1.

4.2 Hodge Laplacian

4.2.1 Higher-order Laplacians and Hodge decomposition

The graph Laplacian is a fundamental operator that describes di�usion
occurring from a node to another node through links. The graph Laplacian
matrix L[0] is a # [0] ⇥ # [0] matrix typically defined in terms of the diagonal
matrix K having the degrees of the nodes on the diagonal and the adjacency
matrix A of the network as

L[0] = K � A. (4.3)

However the graph Laplacian can be equivalently defined in terms of the
incidence matrix B[1] as

L[0] = B[1]B)
[1] . (4.4)

This expression can be generalized in order to define higher-order Laplacian
L[<] (also called combinatorial Laplacians) that describe di�usion from a <

simplex to another < simplex.

Higher-order Laplacian

The higher-order Laplacian operator can be represented as a # [<] ⇥ # [<]
matrix. Since for < > 0 di�usion from a < simplex to another < simplex
can occur either though a (< � 1)-simplex or though a (< + 1)-simplex
the higher-order Laplacian L[<] with < > 0 can be decomposed as

L[<] = L3>F=
[<] + LD?

[<] , (4.5)

It follows that if  then f′ = δ*mg f′ = B[m+1]g



Discrete Divergence
If , then  indicates its discrete divergence


Indeed we have  which implies  


g ∈ C1 f = δ*0 g ∈ C0

f = B[1]g fr = ∑
s

g[sr] − ∑
s

g[rs]

g
[12]

g
[23]

g
[24] g

[34]

divergence



Coboundary operator

We have  that 


δ*m−1 ∘ δ*m = 0 ∀m ≥ 1 hence B[m]B[m+1] = 0



Hodge Laplacians



Hodge Laplacian

• No

42 Series Name

The coboundary operator acts o

Adjoint operator X⇤<

The adjont of the coboundary operator X⇤< : ⇠<+1 ! ⇠
< satisfies

h6, X< 5 i =
⌦
X
⇤
<6, 5

↵
for any 5 2 ⇠< and 6 2 ⇠<+1.

⇠
<+1 X< �� ⇠

< X<�1 ���� ⇠
<�1

⇠
<+1 X⇤<��! ⇠

<
X⇤<�1����! ⇠

<�1

(4.2)

4.2 Hodge Laplacian

The Hodge-Laplacians

The <-dimensional Hodge-Laplacian !< is defined as

!< = !
D?
< + !

3>F=
<

where up and down <-dimensional Hodge Laplacians are given by

!
D?
< = X

⇤
<X<,

!
3>F=
< = X<�1X

⇤
<�1.

More specifically, the elements of Ldown
? (? > 0) are given by

Ldown
< (8, 9) =

8>>>>>>>><
>>>>>>>>:

< + 1, 8 = 9 .

1, 8 < 9 , U
?
8 ¶ U

<
9 , U

<
8 ⇠ U

<
9 .

�1, 8 < 9 , U
?
8 ¶ U

<
9 , U

?
8 ⌧ U

<
9 .

0, otherwise.

Note that  by definitionLdown
0 = 0



Hodge Laplacians
The Hodge Laplacians describe diffusion  

from n-simplices to m-simplices through (m-1) and (m+1) 

simplices 

The higher order Hodge  Laplacian can be decomposed as


with 


L[m] = Ldown
[m] + Lup

[m],

Ldown
[m] = B⊤

[m]B[m],

Lup
[m] = B[m+1]B⊤

[m+1] .

L[m] = B⊤
[m]B[m] + B[m+1]B⊤

[m+1] .



Simplicial complexes and 
Hodge Laplacians

L[0] = B[1]B⊤
[1] L[2] = B⊤

[2]B[2]L[1] = B⊤
[1]B[1] + B[2]B⊤

[2]

The Hodge Laplacians describe diffusion 


from m-simplices to m-simplices through (m-1) and (m+1) simplices


Hodge Laplacians

For a 2-dimensional simplicial complex we have



Properties of the Hodge 
Laplacians

• The Hodge Laplacians  are semidefinite 
positive.


• They obey Hodge decomposition


• The dimension of the kernel of the Hodge Laplacian  is 
the -Betti number 


• The harmonic eigenvectors are related to the generators of 
the homology classes and can be chosen in such way that 
they localise on the holes 

Lm, Lup
m , Ldown

m

Lm
m βm

m−



The Hodge-Laplacians are 
semi-definitive positive

The Hodge Laplacians   

are semidefinite positive. 

