
Measure Theory Third Week
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Theorem (1.4.10):

Let A be a Lebesgue measurable subset of
R such that λ(A) > 0.

The set diff (A) := {x − y | x, y ∈ A}
contains an open interval containing 0.
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Proof: By inner regularity, we can assume
that A is compact.

With λ(A) = r > 0,

there is an open set B such that B contains
A and λ(B) < (1 + ε)r. for any ε > 0.

We require that ε be less than 1.

As C := R\B is closed, disjoint from A

and thus has a positive distance d to the
compact set A,

A + δ is contained in B for all δ satisfying
|δ| < d.
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But if there were no overlap between the sets
A and A + δ for any |δ| < d,

then by translation invariance A ∪ (A + δ)
would be a Lebesgue measurable set of mea-
sure 2r inside of B,

which is impossible since λ(B) < (1 + ε)r.

So for any given δ with |δ| < d there is an
a ∈ A ∩ A + δ,

meaning that a = a′ + δ for some other
a′ ∈ A and δ = a− a′. 2

We see that for every ε there is a d such that
all but an ε fraction of the set A is used to
get the difference set to include (−d, d).
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Theorem (1.4.11): Assuming the Axiom
of Choice, there is a partition of R into two
parts A,B,

meaning A ∩B = ∅ and A ∪B = R,

such that for every finite interval I :

λ∗(A ∩ I) = λ∗(B ∩ I) = λ∗(I) and

every Lebesgue measurable subset C either
contained in eitherA orB has measure zero.

Note: The natural idea, a ring homomor-
phism from R to Z2 and letting A = φ−1(0)
and B = φ−1(1), is not possible,

whenever φ(r) = 1 then what should be
φ(r2)?

Need a group homomorphism.
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Proof:

Let W = Q + Z
√

2,

φ : W → Z2 is defined by

φ(ab + n
√

2) = n(mod 2).

Because
√

2 is irrational, φ is well defined
and a group homomorphism:

a
b + n

√
2 = a′

b′ + n′
√

2 ⇒
√

2 = a′

b′(n−n′) −
a

b(n−n′) ∈ Q, a contradiction when n 6= n′.

Also both G0 := φ−1(0) ⊂ W and G1 :=
φ−1(1) ⊂ W are dense in R, (and this can
be shown with the Euclidean algorithm on
the pair 1 and

√
2 via smaller and smaller

ways to write a
b + n

√
2 with both even and

odd n).
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Define an equivalence relation ∼ by

r ∼ s if and only if r − s ∈ W .

Let E be a set such that |E ∩ C| = 1 (via
Axiom of Choice) for every equivalence class
C.

For every r ∈ R, r = e + a
b + n

√
2,

for some e ∈ E, a, b ∈ Z, n ∈ Z, and
uniquely so.

A is the subset where n used is even and B
is the subset where n used is odd.

A and B are well defined because r cannot
equal e′ + a′

b′ + n′
√

2 for any other choices,

as then e− e′ would be in W and e and e′

would belong to the same equivalence class.
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Assume that eitherA orB contained a Lebesgue
measurable set of positive measure.

Either A − A or B − B must contain an
open interval and hence some member of the
dense set G1, in other words

a0
b0

+n0
√

2 = e1+ a1
b1

+n1
√

2−e2− a2
b2
−n2
√

2

with n0 odd, both n1 and n2 either even or
odd, and e1, e2 ∈ E.

As e1 and e2 must be equal (otherwise they
would represent the same equivalence rela-
tion), n0 = n1 − n2 would be a contradic-
tion.
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Now suppose that either A∩ I or B∩ I has
an outer Lebesgue measure less than I for
some finite interval I .

That meansA∩I orB∩I can be covered by
some open set of measure strictly less than
I .

implying that either I\A = I∩B or I\B =
I ∩A contains a closed set of positive mea-
sure, which, by the above, neither does. 2

The same is true for three or more sets, but
is much more difficult to show.
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A measure µ of a measure space (X,A, µ)
is complete

if A ∈ A, µ(A) = 0 and B ⊆ A imply that
B ∈ A.

