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Chapter II. CONDITIONING. STOCHASTIC PROCESSES.

§1. CONDITIONAL EXPECTATIONS.

Suppose that X is a random variable, whose expectation exists (i.e. E|X| < ∞,

or X ∈ L1). Then EX, the expectation of X, is a scalar (a number) – non-random.

The expectation operator E averages out all the randomness in X, to give its mean (a

weighted average of the possible value of X, weighted according to their probability, in the

discrete case). It often happens that we have partial information about X – for instance,

we may know the value of a random variable Y which is associated with X, i.e. carries

information about X. We may want to average out over the remaining randomness. This

is an expectation conditional on our partial information, or more briefly a conditional

expectation. This idea will be familiar already from elementary courses, in two cases:

1. Discrete case, based on the formula

P (A|B) := P (A ∩B)/P (B) if P (B) > 0.

If X takes values x1, · · · , xm with probabilities f1(xi) > 0, Y takes values y1, · · · , yn with

probabilities f2(yj) > 0, (X,Y ) takes values (xi, yj) with probabilities f(xi, yj) > 0, then

(i) f1(xi) = Σjf(xi, yj), f2(yj) = Σif(xi, yj),

(ii) P (Y = yj |X = xi) = P (X = xi, Y = yj)/P (X = xi) = f(xi, yj)/f1(xi)

= f(xi, yj)/Σjf(xi, yj).

This is the conditional distribution of Y given X = xi, written

fY |X(yj |xi) = f(xi, yj)/f1(xi) = f(xi, yj)/Σjf(xi, yj).

Its expectation is

E(Y |X = xi) = ΣjyjfY |X(yj |xi) = Σjyjf(xi, yj)/Σjf(xi, yj).

The problem here is that this approach only works when the events on which we condition

have positive probability, which only happens in the discrete case.

2. Density case. If (X,Y ) has density f(x, y),

X has density f1(x) :=

∫ ∞

−∞
f(x, y)dy, Y has density f2(y) :=

∫ ∞

−∞
f(x, y)dx.
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We define the conditional density of Y given X = x by the continuous analogue of the

discrete formula above:

fY |X(y|x) := f(x, y)/f1(x) = f(x, y)/

∫ ∞

−∞
f(x, y)dy.

Its expectation is

E(Y |X = x) =

∫ ∞

−∞
yfY |X(y|x)dy =

∫ ∞

−∞
yf(x, y)dy/

∫ ∞

−∞
f(x, y)dy.

Example: Bivariate normal distribution, N(µ1, µ2, σ
2
1 , σ

2
2 , ρ).

E(Y |X = x) = µ2 + ρ
σ2

σ1
(x− µ1),

the familiar regression line of statistics (linear model).

The problem here is that joint densities need not exist – do not exist, in general.

One of the great contributions of Kolmogorov’s classic book of 1933 [Kol] was the

realization that measure theory – specifically, the Radon-Nikodym theorem – provides a

way to treat conditioning in general, without making assumptions that we are in one of

the two cases – discrete case and density case – above.

Recall that the probability triple is (Ω,F , P ). Suppose that B is a sub-σ-field of F ,

B ⊂ F (recall that a σ-field represents information; the big σ-field F represents ‘knowing

everything’, the small σ-field B represents ‘knowing something’).

Suppose that Y is a non-negative random variable whose expectation exists: EY <

∞. The set-function

Q(B) :=

∫
B

Y dP (B ∈ B)

is non-negative (because Y is), σ-additive – because∫
B

Y dP = Σn

∫
Bn

Y dP

if B = ∪nBn, Bn disjoint – and defined on the σ-algebra B, so is a measure on B. If

P (B) = 0, then Q(B) = 0 also (the integral of anything over a null set is zero), so Q << P .

By the Radon-Nikodym theorem (Week 1), there exists a Radon-Nikodym derivative of Q

with respect to P on B, which is B-measurable [in the Radon-Nikodym theorem as stated

in Week 1, we had F in place of B, and got a random variable, i.e. an F-measurable

function. Here, we just replace F by B.] Following [Kol], we call this Radon-Nikodym
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derivative the conditional expectation of Y given (or conditional on) B, E(Y |B): this is

B-measurable, integrable, and satisfies∫
B

Y dP =

∫
B

E(Y |B)dP ∀B ∈ B. (∗)

In the general case, where Y is a random variable whose expectation exists (E|Y | < ∞)

but which can take values of both signs, decompose Y as

Y = Y+ − Y−

and define E(Y |B) by linearity as

E(Y |B) := E(Y+|B)− E(Y−|B).

