Topology, geometry and dynamics of higher-order networks

An introduction to simplicial complexes Lesson II

LTCC module 2024

14 October 2024

Ginestra Bianconi

School of Mathematical Sciences, Queen Mary University of London

Higher-order networks

Higher-order networks are characterising the interactions between two ore more nodes and are formed by nodes, links, triangles, tetrahedra etc.

d=2 simplicial complex

d=3 simplicial complex

Simplicial complex models

Emergent Geometry Network Geometry with Flavor (NGF) [Bianconi Rahmede ,2016 & 2017] Maximum entropy model Configuration model of simplicial complexes [Courtney Bianconi 2016]

Complexity challenge

Higher-order structure and dynamics

Lesson IIa: Hodge Laplacians

- Introduction to algebraic topology:
- Hodge Laplacians
 - -Graph Laplacian
 - -Properties of the Hodge Laplacian
 - -Connection with topology

Topological signals

Beyond the node centered description of network dynamics The dynamical state of a simplicial complex includes node, edge, and higher-order topological signals

Topological signals

- Citations in a collaboration network
- Speed of wind at given locations
- Currents at given locations in the ocean
- Fluxes in biological transportation networks
- Synaptic signal
- Edge signals in the brain

Topological signals are cochains or vector fields

Cochains

m-cochains

A *m*-dimensional cochain $f \in C^m$ is a linear function $f : C_m \to \mathbb{R}$, that associates to every *m*-chain of the simplicial complex a value in \mathbb{R} .

m-cochain $f \in C^m$

$$f(c_m) = \sum_{r \in Q_m(\mathscr{K})} c_m^r f(\alpha_r^m), \text{ with } c_m^r \in \mathbb{Z}$$

Cochains:properties

m-cochains

A *m*-dimensional cochain $f \in C^m$ is a linear function $f : C_m \to \mathbb{R}$, that associates to every *m*-chain of the simplicial complex a value in \mathbb{R} .

Given a basis for the m-simplices of the simplicial complex, A m-cochain can be expressed as a vector \mathbf{f} of elements

 $f_r = f(\alpha_r^m) \; \forall \alpha_r^m \in Q_m(\mathcal{K})$

L^2 norm between cochains

We define a scalar product between m-cochains as

 $\langle f, f \rangle = \mathbf{f}^{\mathsf{T}} \mathbf{f}$

Which has an element by element expression

$$\langle f, f \rangle = \sum_{r \in Q_m(\mathscr{K})} f_r^2$$

This scalar product can be generalised by introducing metric matrices (see lecture III)

Coboundary operator

Coboundary operator δ_m

The coboundary operator $\delta_m : C^m \to C^{m+1}$ associates to every *m*-cochain of the simplicial complex (m + 1)-cochain

$$\delta_m f = f \circ \partial_{m+1}$$

Therefore we obtain

$$(\delta_m f)[v_0, v_1, \dots, v_{m+1}] = \sum_{p=0}^{m+1} (-1)^p f([v_0, v_1, \dots, v_{p-1}, v_{p+1} \dots v_{m+1}])$$

If follows that if $g \in C^{m+1}$ is given by $g = \delta_m f$. Then $\mathbf{g} = \mathbf{B}_{m+1}^{\top} \mathbf{f} \equiv \bar{\mathbf{B}}_{m+1} \mathbf{f}$

Discrete Gradient

If $f \in C^0$, then $g = \delta_0 f \in C^1$ indicates its discrete gradient

Indeed we have $\mathbf{g} = \mathbf{B}_{[1]}^{\top} \mathbf{f}$ which implies $g_{[r,s]} = f_s - f_r$

Discrete Curl

If $f \in C^1$, then $h = \delta_1 g \in C^2$ indicates its discrete curl

Indeed we have $\mathbf{g} = \mathbf{B}_{[2]}^{\top} \mathbf{f}$ which implies

$$h_{[r,s,q]} = g_{[r,s]} + g_{[s,q]} - g_{[r,q]}$$

Coboundary operator

We have that

$$\delta_{m+1} \circ \delta_m = 0 \ \forall m \ge 1 \text{ hence } \mathbf{B}_{[m+1]}^\top \mathbf{B}_{[m]}^\top = \mathbf{0}$$

Adjoint of the coboundary operator

Adjoint operator δ_m^*

The adjoint of the coboundary operator $\delta_m^* : C^{m+1} \to C^m$ satisfies

$$\langle g, \delta_m f \rangle = \left\langle \delta_m^* g, f \right\rangle$$

for any $f \in C^m$ and $g \in C^{m+1}$.

