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Higher-order networks

Higher-order networks are characterising the
interactions between two ore more nodes and

are formed by nodes, links, triangles,
tetrahedra etc.
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d=2 simplicial complex d=3 simplicial complex



Simplicial complex models




Higher-order structure and dynamics
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Topological signals

Beyond the node centered description of network dynamics
The dynamical state of a simplicial complex includes
node, edge, and higher-order topological signals
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Topological signals

Citations in a collaboration network

Speed of wind at given locations

Currents at given locations in the ocean
Fluxes in biological transportation networks
Synaptic signal

Edge signals in the brain



Discrete Gradient

if f € C°, then g = 8,f € C! indicates its discrete gradient

Indeed we have g = B[l]f which implies gy, =f—1
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Discrete Divergence

fg € C!, thenf = 0,8 € C" indicates its discrete divergence

Indeed we have f = Bmg which implies f. = Z 8[sr] — Z 8[rs]
S S

divergence




Discrete Curl

f fe Cl, then h = 6, ¢ € C? indicates its discrete curl
18

Indeed we have g = B[Tz]f which implies

Nys.al = 81rs1 + 8ls.gl — 81rgl




Boundary Operators

Boundary operators

[1,2,3]
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The boundary of the boundary is null
G[l] Discrete divergence\
_ TpT _
BE_I] Discrete gradient C B[n—llB[n]_O’ B[n]B[n—I] _9

QE_Z] Discrete Curl J




Simplicial complexes and
Hodge Laplacians

Hodge Laplacians

The Hodge Laplacians describe diffusion
®

from n-simplices to n-simplices through (n-1) and (n+1) simplices

The Hodge Laplacian are semi-definite positive

_ T _ DT T _ DT
( Lo = BB Ly = By By + BBy, Ly = B[le[ZD

The dimension of the kernel of the Hodge Laplacian L[m] is given by the m Betti number [,




Harmonic eigenvectors of
the graph Laplacian

The quadratic form of the graph Laplacian
reads

1
X'LgX==) a.(X. —X)
[0] 22 rs( r s)

r,S

Therefore the harmonic eigenvectors of the
graph Laplacian are constant on each
connected component of the graph and zero
everywhere else.



Harmonic eigenvectors of
the Hodge Laplacian

The dimension of the kernel of the Hodge Laplacian

is given by the corresponding Betti number

dim ker(L[,,,l) — /))m

The harmonic eigenvectors

are associated to the generators of the homology

They are in general non-uniform over the m-simplices of the simplicial complex




Harmonic eigenvectors

Wee et al. (2023)




Hodge decomposition

The Hodge decomposition implies that topological signals can be decomposed

in a irrotational, harmonic and solenoidal components

RP» = im(B] ) @ ker(L;,) ® im(B,,,)

which in the case of topological signals of the links can be sketched as

<> A

Irrotational component Harmonic component Solenoidal component
Gradient Flow Curl Flow



Brief recap of the Kuramoto model on graphs

The Kuramoto model on graph and its relation to topology

 Gauge invariance

« Spatial distribution of synchronized dynamics (harmonic component)

> The higher-order Topological Kuramoto model

 Gauge invariance

The Topological Kuramoto model as a gradient flow

Spatial distribution of synchronized dynamics (harmonic component)

Signal projected one dimension up or down(solenoidal and irrotational component)
Solution on a fully connected network



Kuramoto
model
on a graph



Synchronization is a
fundamental dynamical process
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Founding fathers of
synchronisation

Christiaan Huygens .
Yoshiki Kuramoto



Kuramoto model on a
network

Given a network of N nodes
defined by an adjacency matrix a
we assign to each node a phase obeying

9 =w +02a s1n 9 9

where the internal frequencies of the nodes
are drawn randomly from

@~ N(,1)

and the coupling constant is ¢

The oscillators are non-identical



Order parameter for
synchronization

We consider the global order parameter R

1.0
N
0.8
r=1 0.6+
L o
which indicates the
0.4
synchronisation transition such that for 0l
lo—0,.| <1 0.0
0 1

0 foro <o,

c(o — ac)l/2 foroc > o,

Kuramoto (1975)