Suppose now that B is the σ-field generated by a random variable X: B = σ(X)

(so B represents the information contained inX, or what we know when we knowX). Then

E(Y |B) = E(Y |σ(X)), which is written more simply as E(Y |X). Its defining property is∫
B

Y dP =

∫
B

E(Y |X)dP ∀B ∈ σ(X).

Similarly, if B = σ(X1, · · · , Xn) (B is the information in (X1, · · · , Xn)) we write

E(Y |σ(X1, · · · , Xn) as E(Y |X1, · · · , Xn):∫
B

Y dP =

∫
B

E(Y |X1, · · · , Xn)dP ∀B ∈ σ(X1, · · · , Xn).

Note. 1. To check that something is a conditional expectation: we have to check that it

integrates the right way over the right sets [i.e., as in (*)].

2. From (*): if two things integrate the same way over all sets B ∈ B, they have the same

conditional expectation given B.
3. For notational convenience, we shall pass between E(Y |B) and EBY at will.

4. The conditional expectation thus defined coincides with any we may have already

encountered - in regression or multivariate analysis, for example. However, this may not

be immediately obvious. The conditional expectation defined above – via σ-fields and the

Radon-Nikodym theorem – is rightly called by Williams ([W], p.84) ‘the central definition

of modern probability’. It may take a little getting used to. As with all important but non-

obvious definitions, it proves its worth in action: see below for properties of conditional

expectations, and for its use in studying stochastic processes, particularly martingales

[which are defined in terms of conditional expectations].
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§2. PROPERTIES OF CONDITIONAL EXPECTATIONS.

1. B = {∅,Ω}. Here B is the smallest possible σ-field (any σ-field of subsets of Ω contains

∅ and Ω), and represents ‘knowing nothing’.

E(Y |{∅,Ω}) = EY.

Proof. We have to check (*) for B = ∅ and B = Ω. For B = ∅ both sides are zero; for

B = Ω both sides are EY . •

2. B = F . Here B is the largest possible σ-field, and represents ‘knowing everything’.

E(Y |F) = Y P − a.s.

Proof. We have to check (*) for all sets B ∈ F . The only integrand that integrates like Y

over all sets is Y itself, or a function agreeing with Y except on a set of measure zero.

Note. When we condition on F (‘knowing everything’), we know Y (because we know

everything). There is thus no uncertainty left in Y to average out, so taking the conditional

expectation (averaging out remaining randomness) has no effect, and leaves Y unaltered.

3. If Y is B-measurable, E(Y |B) = Y P − a.s.

Proof. Recall that Y is always F-measurable (this is the definition of Y being a random

variable). For B ⊂ F , Y may not be B-measurable, but if it is, the proof above applies

with B in place of F .

Note. If Y is B-measurable, when we are given B (that is, when we condition on it), we

know Y . That makes Y effectively a constant, and when we take the expectation of a

constant, we get the same constant.

4. If Y is B-measurable, E(Y Z|B) = Y E(Z|B) P − a.s.

We refer for the proof of this to [W], p.90, proof of (j).

Note. Williams calls this property ‘taking out what is known’. To remember it: if Y is

B-measurable, then given B we know Y , so Y is effectively a constant, so can be taken out

through the integration signs in (*) (with Y Z in place of Y ).

5. If C ⊂ B, E[E(Y |B)|C] = E[Y |C] a.s.

Proof. ECEBY is C-measurable, and for C ∈ C ⊂ B,∫
C

EC [EBY ]dP =

∫
C

EBY dP (definition of EC as C ∈ C)

=

∫
C

Y dP (definition of EB as C ∈ B).
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So EC [EBY ] satisfies the defining relation for ECY . Being also C-measurable, it is ECY

(a.s.). •

5’. If C ⊂ B, E[E(Y |C)|B] = E[Y |C] a.s.

Proof. E[Y |C] is C-measurable, so B-measurable as C ⊂ B, so E[.|B] has no effect, by 3.

Note. 5, 5’ are the two forms of the iterated conditional expectations property. When

conditioning on two σ-fields, one larger (finer), one smaller (coarser), the coarser rubs out

the effect of the finer, either way round. This may be thought of as the coarse-averaging

property: we shall use this term interchangeably with the iterated conditional expectations

property (Williams [W] uses the term tower property).

