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Higher-order networks

Higher-order networks are characterising the
interactions between two ore more nodes and

are formed by nodes, links, triangles,
tetrahedra etc.

/[

d=2 simplicial complex d=3 simplicial complex
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Topological signals

Beyond the node centered description of network dynamics
The dynamical state of a simplicial complex includes
node, edge, and higher-order topological signals
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Topological signals

Citations in a collaboration network

Speed of wind at given locations

Currents at given locations in the ocean
Fluxes in biological transportation networks
Synaptic signal

Edge signals in the brain



Recap of Topology with further
Topological, Geometrical and
Combinatorial properties

of higher-order networks



Discrete Gradient

if f € C°, then g = 8,f € C! indicates its discrete gradient

Indeed we have g = B[l]f which implies gy, =f—1

h
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f
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Discrete Divergence

fg € C!, thenf = 0,8 € C" indicates its discrete divergence

Indeed we have f = Bmg which implies f. = Z 8[sr] — Z 8[rs]
S S

divergence




Discrete Curl

f fe Cl, then h = 6, ¢ € C? indicates its discrete curl
18

Indeed we have g = B[Tz]f which implies

Nys.al = 81rs1 + 8ls.gl — 81rgl




Boundary Operators

Boundary operators

[1,2,3]
(1,21 [1,3] [2,3] [3:4] 121 1
@ [ -1 -1 0 0 By =[13] -1 .
By=(2 1 0 -1 0, 23] 1
Bl o 1 1 -1 34] 0
4] O 0 0 1
® ®
The boundary of the boundary is null
G[l] Discrete divergence\
_ TpT _
BE_I] Discrete gradient C B[n—llB[n]_O’ B[n]B[n—I] _9

QE_Z] Discrete Curl J




Cell complexes

(a) (b)

(c) (d) (e)
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Regular polytopes

d=1

link

d=2
p-polygon
d=3
tetrahedron
cube
octahedron
dodecahedron
icosahedron
d=4
pentachoron
tesseract
hexadecachoron
24-cell
120-cell
600-cell
d>4
simplex
cube
orthoplex

Regular polytopes

* The regular polytopes in
dimension d>4 are only
three: d-simplices, d-
hypercubes, and d-
orthoplexes

* In d=4 dimensions there
“monsters” such as the
120-cell and the 600-cell.



Boundary matrix of a cell complex

Example

. [1,2] [1,3] [3.,4] [2,4] [1,2,4,3]
The boundary matrix of a cell 1 -1 0 0 [1.2)
complex has matrix elements Lo 0 -1, By=[13]
0 1 -1 0 [3,4]
0 0 1 1 [2,4]

B[m](a;n—l, a;n)

otherwise




Simplicial complexes and
Hodge Laplacians

Hodge Laplacians

The Hodge Laplacians describe diffusion
®

from n-simplices to n-simplices through (n-1) and (n+1) simplices

The Hodge Laplacian are semi-definite positive

_ T _ DT T _ DT
( Lo = BB Ly = By By + BBy, Ly = B[le[ZD

The dimension of the kernel of the Hodge Laplacian L[m] is given by the m Betti number [,




Harmonic eigenvectors of
the graph Laplacian

The quadratic form of the graph Laplacian
reads

1
X'LgX==) a.(X. —X)
[0] 22 rs( r s)

r,S

Therefore the harmonic eigenvectors of the
graph Laplacian are constant on each
connected component of the graph and zero
everywhere else.



