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Higher-order networks

Higher-order networks are characterising the
interactions between two ore more nodes and

are formed by nodes, links, triangles,
tetrahedra etc.
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d=2 simplicial complex d=3 simplicial complex



Simplicial complex models
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Lesson lla:
Hodge Laplacians

< Introduction to algebraic topology:
-~ Hodge Laplacians
-Graph Laplacian
-Properties of the Hodge Laplacian
-Connection with topology



Topological signals

Beyond the node centered description of network dynamics
The dynamical state of a simplicial complex includes
node, edge, and higher-order topological signals
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Topological signals

Citations in a collaboration network

Speed of wind at given locations

Currents at given locations in the ocean
Fluxes in biological transportation networks
Synaptic signal

Edge signals in the brain



Cochains

m-cochains

A m-dimensional cochain f € C™ is a linear function f : C,, — R, that
associates to every m-chain of the simplicial complex a value in R.

m-cochain f € C"

Given the m-chain c, = 2 cra’, with ¢/ € Z

m m=r 2

cn € G, reQ,(¥)

flc,) = Z ¢ fla™), with ¢/ € Z
reQ, (F)




Cochains:properties

m-cochains

A m-dimensional cochain f € C™ is a linear function f : C,, — R, that
associates to every m-chain of the simplicial complex a value in R.

Jr =Mo"y Vo' € Q,(F)




L? norm between cochains

We define a scalar product between m-cochains as

Ly =11

Which has an element by element expression

FhH= D f

reQ, (%)

This scalar product can be generalised by introducing metric matrices (see lecture lll)



Coboundary operator

Coboundary operator 6,

The coboundary operator &, : C"™ — C™*! associates to every m-cochain
of the simplicial complex (m + 1)-cochain

0 mf — f O Om+1-
Therefore we obtain

m+1

(S F)V0, V15 - - Vims1] = Z(—l)pf([vo,vl, Vel Vpal o Vinel])
p=0

If follows that if g € C"™*!is givenby g =5 f.

Then g = B;;Hf =B, f



Discrete Gradient

if f € C°, then g = 8,f € C! indicates its discrete gradient

Indeed we have g = B[l]f which implies gy, =f—1

h

gradient /

f
| % ->

N 3

e



Discrete Curl

f fe Cl, then h = 6, ¢ € C? indicates its discrete curl
18

Indeed we have g = B[Tz]f which implies

Nys.al = 81rs1 + 8ls.gl — 81rgl




Coboundary operator

We have that

Opt1°90,, =0 Vm > 1 hence B[T,,},LH]B[Tm] =0




Adjoint of the coboundary operator

Adjoint operator &},

The adjont of the coboundary operator 6%, : C™*! — C™ satisfies

(8:0mf) = (Om&> f)
for any f € C™ and g € C"™*.

It follows that if /' = 6/ ¢ thent' = B, |,



Discrete Divergence

fg € C!, thenf = 0,8 € C" indicates its discrete divergence

Indeed we have f = Bmg which implies f. = Z 8[sr] — Z 8[rs]
S S

divergence




Coboundary operator

We have that

0% o0y =0Vm2=1hence BB, ;=0




Hodge Laplacians



Hodge Laplacian

The Hodge-Laplacians
The m-dimensional Hodge-Laplacian L,, is defined as
L, = LyP + Ldown

where up and down m-dimensional Hodge Laplacians are given by

L:ltip = 5:;161’}’1’
e T

Note that L/**" = () by definition



Hodge Laplacians

The Hodge Laplacians describe diffusion
from n-simplices to m-simplices through (m-1) and (m+1)

simplices

—_pT T
( Ly =B, By, + B[m+1]B[m+l]>

The higher order Hodge Laplacian can be decomposed as

_ J down up
( Lppg = Liy" + Lo \

with

down _ pT
Lin" = BB,

[m]
up __ T
K L = BineiBrasy J




Simplicial complexes and
Hodge Laplacians

Hodge Laplacians

The Hodge Laplacians describe diffusion
®

from m-simplices to m-simplices through (m-1) and (m+1) simplices

For a 2-dimensional simplicial complex we have

_ T _ DT T _ DT
( Lo = BB Ly = By By + BBy, Ly = B[le[ZD




Properties of the Hodge
Laplacians

The Hodge Laplacians L, L'?, LY°"" are semidefinite
positive.

They obey Hodge decomposition

The dimension of the kernel of the Hodge Laplacian L, is
the m-Betti number [,

The harmonic eigenvectors are related to the generators of
the homology classes and can be chosen in such way that

they localise on the m—holes



The Hodge-Laplacians are
semi-definitive positive

The Hodge Laplacians L, L', [4o""
are semidefinite positive.