6. Role of independence. If Y is independent of B,

E(Y |B) = EY a.s.

Proof. See [W], p.88, 90, property (k).

Note. In the elementary definition P (A|B) := P (A ∩B)/P (B) (if P (B) > 0), if A and B

are independent (that is, if P (A ∩B) = P (A).P (B)), then P (A|B) = P (A): conditioning

on something independent has no effect. One would expect this familiar and elementary

fact to hold in this more general situation also. It does – and the proof of this rests on the

proof above.

7. Conditional Mean Formula. E[E(Y |B)] = EY P − a.s.

Proof. Take C = {∅,Ω} in 5 and use 1. •
Example. Check this for the bivariate normal distribution considered above.

8. Conditional Variance Formula. varY = EXvar(Y |X) + varXE(Y |X).

Recall varX := E[(X − EX)2]. Expanding the square,

varX = E[X2 − 2X.(EX)+ (EX)2] = E(X2)− 2(EX)(EX)+ (EX)2 = E(X2)− (EX)2.

Conditional variances can be defined in the same way. Recall that E(Y |X) is constant

when X is known (= x, say), so can be taken outside an expectation over X, EX say.

Then

var(Y |X) := E(Y 2|X)− [E(Y |X)]2.

Take expectations of both sides over X:

EXvar(Y |X) = EX [E(Y 2|X)]− EX [E(Y |X)]2.
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Now EX [E(Y 2|X)] = E(Y 2), by the Conditional Mean Formula, so the right is, adding

and subtracting (EY )2,

{E(Y 2)− (EY )2} − {EX [E(Y |X)]2 − (EY )2}.

The first term is varY , by above. Since E(Y |X) has EX -mean EY , the second term is

varXE(Y |X), the variance (over X) of the random variable E(Y |X (random because X

is). Combining, the result follows.

Interpretation. varY = total variability in Y ,

EXvar(Y |X) = variability in Y not accounted for by knowledge of X,

varXE(Y |X) = variability in Y accounted for by knowledge of X.

Example: the bivariate normal.

Y |X = x is N(µ2 + ρ
σ2

σ1
(x− µ1), σ

2
2(1− ρ2)), varY = σ2

2 ,

E(Y |X = x) = µ2 + ρ
σ2

σ1
(x− µ1), E(Y |X) = µ2 + ρ

σ2

σ1
(X − µ1),

which has variance (ρσ2/σ1)
2varX = (ρσ2/σ1)

2σ2
1 = ρ2σ2

2 ,

var(Y |X = x) = σ2
2 for all x, var(Y |X) = σ2

2(1− ρ2), EXvar(Y |X) = σ2
2(1− ρ2).

COROLLARY. E(Y |X) has the same mean as Y and smaller variance (if anything).

Proof. From the Conditional Mean Formula, E[E(Y |X)] = EY . Since var(Y |X) ≥ 0,

EXvar(Y |X) ≥ 0, so varE[Y |X] ≤ varY from the Conditional Variance Formula.

This result has important applications in estimation theory. Suppose we are to

estimate a parameter θ, and are considering a statistic X as a possible estimator (or

basis for an estimator) of θ. We would naturally want X to contain all the information

on θ contained within the entire sample. What (if anything) does this mean in precise

terms? The answer lies in the concept of sufficiency (‘data reduction’) – one of the most

important contributions to statistics of the great English statistician R. A. (Sir Ronald)

Fisher (1880-1962). In the language of sufficiency, the Conditional Variance Formula is

seen as (essentially) the Rao-Blackwell Theorem, a key result in the area (see the index in

your favourite Statistics book if you want more here).

§3. FILTRATIONS.

The Kolmogorov triples (Ω,F , P ), and the Kolmogorov conditional expectations
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E(X|B), give us all the machinery we need to handle static situations involving randomness.

To handle dynamic situations, involving randomness which unfolds with time, we need

further structure.

