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 Higher-order networks are characterising the 
interactions between two ore more nodes and   

 are  formed by nodes, links, triangles, 
tetrahedra etc.

d=2 simplicial complex     d=3 simplicial complex

Higher-order networks



Simplicial complex models

Emergent Geometry 
Network Geometry with Flavor (NGF) 

[Bianconi Rahmede ,2016 & 2017]

Maximum entropy model 
Configuration model  

of simplicial complexes 
[Courtney Bianconi 2016]



Higher-order structure and dynamics
Higher-order 

networks
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Topological signals
Beyond the node centered description of  network dynamics 

The dynamical state of a simplicial complex includes  
node, edge, and higher-order topological signals
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Topological signals
• Citations in a collaboration network


• Speed of wind at given locations


• Currents at given locations in the ocean


• Fluxes in biological transportation networks


• Synaptic signal


• Edge signals in the brain
Topological signals  

are cochains or vector fields 



Discrete Gradient
If , then  indicates its discrete gradient


Indeed we have    which implies  

f ∈ C0 g = δ0 f ∈ C1

g = B⊤
[1]f g[r,s] = fs − fr

f1

f2

f3

f4

gradient



Discrete Divergence
If , then  indicates its discrete divergence


Indeed we have  which implies  


g ∈ C1 f = δ*0 g ∈ C0

f = B[1]g fr = ∑
s

g[sr] − ∑
s

g[rs]

g
[12]

g
[23]

g
[24] g

[34]

divergence



Discrete Curl
If , then  indicates its discrete curl


Indeed we have   which implies 


f ∈ C1 h = δ1g ∈ C2

g = B⊤
[2]f

h[r,s,q] = g[r,s] + g[s,q] − g[r,q]

g
[12]

g
[23]

g
[24] g

[34]

Curl



Boundary Operators

B[1] =

[1,2] [1,3] [2,3] [3,4]
[1] −1 −1 0 0
[2] 1 0 −1 0
[3] 0 1 1 −1
[4] 0 0 0 1

,
B[2] =

[1,2,3]
[1,2] 1
[1,3] −1
[2,3] 1
[3,4] 0

.

Boundary operators

The boundary of the boundary is null 

B[1]

B⊤
[1]

B⊤
[2]

Discrete divergence 

Discrete gradient 

Discrete Curl

B[n−1]B[n] = 0, B⊤
[n]B⊤

[n−1] = 0



Simplicial complexes and 
Hodge Laplacians

L[0] = B[1]B⊤
[1] L[2] = B⊤

[2]B[2]L[1] = B⊤
[1]B[1] + B[2]B⊤

[2]

The Hodge Laplacians describe diffusion 


from n-simplices to n-simplices through (n-1) and (n+1) simplices


The Hodge Laplacian are semi-definite positive

Hodge Laplacians

The dimension of the kernel of the Hodge Laplacian  is given by the  Betti number L[m] m βm



Harmonic eigenvectors of 
the graph Laplacian

The quadratic form of the graph Laplacian 
reads





Therefore the harmonic eigenvectors of the 
graph Laplacian are constant on each 

connected component of the graph and zero 
everywhere else.

X⊤L[0]X =
1
2 ∑

r,s

ars(Xr − Xs)2

The dropdown menu allows us to quickly switch colourings according to each category, without
needing to recompute the underlying graph.

Change the layout algorithm

By default, plot_static_mapper_graph  uses the Kamada–Kawai algorithm for the layout;
however any of the layout algorithms defined in python-igraph are supported (see here for a list
of possible layouts). For example, we can switch to the Fruchterman–Reingold layout as follows:

# Reset back to numpy projection
pipe.set_params(filter_func=Projection(columns=[0, 1]));
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Color by: Circle_A ▼

Getting started with Mapper — giotto-tda 0.5.1 documentation https://giotto-ai.github.io/gtda-docs/latest/notebooks/mapper_quickstart.html
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Harmonic eigenvectors of 
the Hodge Laplacian

 dim ker(L[m]) = βm

The dimension of the kernel of the Hodge Laplacian 
  

is given by the corresponding Betti number

The harmonic eigenvectors  

are associated to the generators of the homology 

They are in general non-uniform over the -simplices of the simplicial complexm



 Harmonic eigenvectors

Wee et al. (2023)