Indeed we have:

(LPF) = {£.556,f) = (8,f-8,f) 2 0
FLE"f) = (f. 8,185 f) = (5% f.6% ) >0
(foLpf) = (FL2F) + (L2 f) 2 0



Hodge-decomposition

We have
Ldown i = 0 imL,? C kerL "
Lippdown — () imLdown C ker '

kerL, = kerL"" N kerL P
Indeed

Lo LyP = 8, (8% _ 5%6,, =0

—1Ym%m

LPLIOY™ = §%6,6,, 16 =0



Hodge-decomposition

GiventhatB, B ., =0 B[Tm_l]B[Tm] =0
and that L = B 1B Lo =B, B,
We have:
LiL? =0 imL? C kerL{™

up Y down __ - down up
L[m]L[m] = |mL[m] lerL[m]



Hodge decomposition

The Hodge decomposition can be summarised as

This means that Lim» L, Lin"are commuting and can be diagonalised
simultaneously. In this basis these matrices have the block structure

D 0 0 00
0 0

0
0

up
D[m]

* Therefore an eigenvector in the ker of L, is also in the ker of both L~ Liown

. An eigenvector corresponding to an non-zero eigenvalue of L
is either a non-zero eigenvector of L’E‘Z]or a non-zero eigenvector of Lﬂ[%m




Hodge decomposition

~

\_

We have
C™=im(5,_|) @ ker(L,) ® im(5%)
Any m-cochain can be decomposed in a unique way in

c"=96

1a)(m—l) + 6Om,(harm) + 5*a)(m+1)
m— m

Where 0™V, 0+ are m — 1 and m + 1 cochains and L™ "™ = ()

~

_J

Form =1
Cl — 500)(0) + a)l(harm) +5;|<a)(m+1)

Representing the gradient flow, the harmonic component and the curl flow respectively



Hodge decomposition

The Hodge decomposition implies that topological signals can be decomposed

in a irrotational, harmonic and solenoidal components

C" =im(B/,) @ ker(L;,)) ® im®B, ;)

which in the case of topological signals of the links can be sketched as

<> A

Irrotational component Harmonic component Solenoidal component
Gradient Flow Curl Flow



Hodge decomposition

Every m-cochain (topological signal) can be decomposed in a
unique way thanks to the Hodge decomposition as

@Dm = im(B[Tm]) D ker(L,,)) D im(B[mH]))

therefore every m-cochain can be decomposed in a unique
way as

x! = L# Pty
[m] " [m]

[2] — 71 downy down,+
xl = L[m] L[m] X

x = xtH 4 x[?1 4 xharm — With




Betti numbers

The dimension of the kernel of the Hodge Laplacian L, is the m-Betti
number [ _, i.e.

dim(ker(L,)) = f,,

Indeed, thanks to Hodge decomposition

dim ker L,,,; = dim(ker L”p N ker LdOW”)
= dim(ker L ) dim(im LdOW”)

= dim(ker LdOW") dim(im L
=rank#Z,, = f,,



Harmonic eigenvectors of
the Hodge Laplacian

The dimension of the kernel of the Hodge Laplacian

is given by the corresponding Betti number

dim ker(L[,,,l) — /))m

The harmonic eigenvectors

are associated to the generators of the homology

They are in general non-uniform over the m-simplices of the simplicial complex




Digression
on simple networks
(Graphs)
and on Graph Laplacians



Graphs and networks

Definition
A graph is an ordered pair G = (V, E) comprising a set V of vertices
connected by the set E of edges.

A graph is a 1-dimensional simplicial complex

Definition

A network is the graph G = (V, E) describing the set of interactions between
the constituents of a complex system. The vertices of a network are called
nodes and the edges /inks.

The network size N=Ng is the total number of nodes in the network N=|V/|.
The total number of edges N1 is given by N1=|E|.



Simple networks

Adjacency matrix
A simple network is fully determined by its adjacency matrix.

The adjacency matrix @ of a simple network is a N X N matrix of elements given by

rs

1 if ris linked to s
0 otherwise.

The adjacency matrix of a simple network is symmetric.

Definition

In a simple network the degree k; of node i is given by the total number of links incident to node , i.e.
N

kr = Zars

s=1



Random

Random graphs

Uncorrelated maximally random graphs with given
degree sequence

Are generated by ensembles in which each edge
(r, s) is drawn independently

with probability




Graph Laplacian

The graph Laplacian matrix Ly = B[I]B[Tl]has elements
[Lyo)l,; = 0yki — a;

The graph Laplacian is a semi-definite positive matrix that in a
connected network has eigenvalues

O=p S <3< ... <y
The Laplacian is key for describing diffusion processes and the

Kuramoto model on networks and constitutes a natural link
between topology and dynamics



Harmonic eigenvectors of
the graph Laplacian

The quadratic form of the graph Laplacian
reads

1
X'LgX==) a.(X. —X)
[0] 22 rs( r s)

r,S

Therefore the harmonic eigenvectors of the
graph Laplacian are constant on each
connected component of the graph and zero
everywhere else.