It follows that if $f' = \delta_m^* g$ then $\mathbf{f}' = \mathbf{B}_{[m+1]} \mathbf{g}$

Discrete Divergence

If $g \in C^1$, then $f = \delta_0^* g \in C^0$ indicates its discrete divergence

Coboundary operator

We have that

$$\delta_{m-1}^* \circ \delta_m^* = 0 \ \forall m \ge 1 \text{ hence } \mathbf{B}_{[m]} \mathbf{B}_{[m+1]} = \mathbf{0}$$

Hodge Laplacians

Hodge Laplacian

The Hodge-Laplacians

The *m*-dimensional Hodge-Laplacian L_m is defined as

 $L_m = L_m^{up} + L_m^{down}$

where up and down *m*-dimensional Hodge Laplacians are given by

 $L_m^{up} = \delta_m^* \delta_m,$ $L_m^{down} = \delta_{m-1} \delta_{m-1}^*.$

Note that $L_0^{down} = 0$ by definition

Hodge Laplacians

The Hodge Laplacians describe diffusion

from n-simplices to m-simplices through (m-1) and (m+1)

simplices $\mathbf{L}_{[m]} = \mathbf{B}_{[m]}^{\mathsf{T}} \mathbf{B}_{[m]} + \mathbf{B}_{[m+1]} \mathbf{B}_{[m+1]}^{\mathsf{T}}.$

The higher order Hodge Laplacian can be decomposed as

 $\mathbf{L}_{[m]} = \mathbf{L}_{[m]}^{down} + \mathbf{L}_{[m]}^{up},$ with $\mathbf{L}_{[m]}^{down} = \mathbf{B}_{[m]}^{\top} \mathbf{B}_{[m]},$ $\mathbf{L}_{[m]}^{up} = \mathbf{B}_{[m+1]} \mathbf{B}_{[m+1]}^{\top}.$

Simplicial complexes and Hodge Laplacians

from m-simplices to m-simplices through (m-1) and (m+1) simplices

For a 2-dimensional simplicial complex we have

$$\mathbf{L}_{[0]} = \mathbf{B}_{[1]}\mathbf{B}_{[1]}^{\top}$$
 $\mathbf{L}_{[1]} = \mathbf{B}_{[1]}^{\top}\mathbf{B}_{[1]} + \mathbf{B}_{[2]}\mathbf{B}_{[2]}^{\top}$ $\mathbf{L}_{[2]} = \mathbf{B}_{[2]}^{\top}\mathbf{B}_{[2]}$

Properties of the Hodge Laplacians

- The Hodge Laplacians $L_m, L_m^{up}, L_m^{down}$ are semidefinite positive.
- They obey Hodge decomposition
- The dimension of the kernel of the Hodge Laplacian L_m is the $m\text{-}\mathsf{Betti}$ number β_m
- The harmonic eigenvectors are related to the generators of the homology classes and can be chosen in such way that they localise on the *m*-holes

The Hodge-Laplacians are semi-definitive positive

The Hodge Laplacians $L_m, L_m^{up}, L_m^{down}$

are semidefinite positive.

Indeed we have:

$$\langle f, L_m^{up} f \rangle = \langle f, \delta_m^* \delta_m f \rangle = \langle \delta_m f, \delta_m f \rangle \ge 0 \langle f, L_m^{down} f \rangle = \langle f, \delta_{m-1} \delta_{m-1}^* f \rangle = \langle \delta_{m-1}^* f, \delta_{m-1}^* f \rangle \ge 0 \langle f, L_m f \rangle = \langle f, L_m^{up} f \rangle + \langle f, L_m^{down} f \rangle \ge 0$$

Indeed

$$L_m^{down} L_m^{up} = \delta_{m-1} \delta_{m-1}^* \delta_m^* \delta_m = 0$$
$$L_m^{up} L_m^{down} = \delta_m^* \delta_m \delta_{m-1} \delta_{m-1}^* = 0$$