Hodge decomposition
The Hodge decomposition implies that topological signals can be decomposed


 in a irrotational, harmonic and solenoidal components


which in the case of topological signals of the links can be sketched as  


ℝDm = im(B⊤
[m]) ⊕ ker(L[m]) ⊕ im(B[m+1])

Solenoidal component 
Curl Flow

Harmonic componentIrrotational component 
Gradient Flow



Lesson III: 
The Topological Kuramoto model

Brief recap of the Kuramoto model on graphs 
The Kuramoto model on graph and its relation to topology 
• Gauge invariance 
• Spatial distribution of synchronized dynamics (harmonic component) 

The higher-order Topological Kuramoto model 
• Gauge invariance 
• The Topological Kuramoto model as a gradient flow 
• Spatial distribution of synchronized dynamics (harmonic component) 
• Signal projected one dimension up or down(solenoidal and irrotational component) 
• Solution on a fully connected network 



Kuramoto  
model 

on a graph



Synchronization is a 
fundamental dynamical process

• N
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Founding fathers of 
synchronisation

Yoshiki Kuramoto
Christiaan Huygens



Kuramoto model on a 
network

·θr = ωr + σ
N

∑
s=1

ars sin (θs − θr)
4
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ω ∼ 𝒩(Ω,1)

Given a network of N nodes  
defined by an adjacency matrix a 

we assign to each node a phase obeying 

where the internal frequencies of the nodes  
are drawn randomly from 

and  the coupling constant is 𝜎 

The oscillators are non-identical



Order parameter for 
synchronization

We consider the global order parameter 


which indicates the 


synchronisation transition such that for


 


R

|σ − σc | ≪ 1

X = ReiΨ̂ =
1
N

N

∑
r=1

eiθr
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0.0
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R

R = {
0  for σ < σc

c(σ − σc)1/2  for σ ≥ σc
Kuramoto (1975)



Gauge invariance of the 
Kuramoto equation

Given the Kuramoto dynamics


If we perform the transformation





We obtain


, 


i.e. the dynamics is invariant under rescaling 


of the average of the intrinsic frequencies , i.e. 


θr → θr − Ω̂t

·θr = ωr − Ω̂ + σ
N

∑
s=1

ars sin (θs − θr)

Ω → Ω − Ω̂

·θr = ωr + σ
N

∑
s=1

ars sin (θs − θr)
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The standard Kuramoto model  
Under the lens of Topology



Standard Kuramoto model in 
terms of boundary matrices

The standard Kuramoto model, can be expressed in terms 


of the boundary  matrix  B[1] as


where we have defined the vectors


and we use the notation              


to indicates the column vector where the sine function is taken element wise


 

·θ = ω − σB[1] sin B⊤
[1]θ

θ = (θ1, θ2, …, θi…)⊤

ω = (ω1, ω2, …, ωi…)⊤

sin x



The standard Kuramoto model 
in terms of boundary matrices

Let us show that the Kuramoto equations





can be also written in matrix form as


 


Using the explicit expression of the elements of the boundary matrix 


·θr = ωr + σ
N

∑
s=1

ars sin (θs − θr)

·θ = ω − σB[1] sin B⊤
[1]θ

B[1]

[B[1]]rℓ =
−1 if ℓ = [r, s]
1 if ℓ = [s, r]
0 otherwise



Proof
To prove the above statement we write element wise the equations 





obtaining





For the link  we obtain


·θ = ω − σB[1] sin B⊤
[1]θ

θr = ωr − σ∑
ℓ

[B[1]]rℓsin (∑
s′ 

[B[1]]ℓs′ 
θs′ )

ℓ = [r, s]

[B[1]]rℓsin (∑
s′ 

[B[1]]ℓs′ 
θs′ ) = − ars sin(θs − θr)



Proof
To prove the above statement we write element wise the equations 





obtaining





For the link  we obtain


·θ = ω − σB[1] sin B⊤
[1]θ

θr = ωr − σ∑
ℓ

[B[1]]rℓsin (∑
s

[B[1]]ℓsθs)
ℓ = [s, r]

[B[1]]rℓsin (∑
s′ 

[B[1]]ℓs′ 
θs′ ) = ars sin(θr − θs) = − ars sin(θs − θr)



Gauge invariance of the 
Kuramoto equation

Given the Kuramoto dynamics


If we perform the transformation





We obtain


, 


i.e. the dynamics is invariant under rescaling 


of the average of the intrinsic frequencies , i.e. 