Harmonic eigenvectors of
the Hodge Laplacian

The dimension of the kernel of the Hodge Laplacian

is given by the corresponding Betti number

dim ker(L[,,,l) — /))m

The harmonic eigenvectors

are associated to the generators of the homology

They are in general non-uniform over the m-simplices of the simplicial complex




Harmonic eigenvectors

Wee et al. (2023)




Hodge decomposition

The Hodge decomposition implies that topological signals can be decomposed

in a irrotational, harmonic and solenoidal components

RP» = im(B] ) @ ker(L;,) ® im(B,,,)

which in the case of topological signals of the links can be sketched as

<> A

Irrotational component Harmonic component Solenoidal component
Gradient Flow Curl Flow



Geometrical properties
of simplicial complexes



m-connected components

A Simplicial complex




Generalized degree

The generalized degree k., (@)of a m-face «

is given by the number

of m’-dimensional simplices or cells incident to the m-face «.

kz,o([r])

[1]
(2]
[3]
[4]
[5]
[6]

—_ N = R =W

[r,s]

k2,1([r’ S])

[1,2]
[1,3]
[1,4]
[1,5]
[2,3]
[3,4]
[3,5]
[3,6]
[5,6]
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Incidence number

To each (d-1)-face a we associate the

incidence number

na - kd’d_l(a) - 1

7)) | najy
(1,2)| 0
(1,3)| 2
(14| 0
(1,5 | 0
23)| 0
G4 | 0
(35| 1
(3,6)| 0
6 5.6)| 0
[Bianconi & Rahmede (2016)]




Discrete manifolds

Discrete manifolds of dimension d are d-
dimensional simplicial or cell complexes,

in which the neighbourhood of each
node is isomorphic
to a d-dimensional ball

Double-Torus




Discrete manifolds

A necessary condition for being a discrete

manifold is that each (d-1)-face a is
incident at most to two d-dimensional

simplices or cells, i.e. n, € {0,1}

NOT A MANIFOLD MANIFOLD



Example key manifolds and
their Betti numbers

¢ ¢ ¥

n-dimensional hypersphere  n-dimensional torus (cell complex)  n-dimensional cylider

Betti numbers Betti numbers Betti numbers

Po=Pu1=1 B, = n—1 Po=Puo=1
P,=0forO<k<n-—1 k= k p.=0fork #0k#n—2



Global topological synchronisation and Master Stability Function

* Global synchronisation on graphs
» Global synchronisation on simplicial and cell complexes

Weighted cohomology
» Basics of weighted cohomology
* The representation power of weighted simplicial complexes

Global topological synchronisation on weighted simplicial complexes



Topological Kuramoto
model



The higher-order simplicial
Kuramoto model

O12)

How to define
the higher-order Kuramoto model
coupling higher dimensional
topological signals?

A. P. Millan, J. J. Torres, and G.Bianconi,
Physical Review Letters, 124, 218301 (2020)



Topological synchronisation

We propose to study the higher-order Kuramoto model

defined as

. A . -I- T .
P =w-— aB[m+1] sin B[mH]qﬁ — aB[m] sin B[m]cl),

where is the vector of phases associated to n-simplices

and the topological signals ad their internal frequencies are indicated by
p=(..0,.)"

&=(.0,..)"

with the internal frequencies

o, ~ N(Q,1)



Dynamics learns topology

Topological Higher-order Kuramoto model

h— T T
¢ =w—oB, . sinB, ¢ —oB  simB,p,

In the Topological Kuramoto model the free dynamics
is localised on the

m~-dimensional holes

d(“harm7 ¢>
dt

— <uharm’ é\)>

The free dynamics is localised on harmonic components




Topological Synchronisation

The dynamical ordered state has many minima
Each corresponding to a single homology class of the simplicial complex (hole)



Topological Synchronisation




Global synchronisation of
topological signals on
simplicial and cell complexes



Global Topological
Synchronization

Which are the topological

and dynamical conditions

. under which we can observe
Global Topological Synchronization?

—0.8

For example all the edges
displaying the same dynamics?

- Carletti, Giambagli Bianconi
i (/X PRL 2023

% A Wang, Muolo, Carletti, Bianconi
l PRE 2024

-0.8



Global synchronisation
on graphs
(When all the nodes display
the same dynamics)



Global Synchronization of
iIdentical node oscillators




Uncoupled dynamics of
iIdentical node oscillators

Consider coupled identical oscillators defined on the nodes, captured
by the 0-cochain x € C° with value X, € R4 on each node .

