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Chapter III. MARTINGALES.

§1. DISCRETE-PARAMETER MARTINGALES

We summarise what we need; for details, see Williams[W], or Neveu [Nev].

Definition. A process X = (Xn) is called a martingale relative to ((Fn), P ) if

(i) X is adapted (to (Fn)),

(ii) E|Xn| < ∞ for all n,

(iii) E[Xn|Fn−1] = Xn−1 P − a.s. (n ≥ 1);

X is a supermartingale if in place of (iii)

E[Xn|Fn−1] ≤ Xn−1 P − a.s. (n ≥ 1);

X is a submartingale if in place of (iii)

E[Xn|Fn−1] ≥ Xn−1 P − a.s. (n ≥ 1).

Thus: a martingale is ‘constant on average’, and models a fair game;

a supermartingale is ‘decreasing on average’, and models an unfavourable game;

a submartingale is ‘increasing on average’, and models a favourable game.

Note. 1. Martingales have many connections with harmonic functions in probabilistic

potential theory. The terminology in the inequalities above comes from this: supermartin-

gales correspond to superharmonic functions, submartingales to subharmonic functions.

2. X is a submartingale [supermartingale ] iff −X is a supermartingale [submartingale ];

X is a martingale iff it is both a submartingale and a supermartingale .

3. (Xn) is a martingale iff (Xn−X0) is a martingale . So we may without loss of generality

take X0 = 0 when convenient.

4. If X is a martingale , then for m < n

E[Xn|Fm] = E[E(Xn|Fn−1)|Fm] (iterated conditional expectations)

= E[Xn−1|Fm] a.s. (martingale property)

= · · · = E[Xm|Fm] a.s. (induction on n),

= Xm (Xm is Fm-measurable)

and similarly for submartingales, supermartingales.

5. Examples of a martingale include: sums of independent, integrable zero-mean random

variables [submartingale : positive mean; supermartingale : negative mean].
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From the OED: martingale (etymology unknown)

1. 1589. An article of harness, to control a horse’s head.

2. Naut. A rope for guying down the jib-boom to the dolphin-striker.

3. A system of gambling which consists in doubling the stake when losing in order to

recoup oneself (1815).

Thackeray: ‘You have not played as yet? Do not do so; above all avoid a martingale if you

do.’

Problem. Analyse this strategy.

Gambling games have been studied since time immemorial – indeed, the Pascal-

Fermat correspondence of 1654 which started the subject was on a problem (de Méré’s

problem) related to gambling.

The doubling strategy above has been known at least since 1815.

The term ‘martingale ’ in our sense is due to J. VILLE (1939). Martingales were

studied by Paul LÉVY (1886-1971) from 1934 on [see obituary, Annals of Probability 1

(1973), 5-6] and by J. L. DOOB (1910-2004) from 1940 on. The first systematic exposition

was Doob [D], Ch. VII.

Example: Accumulating data about a random variable ([W], 96, 166-167).

If ξ ∈ L1(Ω,F , P ), Mn := E(ξ|Fn) (so Mn represents our best estimate of ξ based on

knowledge at time n), then by iterated conditional expectations

E[Mn|Fn−1] = E[E(ξ|Fn)|Fn−1] = E[ξ|Fn−1] = Mn−1,

so (Mn) is a martingale . One has the convergence

Mn → M∞ := E[ξ|F∞] a.s. and in L1;

see below.

§2. MARTINGALE CONVERGENCE.

A supermartingale is ‘decreasing on average’. Recall that a decreasing sequence

[of real numbers] that is bounded below converges (decreases to its greatest lower bound

or infimum). This suggests that a supermartingale which is bounded below converges a.s.

This is so [Doob’s Forward Convergence Theorem: [W], §§11.5, 11.7].
More is true. Call X L1-bounded if

sup
n

E|Xn| < ∞.

THEOREM (DOOB). An L1-bounded supermartingale is a.s. convergent: there exists

X∞ finite such that

Xn → X∞ (n → ∞) a.s.
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In particular, we have

DOOB’S MARTINGALE CONVERGENCE THEOREM [W, §11.5]. An L1-

bounded martingale converges a.s.