θr → θr − Ω̂t

·θr = ωr − Ω̂ + σ
N

∑
s=1

ars sin (θs − θr)

Ω → Ω − Ω̂

·θr = ωr + σ
N

∑
s=1

ars sin (θs − θr)
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Gauge invariance of the 
Kuramoto equation

Given the Kuramoto dynamics


If we perform the transformation





We obtain


i.e. the dynamics is invariant under rescaling 


 


θ → θ − Ω̂t1

ω → ω − Ω̂1

·θ = ω + σB[1] sin(B⊤
[1]θ)
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θ1

·θ = ω − Ω̂1 + σB[1] sin(B⊤
[1]θ)



Dynamics learns topology
 

 

In the Kuramoto model the free dynamics  
is localised on the constant (Harmonic) eigenvector 

 

The free dynamics is constant in each connected component 

The Kuramoto model 

·θ = ω − σB[1] sin B⊤
[1]θ,

d⟨uharm, θ⟩
dt

= ⟨uharm, ω̂⟩



Standard Kuramoto model 

 

In the Standard Kuramoto model the free dynamics is  uniform 
over the whole (connected) network 

·θ = ω − σB[1] sin B⊤
[1]θ



Linearised dynamics

Let us investigate the linearisation of the Kuramoto dynamics.


Let us start from the nonlinear system





Using  we get the linearised dynamics


·θ = ω − σB[1] sin B⊤
[1]θ

sin x ≃ x

·θ = ω − σL[0]θ



Topological Kuramoto  
model 



The higher-order simplicial  
Kuramoto model

How to define  
the higher-order Kuramoto model  

coupling higher dimensional  
topological signals?

A. P. Millán, J. J. Torres,  and G.Bianconi,  
Physical Review Letters, 124, 218301 (2020) 



Topological signals

We associate to each  

m-dimensional simplex 𝛼 a phase 𝝓𝛼  

For instance for m=1 we might associate to each link a oscillating flux


The vector of phases is indicated by 

ϕ = (…, ϕα…)⊤



Standard Kuramoto model in 
terms of boundary matrices

The standard Kuramoto model, can be expressed in terms 


of the boundary  matrix  B[1] as


where we have defined the vectors


and we use the notation              


to indicates the column vector where the sine function is taken element wise


 

·θ = ω − σB[1] sin B⊤
[1]θ

θ = (θ1, θ2, …, θi…)⊤

ω = (ω1, ω2, …, ωi…)⊤

sin x



Topological synchronisation
We propose to study the higher-order Kuramoto model


defined as 


where is the vector of phases associated to n-simplices


and the topological signals ad their  internal frequencies are indicated by 


with the internal frequencies

·ϕ = ω̂ − σB[m+1] sin B⊤
[m+1]ϕ − σB⊤

[m] sin B[m]ϕ,

ω̂α ∼ 𝒩(Ω,1)

ω̂ = (…, ω̂α…)⊤

ϕ = (…, θα…)⊤



Topologically induced  
many-body  interactions

·ϕ[12] = ω̂[12] − σ sin(ϕ[23] − ϕ[13] + ϕ[12]) − σ [sin(ϕ[12] − ϕ[23]) + sin(ϕ[13] + ϕ[12])],
·ϕ[13] = ω̂[13] + σ sin(ϕ[23] − ϕ[13] + ϕ[12]) − σ [sin(ϕ[13] + ϕ[12]) + sin(ϕ[13] + ϕ[23] − ϕ[34])],
·ϕ[23] = ω̂[23] − σ sin(ϕ[23] − ϕ[13] + ϕ[12]) − σ [sin(ϕ[23] − ϕ[12]) + sin(ϕ[13] + ϕ[23] − ϕ[34])],
·ϕ[34] = ω̂[34] − σ [sin(ϕ[34]) − sin(ϕ[13] + ϕ[23] − ϕ[34])],