In absence of interactions these nodes obey the same dynamics

dx, fx)
= f(x
dt :

with arbitrary non-linear function f(x) eventually describing chaotic
oscillators

The oscillators are identical but starting from different initial
conditions can have very different dynamical evolution.




Coupled identical
oscillators

On a graph oscillators on nearby nodes are coupled via the
graph Laplacian L,

Thus we consider the following coupled dynamics

dx,

dt

= f(x,) — 02 [Lioy],, h(x,)

with arbitrary non-linear functions f(x), h(x).




Synchronised state

The globally synchronised state is a state in which each
oscillator display the same dynamics

X, = X*(t) Vr € Qy(K).

Where X *satisfies the dynamics

ax*
— = f(x*
dt &%)

Does this solution ever exist?




Global synchronisation
state of topological signals

The global synchronisation is a state in which

X, =X, Vr,s € Qy(H)

The coupled dynamics for nodes signals

dx,
L= 1(x,) - azﬁ: [Loy],s B(X,)

admits always a global synchronisation state in which all the nodes

have the same dynamics.

In fact the harmonic eigenvector of the graph Laplacian is constant
uharm x 1




Synchronised state

The globally synchronised state is a state in which each oscillator
display the same dynamics

X, = X*(t) Vr € Qy(HK).

Where X *satisfies the dynamics
dx*
— = f(x¥)
dt
Under which conditions is this solution stable for the
coupled oscillators?




Master Stability Function
for graphs

The Master Stability Function establishes the dynamical
conditions ensuring the stability of global synchronisation.

It depends on the non-zero spectrum of the graph

Laplacian.

It is based on an expansion around a stable solution of the
uncoupled dynamics.




Master Stability Function
for graphs

Expanding for §X, = X, — X* we obtain

dox,

N
dr J{(x*)ox, — o Z Lygy(r, )In(x™)0x,

s=1

This equation can be projected on the eigenmodes #; of the graph
Laplacian obtaining

dn,
dt

= [Jx*) — 023y (xM)]

Therefore the synchronised state is stable if the maximum Lyapunov
exponent of the above equation obeys A, (1) < 0V

max



Global synchronisation

of higher-order topological
signals



Uncoupled dynamics of
topological signals

Consider coupled identical oscillators defined on the n-simplices,
captured by the m-cochain x € C™ with m > 0 and values x, € R¢

on each m-simplex r .

In absence of interactions these simplices obey the same dynamics

r
= f(x,)
dt '
To insure invariance of the uncoupled equations upon change of
orientation of each simplex we must impose that f(X) is an odd

function, i.e. f(x) = — f(—Xx).

dx




Proof

dax

Consider the uncoupled dynamics = f(Xr)

dt

Upon change of orientation of the simplex r we have X, - — X..

X
Therefore the dynamics becomes — = — f(—x,)

dt

Imposing invariance of the dynamics under this change of
orientation implies that the function f(X) must be odd, i.e.

f(x) = —1(—x).




Coupled identical
topological signals

e The coupled dynamics obeys

dx,

dt

= f(x,) — GZ (L], D(X,)
s

e where in order to ensure invariance under change of

orientation of the simplifies h(x) should be an odd
function.




Global synchronisation
state of topological signals

Recall that for higher order topological signals, the signs of the signal
is determined by the orientation of the simplex, i.e. X(a,.) = — X(—a,)

For instance a positive sign of an edge flux is relative to the orientation
chosen for that edge.