We say that

Xn → X∞ in L1

if

E|Xn −X∞| → 0 (n → ∞).

For a class of martingales, one gets convergence in L1 as well as almost surely [= with

probability one].

Theorem ([N, IV.2], [W, Ch.14]). The following are equivalent for martingales X =

(Xn):

(i) Xn converges in L1,

(ii) Xn is L1-bounded, and its a.s. limit X∞ (which exists, by above) satisfies

Xn = E[X∞|Fn],

(iii) There exists an integrable random variable X with

Xn = E[X|Fn].

Such martingales are called regular [N] or uniformly integrable (UI) [W], or closed;

the limit X∞ is said to close the martingale.

§3. MARTINGALE TRANSFORMS.

Now think of a gambling game, or series of speculative investments, in discrete

time. There is no play at time 0; there are plays at times n = 1, 2, · · ·, and

∆Xn := Xn −Xn−1

represents our net winnings per unit stake at play n. Thus if Xn is a martingale, the game

is ‘fair on average’.

Call a process C = (Cn)
∞
n=1 previsible (or predictable) if

Cn is Fn−1 −measurable for all n ≥ 1.
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Think of Cn as your stake on play n (C0 is not defined, as there is no play at time 0).

Previsibility says that you have to decide how much to stake on play n based on the

history before time n (i.e., up to and including play n− 1). Your winnings on game n are

Cn∆Xn = Cn(Xn −Xn−1). Your total (net) winnings up to time n are

Yn = Σn
k=1Ck∆Xk = Σn

k=1Ck(Xk −Xk−1).

We write

Y = C •X, Yn = (C •X)n, ∆Yn = Cn∆Xn

((C •X)0 = 0 as Σ0
1 is empty), and call C •X the martingale transform of X by C.

Theorem. (i) If C is a bounded non-negative previsible process and X is a supermartin-

gale, C •X is a supermartingale null at zero.

(ii) If C is bounded and previsible and X is a martingale, C • X is a martingale null at

zero.

Proof. With Y = C •X as above,

E[Yn − Yn−1|Fn−1] = E[Cn(Xn −Xn−1)|Fn−1]

= CnE[(Xn −Xn−1)|Fn−1]

(as Cn is bounded, so integrable, and Fn−1-measurable, so can be taken out)

≤ 0

in case (i), as C ≥ 0 and X is a supermartingale,

= 0

in case (ii), as X is a martingale. •

Interpretation. You can’t beat the system!

In the martingale case, previsibility of C means we can’t foresee the future (which is

realistic and fair). So we expect to gain nothing – as we should.

Note. 1. Martingale transforms were introduced and studied by D. L. BURKHOLDER in

1966 [Ann. Math. Statist. 37, 1494-1504]. For a textbook account, see e.g. [N], VIII.4.

2. Martingale transforms are the discrete analogues of stochastic integrals. They dominate

the mathematical theory of finance in discrete time, just as stochastic integrals dominate

the theory in continuous time. We use them to rebalance our portfolio as new price

information comes in.
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PROPOSITION (Martingale Transform Lemma). An adapted sequence of real

integrable random variables (Mn) is a martingale iff for any bounded previsible sequence

(Hn),

E(Σn
r=1Hr∆Mr) = 0 (n = 1, 2, · · ·).

Proof. If (Mn) is a martingale, X defined by X0 = 0, Xn = Σn
1Hr∆Mr (n ≥ 1) is the

martingale transform H •M , so is a martingale.

Conversely, if the condition of the Proposition holds, choose j, and for any Fj-

measurable set A write Hn = 0 for n ̸= j + 1, Hj+1 = IA. Then (Hn) is previsible, so the

condition of the Proposition, E(Σn
1Hr∆Mr) = 0, becomes

E[IA(Mj+1 −Mj)] = 0.

Since this holds for every set A ∈ Fj , the definition of conditional expectation gives

E(Mj+1|Fj) = Mj .

Since this holds for every j, (Mn) is a martingale. •

§4. STOPPING TIMES AND OPTIONAL STOPPING.