Hamiltonian of the Topological 
Kuramoto model

The Topological Kuramoto is an Hamiltonian gradient flow 

Hamiltonian of the Standard  Kuramoto model (XY model) 

Hamiltonian of the Topological Kuramoto model 

H = −ω̂⊤ϕ − σ1⊤ cos(B[m]ϕ) − σ1⊤ cos(B⊤
[m+1]ϕ)

H = −ω⊤θ − σ1⊤ cos(B⊤
[1]θ)

= −
N

∑
i=1

ωiθi − σ ∑
<i,j>

cos(θj − θi)



Dynamics learns topology
 

 

In the Topological Kuramoto model the free dynamics  
is localised on the  
-dimensional holes 

 

The free dynamics is localised on harmonic components 

Topological Higher-order Kuramoto model 

·ϕ = ω̂ − σB[m+1] sin B⊤
[m+1]ϕ − σB⊤

[m] sin B[m]ϕ,

m

d⟨uharm, ϕ⟩
dt

= ⟨uharm, ω̂⟩



Topological Synchronisation
The dynamical ordered state has many minima  

Each corresponding to a single homology class of the simplicial complex (hole)



Topological Synchronisation



In the Topological Kuramoto model  

 

the dynamics of the synchronised state  
is localised on the  
-dimensional holes 

 

The free dynamics is localised on harmonic components 

·ϕ = ω̂ − σB[m+1] sin B⊤
[m+1]ϕ − σB⊤

[m] sin B[m]ϕ,

m

d⟨uharm, ϕ⟩
dt

= ⟨uharm, ω̂⟩



The harmonic mode of the 
non-linear Kuramoto model

Let us now study the full nonlinear Topological Kuramoto equation


 (2)


Let us consider any harmonic eigenvector  of the Hodge Laplacian 
. 


Since Hodge decomposition applies    


By multiplying (2) by we obtain 


Therefore the harmonic modes oscillate at constant frequency also in the 
nonlinear Topological Kuramoto model.

·ϕ = ω̂ − σB[m+1] sin B⊤
[m+1]ϕ − σB⊤

[m] sin B[m]ϕ,

u⊤
harm

L[m] = B[m+1]B⊤
[m+1] + B⊤

[m]B[m]

u⊤
harmB[m+1] = u⊤

harmB⊤
[m] = 0

u⊤
harm

d⟨uharm, ϕ⟩
dt

= ⟨uharm, ω̂⟩



Gauge invariance of the 
Topological Kuramoto equation

Given the Topological Kuramoto model


If we perform the transformation





We obtain


, 


i.e. the dynamics is invariant under rescaling 





ϕ → ϕ − Ω̂tuharm

·ϕ = ω − Ω̂uharm − σB[m+1] sin B⊤
[m+1]ϕ − σB⊤

[m] sin B[m]ϕ,

ω → ω − Ω̂uharm

·ϕ = ω̂ − σB[m+1] sin B⊤
[m+1]ϕ − σB⊤

[m] sin B[m]ϕ,

ϕ[1,2]



Linearised Dynamics
The linearised dynamics is dictated by the Hodge-Laplacian


The harmonic component of the signal oscillates freely


The other modes freeze asymptotically in time 


·ϕ = ω̂ − σL[m]ϕ,



In the Topological Kuramoto model  

 

the dynamics of the synchronised state  
is localised on the  
-dimensional holes 

 

The free dynamics is localised on harmonic components 

·ϕ = ω̂ − σB[m+1] sin B⊤
[m+1]ϕ − σB⊤

[m] sin B[m]ϕ,

m

d⟨uharm, ϕ⟩
dt

= ⟨uharm, ω̂⟩



If we define a higher-order Kuramoto model on  

m-simplices,  

(let us say links, m=1) a key question is: 

What is the dynamics induced  

on (m-1) faces and (m+1) faces? 

i.e. what is the dynamics induced on nodes and triangles?