It follows that the state of global synchronisation is a state in
which

x, =uXx withu. € {1,- 1} Vr e Q (%)

dx*
with = f(x*)
dt




Global topological
synchronisation

e |t follows that the coupled dynamics

dx,
dt

= f(x,) = 0 ) [L1y],q h(x))
q

e can lead to global synchronisation only if the kernel of the
Hodge Laplacian L[n]admits an eigenvector u with elements
of constant absolute value.

e Therefore for identical higher-order oscillators there are not
only dynamical but also topological constraints to global
synchronisation




Topological conditions for
global synchronisation

Assume u is a vector of elements |u,.| = 1.

Global synchronisation can only happen if there is one
such vector u in the kernel of the Hodge Laplacian L[n].

Therefore we must have L[n]u = 0 or, equivalently,

_ T _
B[n]u =0,u B[n+1] =

For edge signals this condition implies:
dvu=0, culu=20




Topological constraints for
global synchronisation

o Assume u is a vector of elements |u,| = 1.
o0 0-simplex 11-1-10..0
s (00
{ SR The condition B;,,ju =0
This implies that:

The simplicial or cell complex must

be balanced

Same number of positively and negatively

oriented simplices on the n-1 faces



Topological constraints for
global synchronisation

0@ 2simplex Assume u is a vector of elements |u,.| = 1.

1
B2= (1)
O'gl) aél) 2 -1

(1,1,1)By = -1 £0

The condition uTB[nH] =0

On unweighted simplicial complexes

o®  3-simplex topological signals
o2 1
/ /052) B; = (—11> of odd dimension can never achieve
-1
U§2)\/ . .
L (1,1,1,1)B3 = 0 global synchronisation




Topological constraints for
global synchronisation

Assume u is a vector of elements |u,.| = 1.

The condition uTB[nH] =0

This implies that:
Cell complexes of any dimension can
achieve global synchronisation

overcoming topological obstruction




Square lattice with periodic boundary
conditions (torus)

* Consider a square lattice with periodic boundary
conditions (a torus).

« The eigenvector u = 1 defined on each link of
the network is in the kernel of L, i.e.

1 1 € ker(Lyy)

— T —
Indeed Bjjju=0,u' B =0

or

dvu=0, culu=20
1 I ) 1 (see figures)



Square lattice with periodic boundary
conditions (torus)

* Consider a square lattice with periodic boundary
conditions (a torus).

» The eigenvector u defined on each link of the

network and elements u, = 1 on each x-type link
1 and u, = — 1 on each y-type link is in the kernel
of Ly, i.e.u € ker(Lyyy)

1 Indeed B[l]ll — 0, uTB[z] — 0

or

-1 ¢ , -1 dvu=0, culu=20
(see figures)



Properties of global synchronisation
of topological signals

e The globally synchronised state is aligned with an harmonic
eigenvector of the Hodge Laplacian, i.e. requires
topologies with holes that span the entire simplicial or
cell complex.

Since the Hodge Laplacian has an harmonic space with
dimension given by the Betti number, the same simplicial or
cell complex can sustain different globalised states (see
tori)




Example of manifolds sustaining
global synchronisation

Synchronisation of (n — 1)-dimensional Synchronisation of any k-dimensional
topological signal topological signal

e

n-dimensional hypersphere
n-dimensional torus (cell complex)

Betti numbers

:BO — ﬁn—l —

Pp=0for0<k<n-—1 ﬂk=<”;1>

Betti numbers



Master Stability Function for
simplicial and cell complexes

The Master Stability Function establishes the dynamical
conditions ensuring the stability of global synchronisation.

It depends on the non-zero spectrum of the Hodge
Laplacian.

It should account for the possible degeneracy of the zero
eigenvalue (a dimension of the kernel greater than one)

It is based on an expansion around a stable solution of the
uncoupled dynamics.