A random variable T taking values in {0, 1, 2, · · · ; +∞} is called a stopping time

(or optional time) if

{T ≤ n} = {ω : T (ω) ≤ n} ∈ Fn ∀n ≤ ∞.

Equivalently,

{T = n} ∈ Fn n ≤ ∞.

Think of T as a time at which you decide to quit a gambling game: whether or not you

quit at time n depends only on the history up to and including time n – NOT the future.

The following important classical theorem is discussed in [W], §10.10.

THEOREM (DOOB’S OPTIONAL STOPPING THEOREM, OST). Let T be

a stopping time, X = (Xn) be a supermartingale, and assume that one of the following

holds:

(i) T is bounded [T (ω) ≤ K for some constant K and all ω ∈ Ω];

(ii) X = (Xn) is bounded [|Xn(ω)| ≤ K for some K and all n, ω];

(iii) ET < ∞ and (Xn −Xn−1) is bounded.

Then XT is integrable, and

EXT ≤ EX0.
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If here X is a martingale, then

EXT = EX0.

The OST is important in many areas, such as sequential analysis in statistics,

and to American options in finance (options that can be exercised at any time up to and

including expiry).

Write XT
n := Xn∧T for the sequence (Xn) stopped at time T .

Proposition. (i) If (Xn) is adapted and T is a stopping-time, the stopped sequence

(Xn∧T ) is adapted.

(ii) If (Xn) is a martingale [supermartingale] and T is a stopping time, (XT
n ) is a martingale

[supermartingale].

Proof. If ϕj := I{j ≤ T},

XT∧n = X0 +Σn
1ϕj(Xj −Xj−1).

Since {j ≤ T} is the complement of {T < j} = {T ≤ j−1} ∈ Fj−1, ϕj = I{j ≤ T} ∈ Fj−1,

so (ϕn) is previsible. So (XT
n ) is adapted.

If (Xn) is a martingale, so is (XT
n ) as it is the martingale transform of (Xn) by

(ϕn). Since by previsibility of (ϕn)

E(XT∧n|Fn−1) = X0 +Σn−1
1 ϕj(Xj −Xj−1) + ϕn(E[Xn|Fn−1]−Xn−1),

ϕn ≥ 0 shows that if (Xn) is a supermartingale [submartingale], so is (XT∧n). •

§5. DOOB DECOMPOSITION.

THEOREM. Let X = (Xn) be an adapted process with each Xn ∈ L1. Then X has an

(essentially unique) Doob decomposition

X = X0 +M +A : Xn = X0 +Mn +An ∀n (D)

with M a martingale null at zero, A a previsible process null at zero. If also X is a

submartingale (‘increasing on average’), A is increasing: An ≤ An+1 for all n, a.s.

Proof. If X has a Doob decomposition (D),

E[Xn −Xn−1|Fn−1] = E[Mn −Mn−1|Fn−1] + E[An −An−1|Fn−1].
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The first term on the right is zero, as M is a martingale. The second is An −An−1, since

An (and An−1) is Fn−1-measurable by previsibility. So

E[Xn −Xn−1|Fn−1] = An −An−1, (1)

and summation gives

An = Σn
1E[Xk −Xk−1|Fk−1], a.s.

We use this formula to define (An), clearly previsible. We then use (D) to define (Mn),

then a martingale, giving the Doob decomposition (D).

If X is a submartingale, the LHS of (1) is ≥ 0, so the RHS of (1) is ≥ 0, i.e. (An)

is increasing. •

Note. 1. Although the Doob decomposition is a simple result in discrete time, the ana-

logue in continuous time is deep (see below). This illustrates the contrasts that may arise

between the theories of stochastic processes in discrete and continuous time.

2. Previsible processes are ‘easy’ (trading is easy if you can foresee price movements!). So

the Doob Decomposition splits any (adapted) process X into two bits, the ‘easy’ (previsi-

ble) bit A and the ‘hard’ (martingale) bit M . Moral: martingales are everywhere!

3. Submartingales model favourable games, so are increasing on average. It ‘ought’ to be

possible to split such a process into an increasing bit, and a remaining ‘trendless’ bit. It

is – the trendless bit is the martingale.

§6. EXAMPLES.