Indeed we have:


Lm, Lup
m , Ldown

m

⟨ f, Lup
m f⟩ = ⟨ f, δ*mδm f⟩ = ⟨δm f, δm f⟩ ≥ 0

⟨ f, Ldown
m f⟩ = ⟨ f, δm−1δ*m−1 f⟩ = ⟨δ*m−1 f, δ*m−1 f⟩ ≥ 0

⟨ f, Lm f⟩ = ⟨ f, Lup
m f⟩ + ⟨ f, Ldown

m f⟩ ≥ 0



Hodge-decomposition
We have  







Indeed





Ldown
m Lup

m = 0 imLup
m ⊆ kerLdown

m

Lup
m Ldown

m = 0 imLdown
m ⊆ kerLup

m

kerLm = kerLdown
m ∩ kerLup

m

Ldown
m Lup

m = δm−1δ*m−1δ*mδm = 0

Lup
m Ldown

m = δ*mδmδm−1δ*m−1 = 0



Hodge-decomposition

Given that  

and that  

We have:


B[m]B[m+1] = 0 B⊤
[m−1]B

⊤
[m] = 0

Lup
[m] = B[m+1]B⊤

[m+1], Ldown
[m] = B⊤

[m]B[m]

Ldown
[m] Lup

[m] = 0 imLup
[m] ⊆ kerLdown

[m]

Lup
[m]L

down
[m] = 0 imLdown

[m] ⊆ kerLup
[m]



Hodge decomposition
The Hodge decomposition can be summarised as


This means that                         are commuting and can be diagonalised 
simultaneously. In this basis these matrices have the block structure


Cm = im(B⊤
[m]) ⊕ ker(L[m]) ⊕ im(B[m+1])

L[m], Lup
[m], Ldown

[m]

U−1L[m]U =
Ddown

[m] 0 0
0 0 0
0 0 Dup

[m]

U−1Ldown
[m] U =

Ddown
[m] 0 0
0 0 0
0 0 0

U−1Lup
[m]U =

0 0 0
0 0 0
0 0 Dup

[m]

• Therefore an eigenvector in the ker of            is also in the ker of both  

• An eigenvector corresponding to an non-zero eigenvalue of    
is either a non-zero eigenvector of        or a non-zero eigenvector of 

L[m] Lup
[m], Ldown

[m]

L[m]
Ldown

[m]Lup
[m]



Hodge decomposition
We have  

 

Any -cochain can be decomposed in a unique way in  

 

Where  are  and  cochains and  

For 





Representing the gradient flow, the harmonic component and the curl flow respectively

Cm = im(δm−1) ⊕ ker(Lm) ⊕ im(δ*m)

m

cm = δm−1ω(m−1) + ωm,(harm) + δ*mω(m+1)

ω(m−1), ω(m+1) m − 1 m + 1 Lmωm,(harm) = 0

m = 1

c1 = δ0ω(0) + ω1(harm) + δ*1 ω(m+1)



Hodge decomposition
The Hodge decomposition implies that topological signals can be decomposed


 in a irrotational, harmonic and solenoidal components


which in the case of topological signals of the links can be sketched as  


Cm = im(B⊤
[m]) ⊕ ker(L[m]) ⊕ im(B[m+1])

Solenoidal component 
Curl Flow

Harmonic componentIrrotational component 
Gradient Flow



Hodge decomposition
Every -cochain (topological signal) can be decomposed in a 

unique way thanks to the Hodge decomposition as





therefore every -cochain can be decomposed in a unique 
way as 

m

ℝDm = im(B⊤
[m]) ⊕ ker(L[m]) ⊕ im(B[m+1])

m

x = x[1] + x[2] + xharm
x[1] = Lup

[m]L
up,+
[m] x

x[2] = Ldown
[m] Ldown,+

[m] x
With



Betti numbers
The dimension of the kernel of the Hodge Laplacian  is the -Betti 

number , i.e.  

 

 Indeed, thanks to Hodge decomposition  

Lm m
βm

dim(ker(Lm)) = βm

dim ker L[m] = dim(ker Lup
[m] ∩ ker Ldown

[m] )

= dim(ker Lup
[m])−dim(im Ldown

[m] )

= dim(ker Ldown
[m] )−dim(im Lup

[m])

= dim(ker B[m])−dim(im B[m+1])
= rankℋm = βm



Harmonic eigenvectors of 
the Hodge Laplacian

 dim ker(L[m]) = βm

The dimension of the kernel of the Hodge Laplacian 
  

is given by the corresponding Betti number

The harmonic eigenvectors  

are associated to the generators of the homology 

They are in general non-uniform over the -simplices of the simplicial complexm



Digression  
on simple networks 

(Graphs) 
and on Graph Laplacians



Graphs and networks
Definition 

A graph is an ordered pair G = (V, E) comprising a set V of vertices  
connected by the set  E of edges. 