With (X,A, µ) a measure space,

the completion Aµ is the collection of sub-
sets A

for which there are sets E,F ∈ A

with E ⊆ A ⊆ F and µ(F\E) = 0.

The completion µ is the measure defined on
Aµ

such that µ(A) = µ(E) = µ(F ).
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This is well defined as there cannot be two
such levels (otherwise monotonicity is vio-
lated):

Suppose µ(F ′) = µ(E ′) > µ(E) = µ(F )
withE ′ ⊆ A ⊆ F ′, E ⊆ A ⊆ F , µ(F ′\E ′) =
µ(F\E) = 0 with all four sets in A.

It follows that E ′ ⊆ A ⊆ F and by com-
tainment µ(E ′) ≤ µ(F ), a contradiction.
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Lemma (1.5.1): Let (X,A, µ) be a mea-
sure space.

Aµ is a σ-algebra on X that includes A

and µ is a measure defined on Aµ that is
complete.
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Proof: Containment of A in Aµ and clo-
sure by complementation are trivial.

If A1, A2, . . . is a sequence of sets in Aµ

and Ei and Fi are sequences in A

with ∀ i Ei ⊆ Ai ⊆ Fi and µ(Fi\Ei) = 0

then by countable additivity

0 =
∑∞

i=1 µ(Fi\Ei) ≥ µ(∪∞i=1(Fi\Ei)) ≥
µ(∪∞i=1Fi\ ∪∞i=1 Ei) ≥ 0,

implying that ∪∞i=1Ai ∈ Aµ.

And if the A1, A2, . . . are disjoint the same
pairs Ei and Fi of sequences show that∑∞

i=1 µ(Fi) =
∑∞

i=1 µ(Ei) ≤ µ(∪∞i=1Ai) ≤∑∞
i=1 µ(Fi),

hence equality and countable additivity. 2
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Let (X,A, µ) be a measure space,

and A any subset of X .

µ∗(A) = inf{µ(B) | A ⊆ B, B ∈ A} and

µ∗(A) = sup{µ(B) | A ⊇ B, B ∈ A} .

µ∗(A) is the outer measure and µ∗(A) is the
inner measure.
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Lemma: µ∗ is an outer measure.

Proof: µ∗(∅) = 0 and monotonicity are
trivial.

Let A1, A2, . . . be a sequence of sets.

Suppose that
∑∞

i=1 µ
∗(Ai) <∞:

For every i = 1, 2, . . . let Bi be a set in A
containing Ai

such that µ(Bi) ≤ µ∗(Ai) + ε
2i

.

B = ∪∞i=1Bi includes A = ∪∞i=1Ai and∑∞
i=1 µ

∗(Ai) ≥
∑∞

i=1 µ(Bi) − ε ≥ µ(B) −
ε ≥ µ∗(A)− ε.

True for every ε implies the inequality. 2
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Lemma (1.5.5) Given that µ∗(A) < ∞,
A belongs to Aµ if and only if µ∗(A) =
µ∗(A).

Proof: ⇒ If A belongs to Aµ then there
are sets E,F ∈ A such that E ⊆ A ⊆ F
and µ(F\E) = 0.

From µ(E) ≤ µ∗(A) ≤ µ∗(A) ≤ µ(F )

all are equal.
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⇐ On the other hand, if µ∗(A) = µ∗(A) <
∞

there are sequences of sets E1, E2, . . . and
F1, F2, . . .

with Ei ⊆ A and A ⊆ Fi and

µ(Ei) ≥ µ∗(A)− 1
2i

and µ∗(A)+ 1
2i
≥ µ(Fi).

The sets E = ∪∞i Ei and F = ∩∞i Fi

are both in A and have the same common
measure size µ∗(A) = µ∗(A), with E ⊆
A ⊆ F .
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