Gauge invariance of the
Kuramoto equation

Given the Kuramoto dynamics

9 =W +02a sm 0 0

If we perform the transformation

Qr—>9r—Qt

We obtain

0, =, —Q+62a sin (6, - 6,),
s=1

i.e. the dynamics is invariant under rescaling

of the average of the intrinsic frequencies , i.e. Q — Q — Q




The standard Kuramoto model
Under the lens of Topology



Standard Kuramoto model in
terms of boundary matrices

The standard Kuramoto model, can be expressed in terms

of the boundary matrix Bpjjas

- S
0 = — oB;;sinB 0

where we have defined the vectors

0 = (61,02, ...,Qi...)T

w = (0, w,, ...,a)i...)T

and we use the notation SiIl X

to indicates the column vector where the sine function is taken element wise



The standard Kuramoto model
In terms of boundary matrices

Let us show that the Kuramoto equations

can be also written in matrix form as

- . T
0 =w — GB[I] S1n B[1]0

Using the explicit expression of the elements of the boundary matrix B[l]

-1 if £ = [r,s]
[Biyle =141 if £ = [s, r]

0 otherwise




Proof

To prove the above statement we write element wise the equations
o o
0 =w —oBsinB; 0

obtaining
0,=w,— 06 [Bylsin| Y [Bylsb,
4 s’
For the link £ = [r, s] we obtain

[B[l]]rfSIH Z [B[l]]fsﬁs/ = — ars Sin(es - 0’,)



Proof

To prove the above statement we write element wise the equations
o o
0 =w —oBsinB; 0

obtaining
er = W, — 62 [B[l]]rfSin 2 [B[l]]fses
4 s
For the link £ = [, r] we obtain

[B[l]]rfSIH Z [B[l]]fs/es/ == Clrs Sln(gr - Qs) = - ars Sln(es — Hr)



Gauge invariance of the
Kuramoto equation

Given the Kuramoto dynamics

9 =W +02a sm 0 0

If we perform the transformation

Qr—>9r—Qt

We obtain

0, =, —Q+62a sin (6, - 6,),
s=1

i.e. the dynamics is invariant under rescaling

of the average of the intrinsic frequencies , i.e. Q — Q — Q




Gauge invariance of the
Kuramoto equation

Given the Kuramoto dynamics

If we perform the transformation

0 - 60—

We obtain

i.e. the dynamics is invariant under rescaling

w— w—-Q1




Dynamics learns topology

The Kuramoto model

- R
0 = — 0B sinB, /0,

In the Kuramoto model the free dynamics
is localised on the constant (Harmonic) eigenvector

d(“harm’ 0) _ <ll é\)>
At harm?

The free dynamics is constant in each connected component




Standard Kuramoto model

- ——
0 = ® — 0B sinB,0

In the Standard Kuramoto model the free dynamics is uniform
over the whole (connected) network




Linearised dynamics

Let us investigate the linearisation of the Kuramoto dynamics.

Let us start from the nonlinear system

. _ . T

Using sin X ~ X we get the linearised dynamics




Topological Kuramoto
model



The higher-order simplicial
Kuramoto model

O12)

How to define
the higher-order Kuramoto model
coupling higher dimensional
topological signals?

A. P. Millan, J. J. Torres, and G.Bianconi,
Physical Review Letters, 124, 218301 (2020)



Topological signals

We associate to each

m-dimensional simplex « a phase ¢_

For instance for m=1 we might associate to each link a oscillating flux

The vector of phases is indicated by

d=Cnchy.)T




Standard Kuramoto model in
terms of boundary matrices

The standard Kuramoto model, can be expressed in terms

of the boundary matrix Bpjjas

- S
0 = — oB;;sinB 0

where we have defined the vectors

0 = (61,02, ...,Qi...)T

w = (0, w,, ...,a)i...)T

and we use the notation SiIl X

to indicates the column vector where the sine function is taken element wise



Topological synchronisation

We propose to study the higher-order Kuramoto model

defined as

. A . -I- T .
P =w-— aB[m+1] sin B[mH]qﬁ — aB[m] sin B[m]cl),

where is the vector of phases associated to n-simplices

and the topological signals ad their internal frequencies are indicated by
p=(..0,.)"

&=(.0,..)"

with the internal frequencies

o, ~ N(Q,1)



Topologically induced

many-body interactions
@

®

© ®

(121 = @p1p) — oSz — Pz + P — 0 [Sin(¢[12] — ¢po3p + sin(py3 + ¢[12])] ,
P13 = @3+ o sin(@pz — Pz + Py — o [sin(¢[13] + Ppiap) + sin(yyz)+ Pz — 45[34])]’
D3 = Dz — 0 SIN(Ppz — Pz + P — 0 [sin(¢[23] — $pop + i@z + Ppozy — 4)[34])]’

D341 = Dp3g— 0 [Sin(¢[34]) — sin(y 3 + Ppo3; — ¢[34])],



Hamiltonian of the Topological
Kuramoto model

The Topological Kuramoto is an Hamiltonian gradient flow

Hamiltonian of the Standard Kuramoto model (XY model)