A graph is a 1-dimensional simplicial complex 

Definition 

 A network is the graph  G = (V, E) describing the set of interactions between  
the constituents of a complex system. The vertices of a network are called  
nodes and the edges links.  

The network size N=N0 is the total number of nodes in the network N=|V|. 
The total number of edges  N1 is given by N1=|E|. 
 



Simple networks
Adjacency matrix 

A simple network is fully determined by its adjacency matrix. 

The adjacency matrix       of a simple network is a            matrix of elements given by  

The adjacency matrix of a simple network is symmetric. 

a N × N

ars = {1 if r is linked to  s
0 otherwise.

Definition 

In a simple network the  degree     of node    is given by the total number of links incident to node , i.e. ki i

kr =
N

∑
s=1

ars



Uncorrelated maximally random graphs with given 
degree sequence 

Are generated by ensembles in which each edge 
 is drawn independently  

with probability  

 

(r, s)

prs = ⟨ars⟩ =
krks

⟨k⟩N

Random graphs



Graph Laplacian

The graph Laplacian matrix has elements 

The graph Laplacian is a semi-definite positive matrix that in a 
connected network has eigenvalues 

The Laplacian is key for describing diffusion processes and the 
Kuramoto model on networks and constitutes a natural link 

between topology and dynamics 

L[0] = B[1]B⊤
[1]

[L[0]]ij
= δijki − aij

0 = μ1 ≤ μ2 ≤ μ3 ≤ … ≤ μN



Harmonic eigenvectors of 
the graph Laplacian

The quadratic form of the graph Laplacian 
reads





Therefore the harmonic eigenvectors of the 
graph Laplacian are constant on each 

connected component of the graph and zero 
everywhere else.

X⊤L[0]X =
1
2 ∑

r,s

ars(Xr − Xs)2

The dropdown menu allows us to quickly switch colourings according to each category, without
needing to recompute the underlying graph.

Change the layout algorithm

By default, plot_static_mapper_graph  uses the Kamada–Kawai algorithm for the layout;
however any of the layout algorithms defined in python-igraph are supported (see here for a list
of possible layouts). For example, we can switch to the Fruchterman–Reingold layout as follows:

# Reset back to numpy projection
pipe.set_params(filter_func=Projection(columns=[0, 1]));

0

0.2

0.4

0.6

0.8

1

Color by: Circle_A ▼

Getting started with Mapper — giotto-tda 0.5.1 documentation https://giotto-ai.github.io/gtda-docs/latest/notebooks/mapper_quickstart.html

11 of 21 26/02/2023, 16:07



Eigenvectors of the  
 Hodge  LaplacianL[0]

1

2

3

B[1] =

[1,2] [2,3] [1,3]
[1] −1 0 −1
[2] 1 −1 0
[3] 0 1 1

, B[2] = 0

V[0] =

μ = 0 μ = 3 μ = 3

[1] 1/ 3 −1/ 2 −1/ 2

[2] 1/ 3 0 1/ 2

[3] 1/ 3 1/ 2 0

, Σ[0] = (
0 0 0
0 3 0
0 0 3)

L[0] =

[1,2] [2,3] [1,3]
[1,2] 2 −1 −1
[2,3] −1 2 −1
[1,3] −1 −1 2

,



A connected network has a single eigenvector 
in the kernel of the graph Laplacian. 

This eigenvector is constant on each node of 
the network, i.e. 

 u =
1

N
1

Connected network



Back to higher-order  
Hodge Laplacians



Harmonic eigenvectors of 
the Hodge Laplacian

 dim ker(L[m]) = βm

The dimension of the kernel of the Hodge Laplacian 
  

is given by the corresponding Betti number

The harmonic eigenvectors  

are associated to the generators of the homology 

They are in general non-uniform over the -simplices of the simplicial complexm



Eigenvectors of the  
 Hodge  LaplacianL[1]