Given that
$$\mathbf{B}_{[m]}\mathbf{B}_{[m+1]} = \mathbf{0}$$
 $\mathbf{B}_{[m-1]}^{\top}\mathbf{B}_{[m]}^{\top} = \mathbf{0}$
and that $\mathbf{L}_{[m]}^{up} = \mathbf{B}_{[m+1]}\mathbf{B}_{[m+1]}^{\top}$, $\mathbf{L}_{[m]}^{down} = \mathbf{B}_{[m]}^{\top}\mathbf{B}_{[m]}$

We have:

$$\begin{split} \mathbf{L}_{[m]}^{down} \mathbf{L}_{[m]}^{up} &= \mathbf{0} & \text{im} \mathbf{L}_{[m]}^{up} \subseteq \text{ker} \mathbf{L}_{[m]}^{down} \\ \mathbf{L}_{[m]}^{up} \mathbf{L}_{[m]}^{down} &= \mathbf{0} & \text{im} \mathbf{L}_{[m]}^{down} \subseteq \text{ker} \mathbf{L}_{[m]}^{up} \end{split}$$

The Hodge decomposition can be summarised as

 $C^{m} = \operatorname{im}(\mathbf{B}_{[m]}^{\top}) \oplus \operatorname{ker}(\mathbf{L}_{[m]}) \oplus \operatorname{im}(\mathbf{B}_{[m+1]})$

This means that $\mathbf{L}_{[m]}$, $\mathbf{L}_{[m]}^{up}$, $\mathbf{L}_{[m]}^{down}$ are commuting and can be diagonalised simultaneously. In this basis these matrices have the block structure

$$\mathbf{U}^{-1}\mathbf{L}_{[m]}\mathbf{U} = \begin{pmatrix} \mathbf{D}_{[m]}^{down} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{D}_{[m]}^{up} \end{pmatrix} \quad \mathbf{U}^{-1}\mathbf{L}_{[m]}^{down}\mathbf{U} = \begin{pmatrix} \mathbf{D}_{[m]}^{down} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{pmatrix} \quad \mathbf{U}^{-1}\mathbf{L}_{[m]}^{up}\mathbf{U} = \begin{pmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{D}_{[m]}^{up} \end{pmatrix}$$

• Therefore an eigenvector in the ker of $L_{[m]}$ is also in the ker of both $L_{[m]}^{up}$, $L_{[m]}^{down}$

• An eigenvector corresponding to an non-zero eigenvalue of $\mathbf{L}_{[m]}$ is either a non-zero eigenvector of $\mathbf{L}_{[m]}^{up}$ or a non-zero eigenvector of $\mathbf{L}_{[m]}^{down}$

We have

 $C^m = \operatorname{im}(\delta_{m-1}) \oplus \operatorname{ker}(L_m) \oplus \operatorname{im}(\delta_m^*)$

Any *m*-cochain can be decomposed in a unique way in

 $c^m = \delta_{m-1}\omega^{(m-1)} + \omega^{m,(harm)} + \delta_m^*\omega^{(m+1)}$

Where $\omega^{(m-1)}, \omega^{(m+1)}$ are m-1 and m+1 cochains and $L_m \omega^{m,(harm)} = 0$

For m = 1

$$c^{1} = \delta_{0}\omega^{(0)} + \omega^{1(harm)} + \delta_{1}^{*}\omega^{(m+1)}$$

Representing the gradient flow, the harmonic component and the curl flow respectively

The Hodge decomposition implies that topological signals can be decomposed

in a irrotational, harmonic and solenoidal components

 $C^m = \operatorname{im}(\mathbf{B}_{[m]}^{\top}) \oplus \operatorname{ker}(\mathbf{L}_{[m]}) \oplus \operatorname{im}(\mathbf{B}_{[m+1]})$

which in the case of topological signals of the links can be sketched as

Every *m*-cochain (topological signal) can be decomposed in a unique way thanks to the Hodge decomposition as

$$\mathbb{R}^{D_m} = \operatorname{im}(\mathbf{B}_{[m]}^{\mathsf{T}}) \bigoplus \operatorname{ker}(\mathbf{L}_{[m]}) \bigoplus \operatorname{im}(\mathbf{B}_{[m+1]})$$

therefore every *m*-cochain can be decomposed in a unique way as

$$\mathbf{x} = \mathbf{x}^{[1]} + \mathbf{x}^{[2]} + \mathbf{x}^{harm} \quad \text{With} \qquad \begin{aligned} \mathbf{x}^{[1]} = \mathbf{L}^{up}_{[m]} \mathbf{L}^{up,+}_{[m]} \mathbf{x} \\ \mathbf{x}^{[2]} = \mathbf{L}^{down}_{[m]} \mathbf{L}^{down,+}_{[m]} \mathbf{x} \end{aligned}$$

Betti numbers

The dimension of the kernel of the Hodge Laplacian L_m is the m-Betti number β_m , i.e.