Eigenvectors of the
Ly, Hodge Laplacian
@)

[1,2] [2,3] [1,3]

[1.2] [2.3] [L3]
] -1 0o -1

B - , 121 2 -1 -1

M= 1 -1 0 B[z] =0 Ly = {2 3} 1 ) 1
B 0 1 1 ’

(1,31 -1 -1 2

u=0 u=3 yu=3
1N3 —1h2 —11\/2

>
113 0 11/2
113 11/2 0




Connected network

A connected network has a single eigenvector
in the kernel of the graph Laplacian.

This eigenvector is constant on each node of
the network, i.e.

1
u=——

JN



Back to higher-order
Hodge Laplacians



Harmonic eigenvectors of
the Hodge Laplacian

The dimension of the kernel of the Hodge Laplacian

is given by the corresponding Betti number

dim ker(L[,,,l) — /))m

The harmonic eigenvectors

are associated to the generators of the homology

They are in general non-uniform over the m-simplices of the simplicial complex




Eigenvectors of the

L, Hodge Laplacian
0 [1]

[12] 23] [13] o “’?’3] [1,2] [1,3] [L3]

_ _ _ [, 121 3 0 0
B[1]=[1] o b Bm_[23] 1 L[1]=[ ] :
P] 1 -1 0 , 23] 0 3 0

Bl 0 1 1 (1,31 -1 13 0 0 3



Eigenvectors of the
L, Hodge Laplacian

@

[12] [2,3] [1,3]

N £
M~=pr 1 -1 o0 ° By =0

B3] 0 1 1

[1,2] [2.3] [1.3]

2 o2 -1 1
L“]"[2,3]—1 2 1
[13] 1 1 2

=0 pu=3 u=3

(121 14/3 14/2 0

Vi, = , o=
T R3 13 0 1K/2 2

[1,3] —1/4/3 1/4/2 11/2




Harmonic eigenvectors

Wee et al. (2023)




Lump(r, §) = 3

Expression of the matrix elements

km+l,m(a;’fn)’

of

r==:.

reEs,alt ~all,al ~a

the Hodge Laplacians

m+1, r=s
m
s - down 1, ris,af -
m m m m Lm (r’s):< p
r#ES,QF S ag,a, Fag. -1, rts,a, —a
0, otherwise.

otherwise.

The m-dimensional up- Hodge Laplacian has nonzero elements

only among upper incident m-simplices

(simplices which are faces of a common m+1 simplex)
The eigenvectors have support on the m-connected components

The m-dimensional down-Hodge Laplacian has nonzero elements

only among lower incident m-simplices
(simplifies sharing a m-1 face)

The eigenvectors have support on the (m-1)—connected components

Here ~ indicates similar orientation with respect to the lower-simplices

m

, s ¢

m
S ~

m
K r
m P
s

m

@y *+oay.



m-connected components

A Simplicial complex B 0-connec ted component

A
A

C 1-connected components

vALA W

D 2-connec ted component

¢




Expression of the matrix elements
of the Hodge Laplacians

ksl m(@)+m+1, r=s.

m m m m m m
Lon(rs) =] " r# s.al £ ool < ol ~ ol
neane —1, r#s,at A~alt, o — o', ot » ol
0 otherwise. forO<m<d

The matrix elements of the Hodge Laplacian is only non zero
among lower adjacent simplices that are not upper-adjacent



Clique communities

Palla et al. Nature 2005

The m-clique
communities are the

m-connected
components of the
clique complex of the
network



The skeleton of a simplicial complex
and its cligue complex

Clique Network
complex a Skeleton

Attention!
By concatenating the operations you are not guaranteed to return to the initial
simplicial complex




Higher-order communities

Inference of higher-order
o interactions

(a) 2 communities (b) 2 communities (€) 2 communities

®

(b)

color coded by Lg communities

non-zero eigenvectors of L”

up-communities of
A=4 A=3 1-simplices

e
N

e
B

Adjusted Mutual Information

o
o

M: Mr.Hi Club
O: Officer Club

non-zero eigenvectors of L
down-communities of
2-simplices

A=2 A=4 A=3 b o
@‘s @ A c E
< Triangles removed
@ @ v We can infer which higher-order interactions
AN using higher-order communities
A A A and ground-truth community assignments