1. Simple random walk. Recall the simple random walk: Sn := Σn
1Xk, where the Xn are

independent tosses of a fair coin, taking values ±1 with equal probability 1/2. Suppose

we decide to bet until our net gain is first +1, then quit. Let T be the time we quit; T is

a stopping time. It has been analysed in detail; see e.g. Grimmett & Stirzaker [GS], §5.2.
From this, note:

(i) T < ∞ a.s.: the gambler will certainly achieve a net gain of +1 eventually;

(ii) ET = +∞: the mean waiting-time till this happens is infinity.

Hence also:

(iii) No bound can be imposed on the gambler’s maximum net loss before his net gain first

becomes +1.

At first sight, this looks like a foolproof way to make money out of nothing: just

bet till you get ahead (which happens eventually, by (i)), then quit. However, as a gam-

bling strategy, this is hopelessly impractical: because of (ii), you need unlimited time, and
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because of (iii), you need unlimited capital - neither of which is realistic.

Notice that the Optional Stopping Theorem fails here: we start at zero, so S0 = 0,

ES0 = 0; but ST = 1, so EST = 1. This example shows two things:

a) The Optional Stopping Theorem does indeed need conditions, as the conclusion may

fail otherwise [none of the conditions (i) – (iii) in the OST are satisfied in the example

above],

(b) Any practical gambling (or trading) strategy needs to have some integrability or bound-

edness restrictions to eliminate such theoretically possible but practically ridiculous cases.

2. The doubling strategy. The strategy of doubling when losing – the martingale, according

to the Oxford English Dictionary (§3) has similar properties – and would be suicidal in

practice as a result.

3. The Saint Petersburg Game. A single play of the Saint Petersburg game consists of a

sequence of coin tosses stopped at the first head; if this is the rth toss, the player receives

a prize of $ 2r. [Thus the expected gain is Σ∞
1 2−r.2r = +∞, so the random variable is not

integrable, and martingale theory does not apply.] Let Sn denote the player’s cumulative

gain after n plays of the game. The question arises as to what the ‘fair price’ of a ticket to

play the game is. It turns out that fair prices exist (in a suitable sense), but the fair price

of the nth play varies with n – surprising, as all the plays are the replicas of each other.

Other examples may be constructed of games which are ‘fair’ in some sense, but in

which the player sustains a net loss, tending to −∞, with probability one. For a discussion

of such examples, see e.g. Feller [F1], X.3,4.

§7. CONTINUOUS-PARAMETER MARTINGALES

The martingale property in continuous time is just that suggested by the discrete-

time case:

E[Xt|Fs] = Xs (s < t),

and similarly for submartingales and supermartingales. There are regularization results,

under which one can take Xt right-continuous in t. Among the contrasts with the discrete

case, we mention that the Doob-Meyer decomposition, easy in discrete time, is a deep

result in continuous time. For background, see e.g. Meyer [Mey66], and subsequent work

by Meyer and the French school (Dellacherie & Meyer, Probabilités et potentiel, I-V, etc.).

§8. POISSON PROCESSES; LÉVY PROCESSES

Suppose we have a process X = (Xt : t ≥ 0) which has stationary independent

increments: if Xt+u −Xt denotes the increment over the interval (t, t+ u], then

(i) the distribution of the increments depends only on the length u of the interval, not on
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its starting-point t (stationarity);

(ii) increments over disjoint intervals are independent.

Such a process is called a Lévy process, in honour of their creator, the great French prob-

abilist Paul Lévy (1886-1971) [see Ann. Probab. 1.1 for his obituary, by Loève]. Then for

each n = 1, 2, . . .,

Xt = Xt/n + (X2t/n −Xt/n) + . . .+ (Xt −X(n−1)t/n)

displays Xt as the sum of n independent (by independent increments), identically dis-

tributed (by stationary increments) random variables. Consequently, Xt is infinitely divis-

ible: for each n, it is the sum of n independent identically distributed random variables.

The characteristic functions (CFs) of infinitely divisible distributions are known, and are

given by the Lévy-Khintchine formula (L-K); see e.g. Bertoin [Ber]. The prime example

is (anticipating Week 4):

the Wiener process, or Brownian motion, is a Lévy process.