Global topological synchronization
of unweighted d-dimensional Tori

d-dimensional Tori admit,
under suitable dynamical conditions,

global synchronization of any

g

m-dimensional topological signal with

0<m<d




Global synchronization on
unweighted simplicial complexes

d-dimensional unweighted
simplicial complexes never

admit global synchronization of

m < d topological signals of

odd dimension, for example edge signal

on a 2 dimensional simplicial

complexes



Global synchronization on
Manifolds

On d-dimensional unweighted

discrete manifolds with no boundary, i.e.n, = 1 Va

being represented as a
simplicial complexes or a cell
complex, d-dimensional topological signals

can always globally synchronize

even if d is odd.
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Global Topological
synchronisation

Stuart-Landau coupled oscillators for 1
and 2 dimensional topological signals on
a 2d Waffle and a 2d Tori

Edge signal globally synchronise on the
Tori cell complex but they do not in the
Waffle simplicial complex

Carletti, Giambagli, Bianconi (2022)
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Higher-order networks

Higher-order networks are
characterising the interactions
between two or more nodes

°
Network with

Simplicial complex e e . )
P P triadic interactions

Hypergraph



Hypergraphs or simplicial complexes?



Hypergraphs

_ 2 Articles: [A,B,C]
2 Articles: [A,B,C] 1 Article: [B,C,D]

1 Article: [A,B i
rticle: [A,B] 3 Articles: [B,D]



Hypergraphs

HYPERGRAPH

A hypergraph G = (V, Eg) is defined by a set V of N nodes and a set Eg
of hyperedges, where a (m + 1)-hyperedge indicates a set of m + 1 nodes

e =[vo,vi,va, .5 Vi,

with generic value of 1 <m < N.

An hyperdge describes the many-body interaction between the nodes.

@ There are no constraints
......... ' imposing whether an arbitrary

A O hyperedge a should belong
-: @ to the hypergraph

.
.
.
.
.
.
.
.
o
.

Z ={[1,2],[3,4],1,2,3],[1,3,4],[1,3,5], [3,5,6]}



Hypergraphs

(a) b @ © @ ...

2 Articles: [A,B,C]
1 Article: [B,C,D]
3 Articles: [B,D]

1 Article: [A,B] 2 Articles: [A,B,C]

Baccini et al. (2022)



(a)

Baccini et al. (2022)

The Representation Power of
Weighted Simplicial Complexes

CING © @@

Topological weights

w, =w,+ Zwa/>0
aDa



Weighted simplicial complexes
can encode hypergraphs
without any loss of information
At the same time they allow a
topological and geometrical investigation
of higher-order networks

Baccini et al. (2022)
ICML Prize Challenges in Topological ML 2024



Cohomology and metric matrices
(Weights)



Recall from lecture 1 the definition
of coboundary operator and its dual



Cochains

m-cochains

A m-dimensional cochain f € C™ is a linear function f : C,, — R, that
associates to every m-chain of the simplicial complex a value in R.



L? norm between cochains

We define a scalar product between »-cochains as

(L) =1t

Which has an element by element expression

This scalar product can be generalised by introducing metric matrices (see next)




Coboundary operator

Coboundary operator 6,

The coboundary operator &, : C"™ — C™*! associates to every m-cochain
of the simplicial complex (m + 1)-cochain

0 mf — f O Om+1-
Therefore we obtain

m+1

(S F)V0, V15 - - Vims1] = Z(—l)pf([vo,vl, Vel Vpal o Vinel])
p=0

If follows that if g € C"*lis givenby g =6 f.

—RT — P
Theng =B, =B, f



Adjoint of the coboundary operator

Adjoint operator §;,

The adjont of the coboundary operator 6%, : C"™*! — C™ satisfies

(& 0mf) = <5;kng»f>
where f € C"™ and g € C"*!.

If follows that if f € C" is given by f" = 0% g .

r DT _
Thenf’ = B[m+1]g = B[m+1]g



How this definition change is we introduce a
non-trivial metric?