 $\dim(\ker(L_m))=\beta_m$

Indeed, thanks to Hodge decomposition

$$\begin{split} \dim \ker \mathbf{L}_{[m]} &= \dim(\ker \mathbf{L}_{[m]}^{up} \cap \ker \mathbf{L}_{[m]}^{down}) \\ &= \dim(\ker \mathbf{L}_{[m]}^{up}) - \dim(\operatorname{im} \mathbf{L}_{[m]}^{down}) \\ &= \dim(\ker \mathbf{L}_{[m]}^{down}) - \dim(\operatorname{im} \mathbf{L}_{[m]}^{up}) \\ &= \dim(\ker \mathbf{B}_{[m]}) - \dim(\operatorname{im} \mathbf{B}_{[m+1]}) \\ &= \operatorname{rank} \mathscr{H}_m = \beta_m \end{split}$$

Harmonic eigenvectors of the Hodge Laplacian

The dimension of the kernel of the Hodge Laplacian

is given by the corresponding Betti number

dim ker $(\mathbf{L}_{[m]}) = \beta_m$

The harmonic eigenvectors

are associated to the generators of the homology

They are in general non-uniform over the *m*-simplices of the simplicial complex

Digression on simple networks (Graphs) and on Graph Laplacians

Graphs and networks

Definition

A *graph* is an ordered pair G = (V, E) comprising a set V of *vertices* connected by the set E of *edges*.

A graph is a 1-dimensional simplicial complex

Definition

A *network* is the graph G = (V, E) describing the set of interactions between the constituents of a complex system. The vertices of a network are called *nodes* and the edges *links*.

The *network size* $N=N_{\theta}$ is the total number of nodes in the network N=|V|. The total number of edges N_1 is given by $N_1=|E|$.

Simple networks

Adjacency matrix

A simple network is fully determined by its adjacency matrix.

The adjacency matrix a of a simple network is a $N \times N$ matrix of elements given by

 $a_{rs} = \begin{cases} 1 \text{ if } r \text{ is linked to } s \\ 0 \text{ otherwise.} \end{cases}$

The adjacency matrix of a simple network is symmetric.

Definition

In a simple network the *degree* k_i of node *i* is given by the total number of links incident to node , i.e.

$$k_r = \sum_{s=1}^N a_{rs}$$

Random graphs

Random

Uncorrelated maximally random graphs with given degree sequence

Are generated by ensembles in which each edge (r, s) is drawn independently with probability

$$p_{rs} = \langle a_{rs} \rangle = \frac{k_r k_s}{\langle k \rangle N}$$

Graph Laplacian

The graph Laplacian matrix $\mathbf{L}_{[0]} = \mathbf{B}_{[1]} \mathbf{B}_{[1]}^{ op}$ has elements

$$\left[L_{[0]}\right]_{ij} = \delta_{ij}k_i - a_{ij}$$

The graph Laplacian is a semi-definite positive matrix that in a connected network has eigenvalues

 $0 = \mu_1 \le \mu_2 \le \mu_3 \le \dots \le \mu_N$

The Laplacian is key for describing diffusion processes and the Kuramoto model on networks and constitutes a natural link between topology and dynamics

Harmonic eigenvectors of the graph Laplacian

-0.8

-0.6

-0.4

arted with Mapper — giotto-tda 0.5.1 documentation

The quadratic form of the graph Laplacian reads

$$\mathbf{X}^{\mathsf{T}} \mathbf{L}_{[0]} \mathbf{X} = \frac{1}{2} \sum_{r,s} a_{rs} (X_r - X_s)^2$$

^{-0.2} Therefore the harmonic eigenvectors of the graph Laplacian are constant on each -0 connected component of the graph and zero everywhere else.

The dropdown menu allows us to quickly switch colourings according to each category, without needing to recompute the underlying graph.

Change the layout algorithm

By default, plot_static_mapper_graph uses the Kamada-Kawai algorithm for the layout; however any of the layout algorithms defined in pythen-igraph are supported (see here for a list

Connected network

A connected network has a single eigenvector in the kernel of the graph Laplacian.