H=-w'6-0l1"cos(B} )

= — i w0, — o Z COS(QJ' —0)
i=1

<i,j>
Hamiltonian of the Topological Kuramoto model

H=-&"¢p-ol1" cos(By,,¢) — o1’ COS(B[Tm+1]¢)




Dynamics learns topology

Topological Higher-order Kuramoto model

h— T T
¢ =w—oB, . sinB, ¢ —oB  simB,p,

In the Topological Kuramoto model the free dynamics
is localised on the

m~-dimensional holes

d(“harm7 ¢>
dt

— <uharm’ é\)>

The free dynamics is localised on harmonic components




Topological Synchronisation

The dynamical ordered state has many minima
Each corresponding to a single homology class of the simplicial complex (hole)



Topological Synchronisation




In the Topological Kuramoto model

o A . T T .
¢ =w-oB, SlnB[m+1]¢ —oB;,; sin B,

the dynamics of the synchronised state
is localised on the

m-dimensional holes

d<uharm’ ¢> _ <ll o
At harm>®

The free dynamics is localised on harmonic components




The harmonic mode of the
non-linear Kuramoto model

Let us now study the full nonlinear Topological Kuramoto equation
; A T T o
¢ =w —oB, ,;sinB; P —0oB, sinB, P, 2

Let us consider any harmonic eigenvector uZarm of the Hodge Laplacian

T T

m] = [m+1

Since Hodge decomposition applies uharmB[WL+1] = uhm,mBT =0

dlw, .. R
By multiplying (2) by w, we obtain Wi P = (uy,,,,, D)

dt

Therefore the harmonic modes oscillate at constant frequency also in the
nonlinear Topological Kuramoto model.



Gauge invariance of the
Topological Kuramoto equation

Given the Topological Kuramoto model

. _ A . T T .
P =0 - GB[m+1] sin B[m+1]¢ — GB[m] sin B[m](ﬁ,

If we perform the transformation
¢ N ¢ _ Qtuharm
We obtain

P A . T T .
¢ =@ — Qu"¥"M — O'B[m+1] S1n B[m+1]¢ - GB[m] SlnB[m]¢’ ’

i.e. the dynamics is invariant under rescaling

o= W — Quharm




Linearised Dynamics

The linearised dynamics is dictated by the Hodge-Laplacian

The harmonic component of the signal oscillates freely

The other modes freeze asymptotically in time




In the Topological Kuramoto model

o A . T T .
¢ =w-oB, SlnB[m+1]¢ —oB;,; sin B,

the dynamics of the synchronised state
is localised on the

m-dimensional holes

d<uharm’ ¢> _ <ll o
At harm>®

The free dynamics is localised on harmonic components




If we define a higher-order Kuramoto model on
m-simplices,
(let us say links, m=1) a key question is:
What is the dynamics induced
on (m-1) faces and (m+1) faces?

i.e. what is the dynamics induced on nodes and triangles?

Edge dynamics Upward projection Downward projection



Projected dynamics on
m-1 and m+1 faces

A natural way to project the dynamics is to use the
incidence matrices obtaining

¢ [+ — BE’_71+1]¢ Discrete curl

¢ = = B[m]¢ Discrete divergence



Projected dynamics on
m-1 and m+1 faces

Thanks to Hodge decomposition,
the projected dynamics
on the (m-1) and (m+1) faces

decouple

i[+] — pT A [down] ; [+]
P = B[m+1]w aL[m+]] sin(gh'™)

¢! =By, ;& — oL sin(@!)




Proof

Starting from the Topological Kuramoto dynamics

h— o - pT T
¢ =w-0B, sinB; . ¢—oB

o SIN B,

We apply B[ +1] to both sides of the equations getting for ¢[+] = B[Terl

[+] T T T
¢ [m+1] GB[ ] 31nB[m+1]([) oB m+1]B[m] smB[m]qb,

Using B[m+1]B[m+1] = Ldown BT B[Tm] = () we get

m+1° " [m+1]

[+] — pT o d [+]
1) B, @ — oL\ sing

A similar derivation holds for getting the equation for (]5[_]



Simplicial Synchronization
transition

1 Nm+1 1 Nm_l
R = 2 it RI-1 = Z ol
Nm+1 a=1 Nm—l a=1
1 P —— 1
cnneneeent "]
o ",,..--""
0.8 0.8
_ 06 _ 0.6
-+ L
< <
04 1 0.4
0.2 ; 0.2
0 0

o
N
H
o
N
E N




Order parameters using the
n-dimensional phases
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Only if we perform

the correct topological filtering

of the topological signal

we can reveal higher-order topological synchronisation




Explosive topological
synchronisation

We propose the Explosive Topological Kuramoto model

defined as

b =d— aRHB[m+1] sinB! . — GRH]B[Tm] sin B, @

[m+1]