Metric matrices

We introduce the N,, X N, metric matrices G["ni] typically taken to be diagonal with elements

(@, ) = w(a)

where w(a,.) indicates the affinity weight (inverse of a “distance”) associated to the simplex a,

For a graph, typical choices of these matrices are

G[_ﬁ([r, s], [r,s]) = w([r, s]) weight of the link

G[_(ﬁ([r], [r]) = Z w([r, s]) strength (weighted degree) of the node
SEQWH)



Scalar product between co-chains

We define a scalar product between »-cochains as
T—1
Sy =1 G[m]f

Which has an element by element expression

Ffy=Y LG,

reQ, (%)

For Gp,,; = I we recover the standard L? norm.




Coboundary operator

Coboundary operator 6,

The coboundary operator &, : C"™ — C™*! associates to every m-cochain
of the simplicial complex (m + 1)-cochain

0 mf — f O Om+1-
Therefore we obtain

m+1

(S F)V0, V15 - - Vims1] = Z(—l)pf([vo,vl, Vel Vpal o Vinel])
p=0

If follows that if g € C"*lis givenby g =6 f.

—RT — P
Theng =B, =B, f



Adjoint of the coboundary operator

Adjoint operator §;,

The adjont of the coboundary operator 6%, : C"™*! — C™ satisfies

(& 0mf) = <5;kng»f>
where f € C"™ and g € C"*!.



Ajoint operator 0"

We define the matrix s:  as the matrix representing s,

l.e. if f = 5%g, then ¢ = p* g

[m+

From the definition it follows that

R — RT -1 _ -1
( B[Wt+1] N G[m]B[mH]G[mH] - G[m]B[m+1]G[m+1] )

=B

1 [m+1]




Proof

We define the matrix B* as the matrix representing 0¥,
[m+1] m

i.e.if /=058, then =B} 28

We have the scalar product (8.6,.) = gG;, +1 B[m f

< mg,f) g(B*) [m+1] [ni]f

If follows that for any fand g

gG[m+1]B[m+1]f g(B[ +1]> G[m]f

] = [m+1] [m+1] m+1]




Weighed Hodge Laplacian

The Hodge-Laplacians
The m-dimensional Hodge-Laplacian L,, 1s defined as
L, = LiP 4 Ldown

where up and down m-dimensional Hodge Laplacians are given by

L, = 6,6m.
Lao"" = 61},

The weighted Hodge Laplacian obeys Hodge decomposition



Weighted Asymmetric Hodge Laplacians

The weighted asymmetric Hodge Laplacians

up __
Ly =B Bt = GuBpnin Gy,

down __ T -
Lo =B, B = Bl G 1B G

[m+1] m+1]

On a graph with weights of the edges indicated as w;

;j and weights on the nodes

indicated as s;, we have

- - 1

1
Si]




Hodge decomposition for weighted Hodge
Laplacians

The weighted asymmetric Hodge Laplacians

BT

[m+1]

o
LY =B Biy =GB G,

[m+1]

down _ R D T
Liown = By, B* =B, Gy, By, G

[m] [m] [m]

obey Hodge decomposition, i.e. L”p Lfn‘ﬁm =0, LﬁfﬁmLup =0

Proof:

up 7 d _
L L™ = Gy By Gy, Gn-11Bpm G[m] 0

d up _ p7T T
LivL? =Bl G 11BpuGimGrB e 1Gn B/, G 1 BrBims 116

[m+1] [m+ 1] [m]

=0

[m+1] [m+1] [m+1] [m+1]




Weighted Symmetric Hodge Laplacians

The weighted symmetric Hodge Laplacians are given by

G1/2

[m+1] [m+1] [m]

—-1/2
G 1B G

up — 12
L G[m]B[m+1]G

down __ 12T
L[m] o G[m] B[m]

On a graph with weights of the edges indicated as w;

; and weights on the nodes indicated

as §;, we have

1 |

IA‘O = GI/ZB[l]G B G2 of elements t[o](i,j) =

[0] [1177[1]1(0]