This eigenvector is constant on each node of the network, i.e.

$$\mathbf{u} = \frac{1}{\sqrt{N}} \mathbf{1}$$

Back to higher-order Hodge Laplacians

Harmonic eigenvectors of the Hodge Laplacian

The dimension of the kernel of the Hodge Laplacian

is given by the corresponding Betti number

dim ker $(\mathbf{L}_{[m]}) = \beta_m$

The harmonic eigenvectors

are associated to the generators of the homology

They are in general non-uniform over the *m*-simplices of the simplicial complex

Harmonic eigenvectors

Wee et al. (2023)

Expression of the matrix elements of the Hodge Laplacians

$$\mathbf{L}_{m}^{\mathrm{up}}(r,s) = \begin{cases} k_{m+1,m}(\alpha_{r}^{m}), & r = s. \\ -1, & r \neq s, \alpha_{r}^{m} \frown \alpha_{s}^{m}, \alpha_{r}^{m} \sim \alpha_{s}^{m}. \\ 1, & r \neq s, \alpha_{r}^{m} \frown \alpha_{s}^{m}, \alpha_{r}^{m} \neq \alpha_{s}^{m}. \\ 0, & \text{otherwise.} \end{cases} \qquad \mathbf{L}_{m}^{\mathrm{down}}(r,s) = \begin{cases} m+1, & r = s. \\ 1, & r \neq s, \alpha_{r}^{p} \smile \alpha_{s}^{m}, \alpha_{r}^{m} \sim \alpha_{s}^{m}. \\ -1, & r \neq s, \alpha_{r}^{p} \smile \alpha_{s}^{m}, \alpha_{r}^{m} \neq \alpha_{s}^{m}. \\ 0, & \text{otherwise.} \end{cases}$$

(

The m-dimensional up- Hodge Laplacian has nonzero elements only among upper incident m-simplices (simplices which are faces of a common m+1 simplex) The eigenvectors have support on the m-connected components

The m-dimensional down-Hodge Laplacian has nonzero elements only among lower incident m-simplices (simplifies sharing a m-1 face) The eigenvectors have support on the (m-1)-connected components

Here ~ indicates similar orientation with respect to the lower-simplices

m-connected components

Expression of the matrix elements of the Hodge Laplacians

$$\mathbf{L}_{m}(r,s) = \begin{cases} k_{m+1,m}(\alpha_{r}^{m}) + m + 1, & r = s. \\ 1, & r \neq s, \alpha_{r}^{m} \not\frown \alpha_{s}^{m}, \alpha_{r}^{m} \smile \alpha_{s}^{m}, \alpha_{r}^{m} \sim \alpha_{s}^{m}. \\ -1, & r \neq s, \alpha_{r}^{m} \not\frown \alpha_{s}^{m}, \alpha_{r}^{m} \smile \alpha_{s}^{m}, \alpha_{r}^{m} \not\Rightarrow \alpha_{s}^{m}. \\ 0 & \text{otherwise.} \end{cases}$$
for $0 < m < d$

The matrix elements of the Hodge Laplacian is only non zero among lower adjacent simplices that are not upper-adjacent

Clique communities

The m-clique communities are the m-connected components of the clique complex of the network

Palla et al. Nature 2005

The skeleton of a simplicial complex and its clique complex

Attention! By concatenating the operations you are not guaranteed to return to the initial simplicial complex

Higher-order communities L_2^d communities (a) 2 communities (b) 2 communities (C) 2 communities non-zero eigenvectors of L_1^{up} up-communities of $\lambda = 3$ $\lambda = 2$ $\lambda = 4$ 1-simplices -0.707 -0.577 non-zero eigenvectors of L_2^{down} down-communities of $\lambda = 2$ $\lambda = 3$ $\lambda = 4$ 2-simplices 0.70[.] 0.707 0.70 0.707 1.0

Inference of higher-order interactions

using higher-order communities and ground-truth community assignments

S. Khrisnagopal and GB (2021)

Boundary Operators

	Boundary operators													
				-	-	[1,2,3]								
	[1,2]	[1,3]	[2,3]	[3,4]	[1,2]	1								
[1]	-1	-1	0	0	$\mathbf{B}_{[2]} = [1,3]$	-1.								
$\mathbf{B}_{[1]} = [2]$	1	0	-1	0,	[2,3]	1								
[3]	0	1	1	-1	[3,4]	0								
[4]	0	0	0	1										