1

2

3

B[2] =

[1,2,3]
[1,2] 1
[2,3] 1
[1,3] −1

.B[1] =

[1,2] [2,3] [1,3]
[1] −1 0 −1
[2] 1 −1 0
[3] 0 1 1

, L[1] =

[1,2] [1,3] [1,3]
[1,2] 3 0 0
[2,3] 0 3 0
[1,3] 0 0 3

,

V[1] =

μ = 3 μ = 3 μ = 3
[1,2] 1 0 0
[2,3] 0 1 0
[1,3] 0 0 1

, Σ[1] = (
3 0 0
0 3 0
0 0 3)



Eigenvectors of the  
 Hodge  LaplacianL[1]

1

2

3

B[1] =

[1,2] [2,3] [1,3]
[1] −1 0 −1
[2] 1 −1 0
[3] 0 1 1

, B[2] = 0

V[1] =

μ = 0 μ = 3 μ = 3

[1,2] 1/ 3 1/ 2 0

[2,3] 1/ 3 0 1/ 2

[1,3] −1/ 3 1/ 2 1/ 2

, Σ[1] = (
0 0 0
0 3 0
0 0 3)

L[1] =

[1,2] [2,3] [1,3]
[1,2] 2 −1 1
[2,3] −1 2 1
[1,3] 1 1 2

,



 Harmonic eigenvectors

Wee et al. (2023)



Expression of the matrix elements 
of the Hodge Laplacians

The m-dimensional up- Hodge Laplacian has nonzero elements  
only among upper incident m-simplices  

(simplices which are faces of a common m+1 simplex) 
The eigenvectors have support on the m-connected components 

The  m-dimensional down-Hodge Laplacian has nonzero elements  
only among lower incident m-simplices  

(simplifies sharing a m-1 face) 
The eigenvectors have support on the (m-1)—connected components 

Here ~ indicates similar orientation with respect to the lower-simplices 

42 Series Name

The coboundary operator acts o

Adjoint operator X⇤<

The adjont of the coboundary operator X⇤< : ⇠<+1 ! ⇠
< satisfies

h6, X< 5 i =
⌦
X
⇤
<6, 5

↵
for any 5 2 ⇠< and 6 2 ⇠<+1.

⇠
<+1 X< �� ⇠

< X<�1 ���� ⇠
<�1

⇠
<+1 X⇤<��! ⇠

<
X⇤<�1����! ⇠

<�1

(4.2)

4.2 Hodge Laplacian

The Hodge-Laplacians

The <-dimensional Hodge-Laplacian !< is defined as

!< = !
D?
< + !

3>F=
<

where up and down <-dimensional Hodge Laplacians are given by

!
D?
< = X

⇤
<X<,

!
3>F=
< = X<�1X

⇤
<�1.

More specifically, the elements of Ldown
? (? > 0) are given by

Ldown
< (A, B) =

8>>>>>>>><
>>>>>>>>:

< + 1, A = B.

1, A < B, U
?
A ¶ U

<
B , U

<
A ⇠ U

<
B .

�1, A < B, U
?
A ¶ U

<
B , U

?
A ⌧ U

<
B .

0, otherwise.

Elements Name 43

For ? > 0 the matrix elements of the Hodge Laplacian Lup
? are given by

Lup
< (A, B) =

8>>>>>>>><
>>>>>>>>:

:<+1,< (U<
A ), A = B.

�1, A < B, U
<
A ß U

<
B , U

<
A ⇠ U

<
B .

1, A < B, U
<
A ß U

<
B , U

<
A ⌧ U

<
B .

0, otherwise.

L< (A , B) =
8>>><
>>>:

:<+1,< (U<
A ) + < + 1, A = B.

1, A < B, U
<
A 6ß U

<
B , U

<
A ¶ U

<
B , U

<
A ⇠ U

<
B .

�1, A < B, U
<
A 6ß U

<
B , U

<
A ¶ U

<
B , U

<
A ⌧ U

<
B .

0 otherwise.

4.2.1 Higher-order Laplacians and Hodge decomposition

The graph Laplacian is a fundamental operator that describes di�usion
occurring from a node to another node through links. The graph Laplacian
matrix L[0] is a # [0] ⇥ # [0] matrix typically defined in terms of the diagonal
matrix K having the degrees of the nodes on the diagonal and the adjacency
matrix A of the network as

L[0] = K � A. (4.3)

However the graph Laplacian can be equivalently defined in terms of the
incidence matrix B[1] as

L[0] = B[1]B)
[1] . (4.4)

This expression can be generalized in order to define higher-order Laplacian
L[<] (also called combinatorial Laplacians) that describe di�usion from a <

simplex to another < simplex.