Hodge decomposition for weighted symmetric
Hodge Laplacians

The weighted symmetric Hodge Laplacians

G1/2

[m+1] m+1] [m]

up _— R* 1/2
L =By B = GiBpen G,

Lfdnoqﬁm — B[m]BEk _ G I/ZBT

—-1/2
i Gim-1Bm G

[m]

obey Hodge decomposition, i.e. L“p Lﬁfﬁm =0, Lfn‘fﬁ"”L“p =0

up § down _ (3172 —-1/2 _
; fL Lo = GlB s 11G 1 Bl Bl Gn- 1B Gy = 0
roo
owny up __ 12T 172
Lo L = G "B LG 1 BBt 11G s 1Bls 11G g = 0




Asymmetric and symmetric weighted Hodge
Laplacians are isospectral

The weighted symmetric and asymmetric Hodge Laplacians obey Hodge
decomposition,

Thus to prove that they are isospectral it is enough to show that the up-
Laplacians are isospectral and the down-Laplacians are isospectral.



Asymmetric and symmetric weighted Hodge
Laplacians are isospectral

Let us prove that

T 172 T
B[m+1]G[m]’ B[m+1]

Lup _ G1/2

B 11Gm

[m+1] [m+1]

are isospectral

G224 = A

— 12
Proof: L”p V G [m+1] [m+1] [m]

[m]

B},.411G,

Multiplying both sides by Gl/2 It follows G[m]B[m+1]G[m+1] [mH]G[l,{,,LZ]A = /IG[I,%A

If we define

V= G[l 2] vV it follows L p V G[m]B[m+1]G[m+1] [m+1]V = AV




Asymmetric and symmetric weighted Hodge
Laplacians are isospectral

« The proof that LdOW” and LdOW” are isospectral is left as an exercise.



Global synchronisation
of higher-order topological signals
on weighted simplicial complexes

Metric matrices (weights) can
overcome topological obstruction



Coupled identical topological
signals on weighted SC

e The coupled dynamics obeys

dx, .
o - - "; (L lrg (X

e Where ﬁ[n] is the symmetric weighted Laplacian.

Wang et. al 2024



Topological conditions for
global synchronisation

Assume u is a vector of elements |u,| = 1.

Global synchronisation can only happen if there is one
such vector u in the kernel of the Hodge Laplacian L[n].

Therefore we must have t[n]u = 0 or, equivalently,

—125 — 0 wT 12 _
B, G u=0u'G;B.;;=0

Wang et. al 2024




Topological constraints for global
synchronisation on unweighted SC

0@ 2simplex Assume u is a vector of elements |u,.| = 1.
1
B, = <_1>
ey e 2=\ -
1 3 The condition uTB[n+1] =0
(1,1,1)By = -1 #0
oV
On unweighted simplicial complexes
o®  3-simplex topological signals
o
1 - - -
/ /052) B; = (—11> of odd dimension can never achieve
U§2)\/ N . .
(1,1,1,1)B3 = 0 global synchronisation




Avoiding the topological constraints for
global synchronisation with geometry

Assume u is a vector of elements |u,| = 1.

UgND The condition u' G|;iBy,,;; = 0 with u = 1 implies
N (. 112

;51) W1 0 0 ) 1
(LLHl 0 w0 < 1 ) =0
1

L0 0 w?) T

Thus if w”> + w,”> — w;"? = 0

Wang et. al 2024

the weights can overcome the topological obstruction




Edge signal globally
synchronise on weighted SC

Triangulated Torus Triangulate Waffle

A W,
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Global synchronisation
on triangulated waffle

1t
©
Global synchronisation

on triangulated torus Wang et. al 2024



Global topological synchronisation and Master Stability Function

* Global synchronisation on graphs
» Global synchronisation on simplicial and cell complexes

Weighted cohomology
» Basics of weighted cohomology
* The representation power of weighted simplicial complexes

Global topological synchronisation on weighted simplicial complexes