Projected dynamics

The projected dynamics on
(m+1) and (m-1) are now coupled

by their order parameters

pltl — BT A [—1y [down] ; [+]
¢ =B, @ —0oR L[m+1] sin(¢p'™)

hl—1 — N — R Pl g5 [-]
¢ =B, ®—oR | Pt sin(gp' ™)




The explosive
simplicial synchronisation transition
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Order parameters
associlated to n-faces

——Simple
— Explosive

0.8

0.6
04

0.2




Higher-order synchronisation
on real Connectomes
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Non examinable material



Coupling topological signals
of different dimer)sion

R. Ghorbanchian, J. Restrepo, J.J. Torres and G. Bianconi (2020)



Explosive synchronisation of
globally coupled topological signals

) — (=] MBI
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Coupled node and link
topological signals on networks

0 = w — oRI"B;sin B/, 0 ; ~ N (L, 1/7))

¢ = d — oRB/, sin B}, ¢ @; ~ N(Q,1/7)

Dynamics projected on the nodes

Y= B[n]¢ 0 =@ — GRI[_]B[I] sin BE_I]o

@=B & ¥ =@ — oRyL,\ siny

1
Q =AY — (i Mo ) = _
1 <a)ra)s> <a)r><a)s> - [L[O]]rsle



Kuramoto model on a
network

Given a network of N nodes
defined by an adjacency matrix a
we assign to each node a phase obeying

9 =w +02a s1n 9 9

where the internal frequencies of the nodes
are drawn randomly from

@~ N(,1)

and the coupling constant is ¢

The oscillators are non-identical



Solution of the Kuramoto model
on a fully connected network

On a fully connected network the coupling constant is rescaled as

o
c— —

N

The Kuramoto equation

N
0,=w,+0) a,sin (0, -0,

s=1
can be written in terms of the complex order parameter X as
0. = w,— Q+ olm(Xe %)
Thanks to the gauge invariance we can study the dynamics in the rotating frame which reads

0. =w,—Q—oRsin(6,)




Solution of the Kuramoto model
on a fully connected network

Looking for the stationary states 8. = 0 of

0. =w.—Q—cRsin(d)

}"_

We obtain sin(f,) = only valid for nodes such that

oR

®, — €2
oR

<1

(frozen nodes)




Solution of the Kuramoto model
on a fully connected network

Assuming that only the frozen nodes contribute to the order parameter, since X = R
in the rotating frame, we obtain the self-consistent equation for the order parameter

1 -Q\°
Rzﬁ Z cos@,,:ﬁ Z 1_<waR>

r|r are frozen r|r are frozen

Or, equivalently considering the probability density distribution g(w) for the intrinsic

frequencies,




Coupled node and link
topological signals on networks

0 = w — oRI"B;sin B/, 0 ; ~ N (L, 1/7))

¢ = d — oRB/, sin B}, ¢ @; ~ N(Q,1/7)

Dynamics projected on the nodes

Y= B[n]¢ 0 =@ — GRI[_]B[I] sin BE_I]o

@=B & ¥ =@ — oRyL,\ siny

1
Q =AY — (i Mo ) = _
1 <a)ra)s> <a)r><a)s> - [L[O]]rsle



The node order parameter (coupled to
edge dynamics) on a fully connected
network

The node order parameter can be obtained similarly as for the standard Kuramoto model

Z cos@r=% Z 1 0= 2
1

r|r are frozen r|r are frozen

Or, equivalently considering the probability density distribution g(w) for the intrinsic
frequencies,

R, = ). |1 - 2=—=
0 J veo | ® J ( RoR
oRoRTT | T




The edge order parameter
on a fully connected network

The edge order parameter can be obtained following similar steps obtaining

2
1 1
R[_] = — COS = — I -1 —
1 N 2 Vr N 2 \J ( oR, >
r|r are frozen r|r are frozen

Or, equivalently considering the probability density distribution g(@) for the

intrinsic frequencies,

2
g(@)\Jl - (ﬂ> di
1 oRy




Solution on a fully
connected network

Fully connected
networks undergo
a discontinuous
synchronisation transition
of topological signals
defined on nodes and links

The hysteresis loop is not
closed in the infinite network
limit and on finite size
networks
is driven by finite size effects
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Annealed solution on
random networks

The annealed solution
captures
the backward transition

Reveals that the transition
is discontinuous

Gives very reliable results
for connected networks
that are not too sparse
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