Projected dynamics on  
m-1 and m+1 faces

A natural way to project the dynamics is to use the 
incidence matrices obtaining 

ϕ[+] = B⊤
[m+1]ϕ

ϕ[−] = B[m]ϕ

Discrete curl

Discrete divergence



Projected dynamics on  
m-1 and m+1 faces

Thanks to Hodge decomposition, 


the projected dynamics 


on the (m-1) and (m+1) faces 


decouple

·ϕ[+] = B⊤
[m+1]ω̂ − σL[down]

[m+1] sin(ϕ[+])
·ϕ[−] = B[m]ω̂ − σL[up]

[m−1] sin(ϕ[−])



Proof
Starting from the Topological Kuramoto dynamics





We apply  to both sides of the equations getting for 




Using  we get


 


A similar derivation holds for getting the equation for 


·ϕ = ω̂ − σB[m+1] sin B⊤
[m+1]ϕ − σB⊤

[m] sin B[m]ϕ

B⊤
[m+1] ϕ[+] = B⊤

[m+1]ϕ·
ϕ[+] = B⊤

[m+1]ω̂ − σB⊤
[m+1] sin B⊤

[m+1]ϕ − σB⊤
[m+1]B

⊤
[m] sin B[m]ϕ,

B⊤
[m+1]B[m+1] = Ldown

m+1 , B⊤
[m+1]B

⊤
[m] = 0

·
ϕ[+] = B⊤

[m+1]ω̂ − σLdown
[m+1] sin ϕ[+]

ϕ[−]



Simplicial Synchronization 
transition

R[+] =
1

Nm+1

Nm+1

∑
α=1

eiϕ[+]
α R[−] =

1
Nm−1

Nm−1

∑
α=1

eiϕ[−]
α



Order parameters using the 
n-dimensional phases

R↑ =
1

Nm

Nm

∑
α=1

eiϕ↑
αR↓ =

1
Nm

Nm

∑
α=1

eiϕ↓
α

ϕ↓ = Ldown
[n] ϕ ϕ↑ = Lup

[n]ϕ

R
↑

R
↓



Only if we perform  

the correct topological filtering  

of the topological signal  

we can reveal higher-order topological  synchronisation



Explosive topological 
synchronisation

We propose the Explosive Topological  Kuramoto model 


defined as 


·ϕ = ω̂ − σR[−]B[m+1] sin B⊤
[m+1]ϕ − σR[+]B⊤

[m] sin B[m]ϕ



Projected dynamics
The projected dynamics on 


(m+1) and (m-1) are now coupled 


by their order parameters

·ϕ[+] = B⊤
[m+1]ω̂ − σR[−]L[down]

[m+1] sin(ϕ[+])
·ϕ[−] = B[m]ω̂ − σR[+]L[up]

[m−1] sin(ϕ[−])



The explosive  
simplicial synchronisation transition
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Order parameters 
associated to n-faces
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Higher-order synchronisation 
on real Connectomes

Homo sapiens Connectome 

C.elegans Connectome
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Non examinable material



Coupling topological signals 
of different dimension
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Explosive synchronisation of 
globally coupled topological signals

·ϕ = ω̂ − σR[+]
1 R0B⊤

[1] sin B[1]ϕ

−σR[−]
1 B[2] sin B⊤

[2]ϕ

·θ = ω − σR[−]
1 B[1] sin B⊤

[1]θ

NGF s=-1 d=3 Simplicial  
Configuration model



Coupled node and link 
topological signals on networks

·ϕ = ω̂ − σR0B⊤
[1] sin B[1]ϕ

·θ = ω − σR[−]
1 B[1] sin B⊤

[1]θ

ψ = B[n]ϕ
·ψ = ω̃ − σR0L[0] sin ψ

·θ = ω − σR[−]
1 B[1] sin B⊤

[1]θ
ω̃ = B[1]ω̂

⟨ω̃rω̃s⟩ − ⟨ω̃r⟩⟨ω̃s⟩ = [L[0]]rs
1
τ2

1

⟨ω̃r⟩ = [∑
s<r

ars − ∑
s>r

ars] Ω1

ωi ∼ 𝒩(Ω0,1/τ0)
ω̂i ∼ 𝒩(Ω1,1/τ1)