Higher-order Laplacian

The higher-order Laplacian operator can be represented as a # [<] ⇥ # [<]
matrix. Since for < > 0 di�usion from a < simplex to another < simplex
can occur either though a (< � 1)-simplex or though a (< + 1)-simplex
the higher-order Laplacian L[<] with < > 0 can be decomposed as

L[<] = L3>F=
[<] + LD?

[<] , (4.5)



m-connected components

0-connected component  

1-connected components 

2-connected component

Simplicial complexA B

C

D



Expression of the matrix elements 
of the Hodge Laplacians

for 0 < m < d

The matrix elements of the Hodge Laplacian is only non zero  
among lower adjacent simplices that are not upper-adjacent

Elements Name 43

For ? > 0 the matrix elements of the Hodge Laplacian Lup
? are given by

Lup
< (A, B) =

8>>>>>>>><
>>>>>>>>:

:<+1,< (U<
A ), A = B.

�1, A < B, U
<
A ß U

<
B , U

<
A ⇠ U

<
B .

1, A < B, U
<
A ß U

<
B , U

<
A ⌧ U

<
B .

0, otherwise.

L< (A , B) =
8>>><
>>>:

:<+1,< (U<
A ) + < + 1, A = B.

1, A < B, U
<
A 6ß U

<
B , U

<
A ¶ U

<
B , U

<
A ⇠ U

<
B .

�1, A < B, U
<
A 6ß U

<
B , U

<
A ¶ U

<
B , U

<
A ⌧ U

<
B .

0 otherwise.

4.2.1 Higher-order Laplacians and Hodge decomposition

The graph Laplacian is a fundamental operator that describes di�usion
occurring from a node to another node through links. The graph Laplacian
matrix L[0] is a # [0] ⇥ # [0] matrix typically defined in terms of the diagonal
matrix K having the degrees of the nodes on the diagonal and the adjacency
matrix A of the network as

L[0] = K � A. (4.3)

However the graph Laplacian can be equivalently defined in terms of the
incidence matrix B[1] as

L[0] = B[1]B)
[1] . (4.4)

This expression can be generalized in order to define higher-order Laplacian
L[<] (also called combinatorial Laplacians) that describe di�usion from a <

simplex to another < simplex.

Higher-order Laplacian

The higher-order Laplacian operator can be represented as a # [<] ⇥ # [<]
matrix. Since for < > 0 di�usion from a < simplex to another < simplex
can occur either though a (< � 1)-simplex or though a (< + 1)-simplex
the higher-order Laplacian L[<] with < > 0 can be decomposed as

L[<] = L3>F=
[<] + LD?

[<] , (4.5)



Clique communities

The m-clique 
communities are the 
m-connected 
components of the 
clique complex of the 
network

Palla et al. Nature 2005



The skeleton of a simplicial complex 
and its clique complex

Attention! 
By concatenating the operations you are not guaranteed to return to the initial  

simplicial complex

Network 
Skeleton

Clique  
complex



2 communities 2 communities 2 communities

3 communities 
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M: Mr.Hi Club
O: Officer Club

We can infer which higher-order interactions  
using higher-order communities  

and ground-truth community assignments

S. Khrisnagopal and GB (2021)

Inference of higher-order  
interactions

Higher-order communities



Boundary Operators

B[1] =

[1,2] [1,3] [2,3] [3,4]
[1] −1 −1 0 0
[2] 1 0 −1 0
[3] 0 1 1 −1
[4] 0 0 0 1

,
B[2] =

[1,2,3]
[1,2] 1
[1,3] −1
[2,3] 1
[3,4] 0

.

Boundary operators

The boundary of the boundary is null 

B[1]

B⊤
[1]

B⊤
[2]

Discrete divergence 

Discrete gradient 

Discrete Curl

B[m−1]B[m] = 0, B⊤
[m]B⊤

[m−1] = 0



Lesson IIb: 
Introduction to the Kuramoto model

Kuramoto model on graphs 
• The phase transition 
• Gauge Invariance 
• Sketch of the solution on fully connected networks 
• Annealed approximation for solution on random graphs 



Kuramoto  
model 

on a graph



Synchronization is a 
fundamental dynamical process

• N
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Founding fathers of 
synchronisation

Yoshiki Kuramoto
Christiaan Huygens



Kuramoto model on a 
network

·θr = ωr + σ
N

∑
s=1

ars sin (θs − θr)
4

1

2

3

5
6

7

8

θ1

ω ∼ 𝒩(Ω,1)

