Measure Theory Third Week



Theorem (1.4.10):

Let A be a Lebesgue measurable subset of
R such that A(A) > 0.

The set diff (A) = {z —y | z,y € A}

contains an open interval containing 0.



Proof: By inner regularity, we can assume
that A is compact.

With A(A) =7 > 0,
there is an open set B such that B contains
A and A(B) < (14 €)r. for any € > 0.

We require that € be less than 1.

As C':= R\B is closed, disjoint from A

and thus has a positive distance d to the
compact set A,

A + 0 is contained in B for all § satisfying
0] < d.



But if there were no overlap between the sets
A and A + ¢ for any |§] < d,

then by translation invariance A U (A + 9)
would be a Lebesgue measurable set of mea-
sure 2r inside of B,

which is impossible since A(B) < (1 + €)r.
So for any given ¢ with |§| < d there is an
a€ ANA+Y,

meaning that a = a’ + 6 for some other

a€eAandd=a—d. O

We see that for every € there is a d such that
all but an e fraction of the set A is used to
get the difference set to include (—d, d).



Theorem (1.4.11): Assuming the Axiom
of Choice, there is a partition of R into two
parts A, B,

meaning AN B =0 and AUB =R,

such that for every finite interval I :

N(ANT) = N(BNI)=\(I) and

every Lebesgue measurable subset C' either
contained in either A or B has measure zero.

Note: The natural idea, a ring homomor-
phism from R to Zs and letting A = ¢~ 1(0)
and B = ¢~ 1(1), is not possible,

whenever ¢(r) = 1 then what should be
o(3)?

Need a group homomorphism.



Proof:

Let W =Q + ZV?2,
¢ W — Zs is defined by

¢(% +nv/2) = n(mod 2).

Because v/2 is irrational, ¢ is well defined
and a group homomorphism:

%—l—nx@zz—:—l—n’ﬂ#ﬂzb,(i—in,)—

b(nfn,) € Q, a contradiction when n # n'.

Also both Gy := ¢ 1(0) C W and Gy =
¢~ (1) C W are dense in R, (and this can
be shown with the FEuclidean algorithm on
the pair 1 and V2 via smaller and smaller
ways to write 7 + nv/2 with both even and
odd n).



Define an equivalence relation ~ by
r~sitandonlyifr —s e W.

Let E be a set such that |[E N C| =1 (via
Axiom of Choice) for every equivalence class
C.

For every r € R, r:6+%+n\@7

for some e € E, a,b € Z, n € 7, and

uniquely so.

A is the subset where n used is even and B
1s the subset where n used is odd.

A and B are well defined because r cannot
equal €' + % +n/ V2 for any other choices,

as then e — € would be in W and e and ¢’
would belong to the same equivalence class.



Assume that either A or B contained a Lebesgue
measurable set of positive measure.

Either A — A or B — B must contain an
open interval and hence some member of the
dense set GG, in other words

Z—S—FHO\/Q — 61+%+n1ﬂ—62—%—n2ﬂ

with ng odd, both ny and ny either even or
odd, and e, ey € E.

As e; and e; must be equal (otherwise they
would represent the same equivalence rela-
tion), ng = ni; — ng would be a contradic-
tion.



Now suppose that either AN or BN has
an outer Lebesgue measure less than I for
some finite interval 1.

That means ANJ or BNI can be covered by
some open set of measure strictly less than

I.

implying that either INA = INBor I\B =
I N A contains a closed set of positive mea-
sure, which, by the above, neither does. O

The same is true for three or more sets, but
is much more difficult to show.



A measure p of a measure space (X, A, i)
is complete

if Ae A u(A)=0and B C A imply that
Be A
With (X, A, ) a measure space,

the completion 4, is the collection of sub-
sets A

for which there are sets E/, F' € A

with E C A C F and u(F\FE) = 0.

The completion 1z is the measure defined on
A,

such that (A) = u(E) = p(F).
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This is well defined as there cannot be two
such levels (otherwise monotonicity is vio-

lated):

Suppose p(F') = p(E') > p(E) = p(F)
with ' CAC F'ECACF, u(F\F')=
pu(F\FE) = 0 with all four sets in A.

It follows that £/ C A C F and by com-
tainment pu(£") < p(F'), a contradiction.
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Lemma (1.5.1): Let (X, A, 1) be a mea-
sure space.

A, is a o-algebra on X that includes A

and @ is a measure defined on A, that is
complete.
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Proof: Containment of A in A, and clo-
sure by complementation are trivial.

It Ay, Ay, ... is a sequence of sets in A,
and F; and F} are sequences in A

with Vi E; C A; C F; and pu(F\E;) =0
then by countable additivity

0 = 32 WENE) > p(UR(FAE)) >
p(U2 B\ U2y ) > 0,

implying that U, A; € A,,.

And if the Ay, Ao, ... are disjoint the same
pairs E; and F; of sequences show that

Z?&MF@') = ZilN(Ez) < m(U4;) <
Z?Zl:u(Fz’);

hence equality and countable additivity. O
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Let (X, A, 1) be a measure space,
and A any subset of X.

p(A)=mf{u(B)| AC B, Be€ A} and
ps(A) =sup{u(B) | AD B, Be A} .

1 (A) is the outer measure and . (A) is the
Inner measure.

14



Lemma: p* is an outer measure.

Proof: p*()) = 0 and monotonicity are
trivial.
Let A1, As, ... be a sequence of sets.

Suppose that Y7 1*(A4;) < oo:

For every i = 1,2,... let B; be a set in A
containing A;

such that p(B;) < p*(A;) + 5.
B = U2, B; includes A = U2 A; and

2ot W (Ai) = 302 p(Bi) — € = p(B) —
e > ' (A) —e

True for every € implies the inequality. O
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Lemma (1.5.5) Given that pu*(A) < oo,
A belongs to A, if and only if p.(A) =

pr(A).

Proof: = If A belongs to A, then there
are sets £, F € Asuch that E C A C F
and u(F\FE) = 0.

From pu(E) < piu(A) < p*(A) < p(F)

all are equal.
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< On the other hand, if u.(A) = p*(A4) <
00

there are sequences of sets 1, Ey, ... and
L, Fy, ...

with £; C A and A C F; and
W(E;) > p(A) =5 and p*(A) +5 > p(F).

The sets £ = U°E; and F' = N F;

are both in A and have the same common
measure size u*(A) = p«(A), with E C
ACF,.

17