We may take the initial, or starting, time as t = 0. Time may evolve discretely,

or continuously. We defer the continuous case; in the discrete case, we may suppose

time evolves in integer steps, t = 0, 1, 2, · · ·. We wish to model a situation involving

randomness unfolding with time. We suppose, for simplicity, that information is never

lost (or forgotten): thus, as time increases we learn more. Recall that σ-fields represent

information or knowledge. We thus need a sequence of σ-fields {Fn : n = 0, 1, 2, · · ·}, which
are increasing:

Fn ⊂ Fn+1 (n = 0, 1, 2, · · ·),

with Fn representing the information, or knowledge, available to us at time n. We shall

always suppose all σ-fields to be complete, i.e., to contain all subsets of null sets as null sets

(this can be avoided, and is not always appropriate, but it simplifies matters and suffices

for our purposes). Thus F0 represents the initial information (if there is none, F0 = {∅,Ω},
the trivial σ-field). On the other hand,

F∞ := limn→∞Fn

represents all we ever will know (the ‘Doomsday σ-field’). Often, F∞ will be F (the σ-field

from Week 1, representing ‘knowing everything’. But this will not always be so; see e.g.

[W], §15.8 for an interesting example.

Such a family {Fn : n = 0, 1, 2, · · ·} is called a filtration; a probability space

endowed with such a filtration, {Ω, {Fn},F , P} is called a filtered probability space. (These

definitions are due to P. A. MEYER of Strasbourg; Meyer and the Strasbourg (and more

generally, French) school of probabilists have been responsible for the ‘general theory of

[stochastic] processes’, and for much of the progress in stochastic integration, since the

1960s; see [Mey66], [Mey76].) Since the filtration is so basic to the definition of a stochastic

process, the more modern term for a filtered probability space is a stochastic basis.

§4. DISCRETE-PARAMETER STOCHASTIC PROCESSES.

A stochastic process X = {Xt : t ∈ I} is a family of random variables, defined

on some common probability space, indexed by an index-set I. Usually (always in this

course), I represents time (sometimes I represents space, and one callsX a spatial process).

Here, I = {0, 1, 2, · · · , T} (finite horizon) or I = {0, 1, 2, · · ·} (infinite horizon).

The (stochastic) process X = (Xn)
∞
n=0 is said to be adapted to the filtration
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(Fn)
∞
n=0 if

Xn is Fn −measurable.

So if X is adapted, we will know the value of Xn at time n. If Fn = σ(X0, X1, · · · , Xn),

we call (Fn) the natural filtration of X. Thus a process is always adapted to its natural

filtration. A typical situation is that

Fn = σ(W0,W1, · · · ,Wn)

is the natural filtration of some process W = (Wn). Then X is adapted to (Fn), i.e. each

Xn is Fn- (or σ(W0, · · · ,Wn)-) measurable, iff

Xn = fn(W0,W1, · · · ,Wn)

for some measurable function fn (non-random) of n+ 1 variables.

Notation. For a random variable X on (Ω,F , P ), X(ω) is the value X takes on ω (ω

represents the randomness). Often, to simplify notation, ω is suppressed – e.g., we may

write EX :=
∫
Ω
XdP instead of EX :=

∫
Ω
X(ω)dP (ω).

For a stochastic process X = (Xn), it is convenient (e.g., if using suffices, ni say)

to use Xn, X(n) interchangeably, and we shall feel free to do this. With ω displayed, these

become Xn(ω), X(n, ω), etc.

§5. STOCHASTIC PROCESSES IN CONTINUOUS TIME

The underlying set-up is as before, but now time is continuous rather than discrete;

thus the time-variable will be t ≥ 0 in place of n = 0, 1, 2, . . .. The information available

at time t is the σ-field Ft; the collection of these as t ≥ 0 varies is the filtration, modelling

the information flow. The underlying probability space, endowed with this filtration, gives

us the stochastic basis (filtered probability space) on which we work,

We assume that the filtration is complete (contains all subsets of null-sets as null-

sets), and right-continuous: Ft = Ft+, i.e.

Ft = ∩s>tFs

(the ‘usual conditions’ – right-continuity and completeness – in Meyer’s terminology).

A stochastic process X = (Xt)t≥0 is a family of random variables defined on a

filtered probability space with Xt Ft-measurable for each t: thus Xt is known when Ft

is known, at time t. If {t1, · · · , tn} is a finite set of time-points in [0,∞), (Xt1 , · · · , Xtn),

or (X(t1), · · · , X(tn)) (for typographical convenience, we use both notations interchange-

ably, with or without ω: Xt(ω), or X(t, ω)) is a random n-vector, with a distribution,
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µ(t1, · · · , tn) say. The class of all such distributions as {t1, · · · , tn} ranges over all finite

subsets of [0,∞) is called the class of all finite-dimensional distributions of X. These sat-

isfy certain obvious consistency conditions:

(i) deletion of one point ti can be obtained by ‘integrating out the unwanted variable’, as

usual when passing from joint to marginal distributions,

(ii) permutation of the ti permutes the arguments of the measure µ(t1, · · · , tn) on IRn.