Given a network of N nodes  
defined by an adjacency matrix a 

we assign to each node a phase obeying 

where the internal frequencies of the nodes  
are drawn randomly from 

and  the coupling constant is 𝜎 

The oscillators are non-identical



Order parameter for 
synchronization

We consider the global order parameter 


which indicates the 


synchronisation transition such that for


 


R

|σ − σc | ≪ 1

X = ReiΨ̂ =
1
N

N

∑
r=1

eiθr

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

R

R = {
0  for σ < σc

c(σ − σc)1/2  for σ ≥ σc
Kuramoto (1975)



Gauge invariance of the 
Kuramoto equation

Given the Kuramoto dynamics


If we perform the transformation





We obtain


, 


i.e. the dynamics is invariant under rescaling 


of the average of the intrinsic frequencies , i.e. 


θr → θr − Ω̂t

·θr = ωr − Ω̂ + σ
N

∑
s=1

ars sin (θs − θr)

Ω → Ω − Ω̂

·θr = ωr + σ
N

∑
s=1

ars sin (θs − θr)

1

2

3

5
6

7

8

θ1



Solution of the Kuramoto model 
on a fully connected network

On a fully connected network the coupling constant  is rescaled as 





The Kuramoto equation





can be written in terms of the complex order parameter  as


 


Thanks to the gauge invariance we can study the dynamics in the rotating frame which reads


σ →
σ
N

·θr = ωr + σ
N

∑
s=1

ars sin (θs − θr)

X

·θr = ωr − Ω + σIm(Xe−iθr)

·θr = ωr − Ω − σR sin(θr)



Solution of the Kuramoto model 
on a fully connected network

Looking for the stationary states  of 





We obtain  only valid for nodes such that





(frozen nodes) 

·θr = 0

·θr = ωr − Ω − σR sin(θr)

sin(θr) =
ωr − Ω

σR

ωr − Ω
σR

≤ 1



Solution of the Kuramoto model 
on a fully connected network

Assuming that only the frozen nodes contribute to the order parameter, since  
in the rotating frame, we obtain the self-consistent equation for the order parameter  





Or, equivalently considering the probability density distribution  for the intrinsic 
frequencies, 





X = R

R =
1
N ∑

r|r are frozen

cos θr =
1
N ∑

r|r are frozen

1 − ( ω − Ω
σR )

2

g(ω)

R = ∫ ω − Ω
σR ≤1

g(ω) 1 − ( ω − Ω
σR )

2

dω



Synchronization threshold 
on a fully connected network

Given the self consistent equation for the order parameter, 





We derive the synchronization threshold.


Change variable , 





Now we develop  with  getting


R = ∫ ω − Ω
σR ≤1

g(ω) 1 − ( ω − Ω
σR )

2

dω

x = (ω − Ω)/(σR) σRdx = dω

1 = σ∫|x|≤1
g(σRx + Ω) 1 − x2dx

g(y) ≃ g(Ω) + g′ ′ (Ω)y2/2 g′ ′ (Ω) < 0

1 = σg(Ω)π/2 + g′ ′ (Ω)σ2R2/16



Synchronization threshold 
on a fully connected network

Starting form 





We found that the synchronization threshold is 


 


and for 





1 = σg(Ω)π/2 + g′ ′ (Ω)σ2R2/16

σc =
2

πg(Ω)

|σ − σc | ≪ 1

R ≃
4

σ2
c −g′ ′ (Ω)π

σ − σc



The e Kuramoto model on a random graph with given degree distribution can be studied 
within the annealed approximation obtained by making the substitution





Therefore the Kuramoto model becomes





Which can be written as 


  with  


which can be studied following similar steps detailed for the fully connected case.

ars → prs =
krks

⟨k⟩N

·θr = ωr − σ∑
s

krks

⟨k⟩N
sin(θs − θr)

·θr = ωr − σkrImX̂e−iθr X̂ =
1

⟨k⟩N ∑
s

kse−iθs

Solution of the Kuramoto model 
in the annealed approximation



The higher-order simplicial  
Kuramoto model

How to define  
the higher-order Kuramoto model  

coupling higher dimensional  
topological signals?

A. P. Millán, J. J. Torres,  and G.Bianconi,  
Physical Review Letters, 124, 218301 (2020) 



Higher-order
interac�ons

Nonlinear
dynamics

Topology

Theory of
complex systems

 Complexity challenge