S. Khrisnagopal and GB (2021)

23-29-32, 28-31
0-2-13, 0-3-13, 1-3-7
0-8-2, 0-3-7, 0-1-7

20-32-33, 23-27-33, 23-32



Boundary Operators

Boundary operators

[1,2,3]
(1,21 [1,3] [2,3] [3:4] 121 1
@ [ -t -1 0 0 By =[13] -1 .
By=(2 1 0 -1 0, 23] 1
4] O 0 0 1
® ®
The boundary of the boundary is null
G[l] Discrete divergence\
_ T pT _
BE_I] Discrete gradient C B[m—llB[m] =0, B[m]B[m—I] _D

QE_Z] Discrete Curl J




Lesson llb:
Introduction to the Kuramoto model

- Kuramoto model on graphs
 The phase transition
 Gauge Invariance
» Sketch of the solution on fully connected networks
 Annealed approximation for solution on random graphs



Kuramoto
model
on a graph



Synchronization is a
fundamental dynamical process
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Founding fathers of
synchronisation

Christiaan Huygens .
Yoshiki Kuramoto



Kuramoto model on a
network

Given a network of N nodes
defined by an adjacency matrix a
we assign to each node a phase obeying

9 =w +02a s1n 9 9

where the internal frequencies of the nodes
are drawn randomly from

@~ N(,1)

and the coupling constant is ¢

The oscillators are non-identical



Order parameter for
synchronization

We consider the global order parameter R

1.0
N
0.8
r=1 0.6+
L o
which indicates the
0.4
synchronisation transition such that for 0l
lo—0,.| <1 0.0
0 1

0 foro <o,

c(o — ac)l/2 foroc > o,

Kuramoto (1975)



Gauge invariance of the
Kuramoto equation

Given the Kuramoto dynamics

9 =W +02a sm 0 0

If we perform the transformation

Qr—>9r—Qt

We obtain

0, =, —Q+62a sin (6, - 6,),
s=1

i.e. the dynamics is invariant under rescaling

of the average of the intrinsic frequencies , i.e. Q — Q — Q




Solution of the Kuramoto model
on a fully connected network

On a fully connected network the coupling constant is rescaled as

o
c— —

N

The Kuramoto equation

N
0,=w,+0) a,sin (0, -0,

s=1
can be written in terms of the complex order parameter X as
0. = w,— Q+ olm(Xe %)
Thanks to the gauge invariance we can study the dynamics in the rotating frame which reads

0. =w,—Q—oRsin(6,)




Solution of the Kuramoto model
on a fully connected network

Looking for the stationary states 8. = 0 of

0. =w.—Q—cRsin(d)

}"_

We obtain sin(f,) = only valid for nodes such that

oR

®, — €2
oR

<1

(frozen nodes)




Solution of the Kuramoto model
on a fully connected network

Assuming that only the frozen nodes contribute to the order parameter, since X = R
in the rotating frame, we obtain the self-consistent equation for the order parameter

1 -Q\°
Rzﬁ Z cos@,,:ﬁ Z 1_<waR>

r|r are frozen r|r are frozen

Or, equivalently considering the probability density distribution g(w) for the intrinsic

frequencies,




Synchronization threshold
on a fully connected network

Given the self consistent equation for the order parameter,

w—Q\*
Rz‘ g(a))\/l—< )da)
|w&g‘sl oR

We derive the synchronization threshold.

Change variable x = (w — )/(oR), oRdx = dw

I = UJ g(oRx + Q)\/'1 — x?dx
|lx|<1

Now we develop g(y) =~ g(Q) + g"(Q)y?/2 with g"(Q) < 0 getting

1 = 69(Q)7/2 + g"(Q)6*R?*/16




Synchronization threshold
on a fully connected network

Starting form
1 = 0g(Q)n/2 + g"(Q)c>R?*/16

We found that the synchronization threshold is

2
0. =
rg(£2)

andfor |c—o0,| < 1

4

R ~ o — 0,

62/ —g"(Q)r




Solution of the Kuramoto model
in the annealed approximation

The e Kuramoto model on a random graph with given degree distribution can be studied
within the annealed approximation obtained by making the substitution

kk,
(k)N

Ups = Drs =

Therefore the Kuramoto model becomes

k.k

0, =w,—0) <kr>;v sin(d, — 0,)

Which can be written as

. A . N 1 :
0.=w, — akrlmXe_lgr with X = —— kse‘las
(kN 4

which can be studied following similar steps detailed for the fully connected case.




The higher-order simplicial
Kuramoto model

O12)

How to define
the higher-order Kuramoto model
coupling higher dimensional
topological signals?

A. P. Millan, J. J. Torres, and G.Bianconi,
Physical Review Letters, 124, 218301 (2020)
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