Conversely, a collection of finite-dimensional distributions satisfying these two consistency

conditions arises from a stochastic process in this way (this is the content of the DANIELL-

KOLMOGOROV Theorem: P. J. Daniell in 1918, A. N. Kolmogorov in 1933).

Important though the Daniell-Kolmogorov theorem is as a general existence re-

sult, however, it does not take us very far. It gives a stochastic process X as a random

function on [0,∞), i.e. a random variable on IR[0,∞). This is a vast and unwieldy space;

we shall usually be able to confine attention to much smaller and more manageable spaces,

of functions satisfying regularity conditions. The most important of these is continuity:

we want to be able to realise X = (Xt(ω))t≥0 as a random continuous function, i.e. a

member of C[0,∞); such a process X is called path-continuous (since the map t → Xt(ω)

is called the sample path, or simply path, given by ω) – or more briefly, continuous. This

is possible for the extremely important case of Brownian motion (below), for example, and

its relatives. Sometimes we need to allow our random function Xt(ω) to have jumps. It is

then customary, and convenient, to require Xt to be right-continuous with left limits (rcll),

or càdlàg (continu à droite, limite à gauche) - i.e. to have X in the space D[0,∞) of all

such functions (the Skorohod space). This is the case, for instance, for the Poisson process

(below) and its relatives.

General results on realisability – whether or not it is possible to realise, or obtain,

a process so as to have its paths in a particular function space – are known, but it is

usually better to construct the processes we need directly on the function space on which

they naturally live.

Given a stochastic process X, it is sometimes possible to improve the regularity of

its paths without changing its distribution (that is, without changing its finite-dimensional

distributions). For background on results of this type (separability, measurability, versions,

regularization, ...) see e.g. the classic book Doob [D]. The continuous-time theory is tech-

nically much harder than the discrete-time theory, for two reasons:

(i) questions of path-regularity arise in continuous time but not in discrete time,

(ii) uncountable operations (like taking sup over an interval) arise in continuous time. But

measure theory is constructed using countable operations: uncountable operations risk los-

ing measurability.
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6. RENEWAL PROCESSES; POISSON PROCESS.

Suppose we use components – light-bulbs, say – whose lifetimes X1, X2, . . . are

independent, all with law F on (0,∞). The first component is installed new, used until

failure, then replaced, and we continue in this way. Write

Sn :=
n∑
1

Xi, Nt := max{k : Sk < t}.

Then N = (Nt : t ≥ 0) is called the renewal process generated by F ; it is a counting

process, counting the number of failures seen by time t.

The law F has the lack-of-memory property iff the components show no aging –

that is, if a component still in use behaves as if new. The condition for this is

P (X > s+ t|X > s) = P (X > t) (s, t > 0),

or

P (X > s+ t) = P (X > s)P (X > t).

Writing F (x) := 1− F (x) (x ≥ 0) for the tail of F , this says that

F (s+ t) = F (s)F (t) (s, t ≥ 0).

Obvious solutions are

F (t) = e−λt, F (t) = 1− e−λt

for some λ > 0 - the exponential law E(λ). Now

f(s+ t) = f(s)f(t) (s, t ≥ 0)

is a ‘functional equation’ – the Cauchy functional equation – and we quote that these are

the only solutions, subject to minimal regularity (such as one-sided boundedness, as here

– even on an interval of arbitrarily small length!).

So the exponential laws E(λ) are characterized by the lack-of-memory property.

Also, the lack-of-memory property corresponds in the renewal context to the Markov prop-

erty (below – for predicting the future, knowing the present is enough: we do not need

to know the past). The renewal process generated by E(λ) is called the Poisson (point)

process with rate λ, Ppp(λ). So:

among renewal processes, the only Markov processes are the Poisson processes.

When we meet Lévy processes (processes with stationary independent increments) we shall

find also:

among renewal processes, the only Lévy processes are the Poisson processes.
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