Dynamics projected on the nodes

Correlation of projected frequencies



Kuramoto model on a 
network

·θr = ωr + σ
N

∑
s=1

ars sin (θs − θr)
4
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ω ∼ 𝒩(Ω,1)

Given a network of N nodes  
defined by an adjacency matrix a 

we assign to each node a phase obeying 

where the internal frequencies of the nodes  
are drawn randomly from 

and  the coupling constant is 𝜎 

The oscillators are non-identical



Solution of the Kuramoto model 
on a fully connected network

On a fully connected network the coupling constant  is rescaled as 





The Kuramoto equation





can be written in terms of the complex order parameter  as


 


Thanks to the gauge invariance we can study the dynamics in the rotating frame which reads


σ →
σ
N

·θr = ωr + σ
N

∑
s=1

ars sin (θs − θr)

X

·θr = ωr − Ω + σIm(Xe−iθr)

·θr = ωr − Ω − σR sin(θr)



Solution of the Kuramoto model 
on a fully connected network

Looking for the stationary states  of 





We obtain  only valid for nodes such that





(frozen nodes) 

·θr = 0

·θr = ωr − Ω − σR sin(θr)

sin(θr) =
ωr − Ω

σR

ωr − Ω
σR

≤ 1



Solution of the Kuramoto model 
on a fully connected network

Assuming that only the frozen nodes contribute to the order parameter, since  
in the rotating frame, we obtain the self-consistent equation for the order parameter  





Or, equivalently considering the probability density distribution  for the intrinsic 
frequencies, 





X = R

R =
1
N ∑

r|r are frozen

cos θr =
1
N ∑

r|r are frozen

1 − ( ω − Ω
σR )

2

g(ω)

R = ∫ ω − Ω
σR ≤1

g(ω) 1 − ( ω − Ω
σR )

2

dω



Coupled node and link 
topological signals on networks

·ϕ = ω̂ − σR0B⊤
[1] sin B[1]ϕ

·θ = ω − σR[−]
1 B[1] sin B⊤

[1]θ

ψ = B[n]ϕ
·ψ = ω̃ − σR0L[0] sin ψ

·θ = ω − σR[−]
1 B[1] sin B⊤

[1]θ
ω̃ = B[1]ω̂

⟨ω̃rω̃s⟩ − ⟨ω̃r⟩⟨ω̃s⟩ = [L[0]]rs
1
τ2

1

⟨ω̃r⟩ = [∑
s<r

ars − ∑
s>r

ars] Ω1

ωi ∼ 𝒩(Ω0,1/τ0)
ω̂i ∼ 𝒩(Ω1,1/τ1)

Dynamics projected on the nodes

Correlation of projected frequencies



The node order parameter (coupled to 
edge dynamics) on a fully connected 

network

The node order parameter can be obtained similarly as for the standard Kuramoto model





Or, equivalently considering the probability density distribution  for the intrinsic 
frequencies, 





R0 =
1
N ∑

r|r are frozen

cos θr =
1
N ∑

r|r are frozen

1 − ( ω − Ω
σR0R[−]

1 )
2

g(ω)

R0 = ∫ ω − Ω
σR0R[−]

1
≤1

g(ω) 1 − ( ω − Ω
σR0R[−]

1 )
2

dω



The edge order parameter 
on a fully connected network

The edge order parameter can be obtained following similar steps obtaining 





Or, equivalently considering the probability density distribution  for the 
intrinsic frequencies, 





R[−]
1 =

1
N ∑

r|r are frozen

cos ψr =
1
N ∑

r|r are frozen

1 − ( ω̃
σR0 )

2

g̃(ω̃)

R[−]
1 = ∫ ω̃

σR0
≤1

g̃(ω̃) 1 − ( ω̃
σR0 )

2

dω̃



Solution on a fully 
connected network

Fully connected  
networks undergo 
a discontinuous  

synchronisation transition 
of topological signals  

defined on nodes and links 

The hysteresis loop is not 
closed in the infinite network 

limit and on finite size 
networks  

is driven by finite size effects



Annealed solution on 
random networks

The annealed solution  
captures  

the backward transition 

Reveals that the transition  
is discontinuous 

Gives very reliable results  
for connected networks 
that are not too sparse   

Poisson network Power-law network
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