The boundary of the boundary is null

$$\mathbf{B}_{[m-1]}\mathbf{B}_{[m]} = \mathbf{0}, \quad \mathbf{B}_{[m]}^{\top}\mathbf{B}_{[m-1]}^{\top} = \mathbf{0}$$

Lesson IIb: Introduction to the Kuramoto model

- Kuramoto model on graphs
 - The phase transition
 - Gauge Invariance
 - Sketch of the solution on fully connected networks
 - Annealed approximation for solution on random graphs

Kuramoto model on a graph

Synchronization is a fundamental dynamical process

NEURONS

1			L	I		I	L				I	I	I	1	I						L		L		L				Ш		T		L	L	L	33	
П			L		I	I	П	I	П	Т	I	I	I	L	I		Т				I		L		L					T	I	I					
Ш		П	L		I	I	П	I	I I	I	I	I	I	Т									L														
П		П	I		I	I	П	I	11	I	١	I	I	L	I	I	T				I	I	L		L				П	Ι	I	I					
П	Ш	П	I		I	I	П	I	I I	I	I	I	I	I	I	I	Ι	I			I	I	L		L	I			П	Ι	I	I	I	I	I		
Ш	L	П	L		I	I	П		11	I	I	I	I	T	I		Т				I	I	L		L				П	T	I	I					
П		П	L	I	I	I	L	I	11	I	I	I	I										L					I	L	I	I	1					
								I	11	I	I																			T	I	I					
								I	П	I	I	I											L						П	T	I						
П	L	I	L			I	П	I	11	I	I	I	I	T									I	I	П	I	I										
П			I	I		I	L	I	I II	I	I	I	I	L	I	I	Т				I		I		L			I	L	I	I	I	I	I	I		
Ш	Ш	П	L		I	I	П	I		I	I	I	I	Т															L	Т	I						
Ш		П	I		II	I	П	I	Τ	I	I	I	I	T	I	I	T	I			I	I	T		I	I	I										
Ш		I II	I	11	Ш	I	П	1	П	I	I	1	I	Т	I	I	Т	I	L	L	I	I	Г		L	١	I										
						I		I	11	I	I	I											L						L	I	I	I	I				
Ш	Ш	П	L		I	I	П	١	П	I	I	۱	I	Т	I	I							L							I	I	I	I	I		18	

FIREFLIES

Founding fathers of synchronisation

Christiaan Huygens

Yoshiki Kuramoto

Kuramoto model on a network

Given a network of N nodes defined by an adjacency matrix a we assign to each node a phase obeying

$$\dot{\theta}_r = \omega_r + \sigma \sum_{s=1}^N a_{rs} \sin(\theta_s - \theta_r)$$

where the internal frequencies of the nodes are drawn randomly from

 $\omega \sim \mathcal{N}(\Omega, 1)$

and the coupling constant is σ

The oscillators are non-identical

Order parameter for synchronization

We consider the global order parameter R

$$X = Re^{i\hat{\Psi}} = \frac{1}{N} \sum_{r=1}^{N} e^{i\theta_r}$$

which indicates the

synchronisation transition such that for

$$|\sigma - \sigma_c| \ll 1$$

$$R = \begin{cases} 0 & \text{for } \sigma < 0 \end{cases}$$

$$= \begin{cases} 0 & \text{for } \sigma < \sigma_c \\ c(\sigma - \sigma_c)^{1/2} & \text{for } \sigma \ge \sigma_c \end{cases}$$

Kuramoto (1975)

Gauge invariance of the Kuramoto equation

Given the Kuramoto dynamics

$$\dot{\theta}_r = \omega_r + \sigma \sum_{s=1}^N a_{rs} \sin\left(\theta_s - \theta_r\right)$$

If we perform the transformation

$$\theta_r \to \theta_r - \hat{\Omega}t$$

We obtain

$$\dot{\theta}_r = \omega_r - \hat{\Omega} + \sigma \sum_{s=1}^N a_{rs} \sin(\theta_s - \theta_r),$$

i.e. the dynamics is invariant under rescaling

of the average of the intrinsic frequencies , i.e. $\Omega
ightarrow \Omega - \hat{\Omega}$

