Measure Theory Fifth Week

Integration



With (X, A) a measurable space,
S is the collection of simple functions and

S, is the collection of non-negative simple
functions.

X4 is the function such that xya(z) = 1 if
re Aand ya(x)=0if x € A.

If 11 is also a measure defined on A,
and f=>" a;xa Via, €R
for finitely many disjoint A,..., A4, € A

define f fdu = Zlf;l aipt(A;)

(where 0 - 00 = 00 - 0 = 0).



Need to know that [ f du is well defined:

k
Suppose g = fand g =} 5, bjxB;:

We can break down both g and f further as
simple functions by the disjoint sets

(AiﬂBjH:l,...,n ]Il,,k)

(assuming X = U;A; = U;B;)
and f = Zz' Zj i X A,NB; and
g = Zz Zj ijAmBj-



But where A; N B; # 0 by f = g it must
be that a; = b;

and where A; N B; = () it doesn’t matter,
because u(A; N B;) = 0.

Therefore [ g dpisequalto Zj a;p(A; N Bj),
and by > . pu(A; N Bj) = p(4;)
we have that [ g du= [ f dpu.



The simple functions defined on a measur-
able space (X, A) form a vector subspace:

if f is a simple function then af is also a
simple function for any o € R,

if f, g are simple functions then f + g is a
simple function.

The latter is true by taking the collection
(AZHBJ |z:1,,n ]Zl,,k)

where the Ay, ..., A, define f and the By, ..., B;
define g.



The natural question is whether integration
is a linear functional on the subspace of sim-
ple functions.

Lemma:
[af du=a [ fduand
J(f+9)du=[fdu+ [gdn



Proof:
Let Ay,..., A, and aq,...,a, define f.

af is defined by the same sets and a; = «a;,
therefore [ af du=>", aa;u(A;) =
o5, il A) = o [ f dp.

Let By,..., By and by, ..., b define g.

f + g is defined by a; + b; and the
(A,NB;|i=1,....on j=1,....k):

J(f+9) dp =323 (ai+bj)u(AiN By)

> i 2o Gip(AiNBj)+) 2 > bin(AiNB;)
[ fdu+ [gdu



Lemma: If f < g for simple functions f, g
then [ f du < [ g du.

Proof: g=f+ (g — f)

and g — f is a simple function in S,.



Lemma: Let f € S,

and let f; < fo < ... be a sequence of
simple functions in &,

such that for each x

f(x) =lim; o fi(x).

Then ff dp = 1imi_>ooffi dp.



As f; < f for every i,
it follows that [ f; du < [ f dp.

For any € > 0 define simple functions g;

by gi(x) = min(fi(x), f(z) — o).

Define B; := {z | gi(z) < f(z) — €}:
p.w. convergence = N, B; = ()

which implies by a previous lemma that
lim; o0 p(B;) = 0.

Because simple functions have finite values,
f has a maximum finite value and it follows
from lim; o p(B;) = 0 that

lim; o0 [ gi dp > —e+ [ f dp.

The rest follows by ¢; < f; for every ¢ and
the arbitrary choice of e. O
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Let f be a measurable function f : X —
0, 00].

The integral [ f dp is defined to be

SWyes.. g<r J 9 dh:
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Lemma: Let f : X — [0,00] be a mea-
surable function

and let f; < fo < ... be a sequence of
simple functions in S,

such that for each x

Then ff du = hmHooffZ- dp.
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Proof: Assume first that [ fdu < co. For
any given € > 0 let g be a simple function
such that ¢ < f and

[gdu=>—e+ [ fdpu,

(by definition of the integral exists).

As the fi = f; A g are also simple functions
with limy_,ee fi(x) = g(x) for all z,

it follows that

limy oo [ fidu= [gdu>—e+ [ fdu

The rest follows from f; < f; =

And if [ fdp = oo do the same with any
M>0and0<g< fwith [gdu> M.
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Monotone Convergence Theorem:

Let f: X — [0,00] and f; : X — [0, 00]

be measurable functions
such that fi < fo < ...

such that for each x

f(x) = lim;_,o fi(z).

Then ff dp = hmi_moffz- d.
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Proof: By previous lemma, there is a se-
quence (g; |l =1,2,...) of simple functions

with ¢g; < f for every [ and

lim;,o0 gi(x) = f(x) for every z.

By the last lemma liml_mfgl dp = ffd,u.

For every: = 1,2, ... there are simple func-
tion h; © S_|_

with hy < Ry, ... andlim;_,o hi(z) = fi(x)
and lim;_o [ B dp = [ fi dp.

Forevery [ =1,2,...

define f = V; j<i(R} A g1).

We have fi < fo < ... and Vi fl < f;.
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Choosing any x and € > 0 there is an ¢ such
that fi(x) > f(x) — 5 and then there is a j
such that h'(z) > fi(x) — §.

This means that lim;_ fl(z) = gi(z)
and so lim;_,o f fjl dy = fgl ds.

And with f]l < f; for all j it follows that

limj oo [ f dp > [ g1 dp.

But with lim; o [ fj du < [ fdu
and limyo [ g1 dp = [ f dp.
— 1imj_>ooffj d,u = ff d,u []
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Note: The same concluson holds for the
more liberal condition lim; . fi(z) = f(x)
for almost all x,

since one can restict all arguments to the
set. where the equality holds and the com-
plement of this set contributes nothing to
the integrals.
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Any measurable f: X — [—o00, +00]

is called integrable it

both [ f* du and [ f~ du are finite.

If either [ f* dw or [ f~ du is finite, then
[ f dup is defined to be

Jfrdw — [ ffdu

If A is a measurable set and f a measurable
function

then [, f du = [ xaf dp, given that it is
well defined.
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Fatou’s Lemma:

Let f1, fo,... be asequence of non-negative
valued measurable functions.

Then flim inf, f, dp < liminf, f fn dp.
Proof: Let g, = inf};”  fi.

We have g1 < go <--- < g, < f, and
limy, 00 gn(x) = liminf, f,(z) for all x.

By the monotone convergence theorem,
f liminf,, f, dy = f lim,, g, dpp = lim,, f gp dp =
lim infnfgn dp < lim infnf fn dp.
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Dominated Convergence Theorem
Let g : X — [0,00) be an integrable func-
tion and

let f and fi, fo,... be [—o0, +00] valued
measurable functions

such that f(x) = lim, f,(z) almost every-
where

and | f(z)] < g().

Then [ f dp =lim, [ f, du.
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Proof:

By Fatou’s Lemma

[liminf;(g+ f;) dp <liminf; [(g+ fi) du,
[liminf;(g— fi;) dp < liminf; [(g— f;) du.

Therefore [liminf; f; dp < liminf; [ f; du

and [ limsup; f; du > limsup; [ f; du.

As limsup, f; = liminf; f; all four values
must be equal.
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