Poisson Processes.

The increment Nt+u −Nu (t, u ≥ 0) of a Poisson process is the number of failures

in (u, t + u] (in the language of renewal theory – see Week 2). By the lack-of-memory

property of the exponential, this is independent of the failures in [0, u], so the increments

of N are independent. It is also identically distributed to the number of failures in [0, t],

so the increments of N are stationary. That is, N has stationary independent increments,

so is a Lévy process:

Poisson processes are Lévy processes.

We need an important property: two Poisson processes (on the same filtration)

are independent iff they never jump together (a.s.). For proof, see e.g. Revuz & Yor [R-Y],

XII.1.

The Poisson count in an interval of length t is Poisson P (λt) (where the rate λ is

the parameter in the exponential E(λ) of the renewal-theory viewpoint), and the Poisson

counts of disjoint intervals are independent. This extends from intervals to Borel sets:

(i) For a Borel set B, the Poisson count in B is Poisson P (λ|B|), where |.| denotes Lebesgue
measure;

(ii) Poisson counts over disjoint Borel sets are independent.

Poisson (Random) Measures.

If ν is a finite measure, call a random measure ϕ Poisson with intensity (or charac-

teristic) measure ν if for each Borel set B, ϕ(B) has a Poisson distribution with parameter

ν(B), and for B1, . . . , Bn, ϕ(B1), . . . , ϕ(Bn) are independent. One can extend to σ-finite

measures ν: if (En) are disjoint with union IR and each ν(En) < ∞, construct ϕn from ν
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restricted to En and write ϕ for
∑

ϕn.

Poisson Point Processes.

With ν as above a (σ-finite) measure on IR, consider the product measure µ = ν×dt

on IR× [0,∞), and a Poisson measure ϕ on it with intensity µ. Then ϕ has the form

ϕ =
∑
t≥0

δ(e(t),t),

where the sum is countable (for background and details, see [Ber], §0.5, whose treatment

we follow here). Thus ϕ is the sum of Dirac measures over ‘Poisson points’ e(t) occurring

at Poisson times t. Call e = (e(t) : t ≥ 0) a Poisson point process with characteristic

measure ν,

e = Ppp(ν).

For each Borel set B,

N(t, B) := ϕ(B × [0, t]) = card{s ≤ t : e(s) ∈ B}

is the counting process of B – it counts the Poisson points in B – and is a Poisson process

with rate (parameter) ν(B). All this reverses: starting with an e = (e(t) : t ≥ 0) whose

counting processes over Borel sets B are Poisson P (ν(B)), then – as no point can contribute

to more than one count over disjoint sets – disjoint counting processes never jump together,

so are independent by above, and ϕ :=
∑

t≥0 δ(e(t),t) is a Poisson measure with intensity

µ = ν × dt.

Note. The link between point processes and martingales goes back to S. Watanabe in 1964

(Japanese J. Math.). The approach via Poisson point processes is due to Kiyosi Itô (1915-

2008) in 1970 (Proc. 6th Berkeley Symp.); see below, and – in the context of excursion

theory – [R-W2], VI §8. For a monograph treatment of Poisson processes, see [Kin].

Compound Poisson processes.

A random variable Poisson distributed with parameter λ has generating function∑∞
n=0 e

−λλn/n!.sn = exp{−λ(1−s)} and CF exp{−λ(1−eit)}. A Poisson process Ppp(λ)

jumps by 1 at Poisson points distributed with intensity λ. Now suppose that at the nth

Poisson point there is a jump of size Xn, where the Xn are independent and identically

distributed (iid) random variables with distribution function F and CF ϕ(t). The resulting

process X = (Xt) is called a compound Poisson process with intensity λ and jump law F .

As above, Xt has CF exp{−λ(1− ϕ(t))}. In a sense made precise by the Lévy-Khintchine

formula and the Lévy-Itô decomposition, a general Lévy process may be built up from

a deterministic ’drift’ ct, a Brownian motion (Week 4) and a limit of sums of compound

Poisson processes, ‘compensated’ by having their means subtracted (these compensated

sums are then martingales). For details, see e.g. Bertoin [Ber].
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