Solution of the Kuramoto model on a fully connected network

On a fully connected network the coupling constant is rescaled as

 $\sigma \rightarrow \frac{\sigma}{N}$

The Kuramoto equation

$$\dot{\theta}_r = \omega_r + \sigma \sum_{s=1}^N a_{rs} \sin(\theta_s - \theta_r)$$

can be written in terms of the complex order parameter X as

$$\dot{\theta}_r = \omega_r - \Omega + \sigma \mathrm{Im}(X e^{-\mathrm{i}\theta_\mathrm{r}})$$

Thanks to the gauge invariance we can study the dynamics in the rotating frame which reads

$$\dot{\theta}_r = \omega_r - \Omega - \sigma R \sin(\theta_r)$$

Solution of the Kuramoto model on a fully connected network

Looking for the stationary states $\dot{\theta}_r = 0$ of

$$\dot{\theta}_r = \omega_r - \Omega - \sigma R \sin(\theta_r)$$

We obtain $\sin(\theta_r) = \frac{\omega_r - \Omega}{\sigma R}$ only valid for nodes such that

$$\frac{\omega_r - \Omega}{\sigma R} \bigg| \le 2$$

(frozen nodes)

Solution of the Kuramoto model on a fully connected network

Assuming that only the frozen nodes contribute to the order parameter, since X = R in the rotating frame, we obtain the self-consistent equation for the order parameter

$$R = \frac{1}{N} \sum_{r|r \text{ are frozen}} \cos \theta_r = \frac{1}{N} \sum_{r|r \text{ are frozen}} \sqrt{1 - \left(\frac{\omega - \Omega}{\sigma R}\right)^2}$$

Or, equivalently considering the probability density distribution $g(\omega)$ for the intrinsic frequencies,

$$R = \int_{\left|\frac{\omega - \Omega}{\sigma R}\right| \le 1} g(\omega) \sqrt{1 - \left(\frac{\omega - \Omega}{\sigma R}\right)^2} d\omega$$

Synchronization threshold on a fully connected network

Given the self consistent equation for the order parameter,

$$R = \int_{\left|\frac{\omega - \Omega}{\sigma R}\right| \le 1} g(\omega) \sqrt{1 - \left(\frac{\omega - \Omega}{\sigma R}\right)^2} d\omega$$

We derive the synchronization threshold.

Change variable
$$x = (\omega - \Omega)/(\sigma R)$$
, $\sigma R dx = d\omega$

$$1 = \sigma \int_{|x| \le 1} g(\sigma R x + \Omega) \sqrt{1 - x^2} dx$$

Now we develop $g(y) \simeq g(\Omega) + g''(\Omega)y^2/2$ with $g''(\Omega) < 0$ getting

$$1 = \sigma g(\Omega)\pi/2 + g''(\Omega)\sigma^2 R^2/16$$

Synchronization threshold on a fully connected network

Starting form

 $1 = \sigma g(\Omega) \pi/2 + g''(\Omega) \sigma^2 R^2/16$

We found that the synchronization threshold is

$$\sigma_c = \frac{2}{\pi g(\Omega)}$$

and for
$$|\sigma - \sigma_c| \ll 1$$

$$R \simeq \frac{4}{\sigma_c^2 \sqrt{-g''(\Omega)\pi}} \sqrt{\sigma - \sigma_c}$$

Solution of the Kuramoto model in the annealed approximation

The e Kuramoto model on a random graph with given degree distribution can be studied within the annealed approximation obtained by making the substitution

$$a_{rs} \rightarrow p_{rs} = \frac{k_r k_s}{\langle k \rangle N}$$

Therefore the Kuramoto model becomes

$$\dot{\theta}_r = \omega_r - \sigma \sum_s \frac{k_r k_s}{\langle k \rangle N} \sin(\theta_s - \theta_r)$$

Which can be written as

$$\dot{\theta}_r = \omega_r - \sigma k_r \text{Im} \hat{X} e^{-i\theta_r}$$
 with $\hat{X} = \frac{1}{\langle k \rangle N} \sum_s k_s e^{-i\theta_s}$

which can be studied following similar steps detailed for the fully connected case.

The higher-order simplicial Kuramoto model

How to define the higher-order Kuramoto model coupling higher dimensional topological signals?

A. P. Millán, J. J. Torres, and G.Bianconi, *Physical Review Letters*, *124*, 218301 (2020)

Complexity challenge