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Chapter IV. STOCHASTIC PROCESSES IN CONTINUOUS TIME.

BROWNIAN MOTION.

1. MARKOV PROCESSES. X is Markov if for each t, each A ∈ σ(Xs : s > t) (the

‘future’) and B ∈ σ(Xs : s < t) (the ‘past’),

P (A|Xt, B) = P (A|Xt).

That is, if you know where you are (at time t), how you got there doesn’t matter so

far as predicting the future is concerned – equivalently, past and future are conditionally

independent given the present.

The same definition applied to Markov processes in discrete time.

If both time and state are discrete, the term Markov chain is usually used. We

may then label the states as 1, 2, . . . (there may be a finite number of states 1, . . . , N , or an

infinite number; one then speaks of a finite Markov chain or an infinite one. The process

X = (Xn) may then be specified by its transition probability matrix P = (pij), where

pij := P (Xn+1 = j|Xn = i)

(we restrict attention to stationary Markov chains, where this matrix does not depend on

time n).

Markov processes (and chains) have been much studied. They have an extensive

and interesting theory, and in addition they provide models for many of the standard

situations studied in Applied Probability. See e.g. Norris [N].

A situation is Markov if knowing the present is all that is needed to study the

future. Roughly speaking, non-Markovian situations, in which one needs to know not only

the present but also how one got there, are much harder, and are usually intractable.

Again roughly speaking, there are only two broad classes of dependence where one can get

useful results – martingales and Markov processes.

X is said to be strong Markov if the Markov property holds with the fixed time t

replaced by a stopping time T (a random variable). This is a real restriction of the Markov

property in the continuous-time case (though not in discrete time).

Example. If we take T an exponentially distributed random variable, and define a stochastic

process X by

X(t) = 0 (t ≤ T ), t− T (t ≥ T ),

then the Markov property holds at any fixed time, but not at the random time T .

Another standard example of a process which is Markov but not strong Markov is
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provided by the left-continuous Poisson process (the Poisson process is right-continuous,

but we can re-define it at its jump points to make it left-continuous).

1a. DIFFUSIONS. A diffusion is a path-continuous strong-Markov process such that

for each time t and state x the following limits exist:

µ(t, x) := limh↓0
1

h
E[(Xt+h −Xt)|Xt = x], σ2(t, x) := limh↓0

1

h
E[(Xt+h −Xt)

2|Xt = x].

Then µ(t, x) is called the drift, σ2(t, x) the diffusion coefficient.

Diffusions are closely linked to Brownian motion B = (Bt) (below), and to mar-

tingales. In Week 5, we introduce the Itô integral, which allows one to integrate a suitable

random integrand Y = (Yt) with respect to Brownian motion, thus defining a stochastic

integral
∫ t

0
Y (u)dB(u), or

∫ t

0
Y dB. One may then study stochastic differential equations

(SDEs), such as

dXt = µ(t,Xt)dt+ σ(t,Xt)dBt.

Under suitable conditions, such an SDE has a solution X = (Xt), which is a diffusion with

drift µ and diffusion coefficient σ. All this extends to the multidimensional case. In d

dimensions, Xt and µ are d-vectors, while σ is a d× d matrix.

Note. As with ODEs and PDEs, one needs to have existence theorems and uniqueness

theorems – and one has more than one sense in which ’solution’ can be taken. With SDEs,

one needs to discriminate between weak and strong solutions. For background, we must

refer to the references – e.g. Øksendal [Ø].

Generators. Write D = d/dx for the differentiation operator in one dimension, Di = ∂/∂xi

in d dimensions; thus D2 = d2/dx2, Dij = ∂2/∂xi∂xj . Write

Lt :=
1

2
σ(t, .)D2 + µ(t, .)D, or

1

2

d∑
i,j=1

σij(t, .)Dij +
d∑

i=1

µi(t, .)Di;

then L is an elliptic differential operator (linear, second-order, partial if d > 1). Under

ssuitable conditions, the parabolic PDE

Ltf + ∂f/∂t = 0 (PPDE)

has as solutions the transition probability density function for the diffusion X.

Example: Brownian motion. The prototype here is Brownian motion (below), where µ = 0,

σ = 1 (or I in higher dimensions), L = 1
2D

2 (or 1
2∆ in higher dimensions, with ∆ the
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Laplacian) and (PPDE) is the heat equation.

In one dimension, the usual treatment of diffusions uses the scale function and

speed measure; see e.g. Breiman [Bre], Ch. 16, Rogers & Williams [R-W2], V.46, 47. Here

one uses the total ordering of the real line (so this is specific to one dimension). In higher

dimensions, one uses the Stroock-Varadhan approach via martingale problems; see [SV].

2. GAUSSIAN PROCESSES. Recall the multivariate normal distribution N(µ,Σ) in

n dimensions. If µ ∈ IRn, Σ is a non-negative definite n × n matrix, X has distribution

Nµ,Σ) if it has characteristic function

ϕX(t) := E exp{itT .X} = exp{itT .µ− 1

2
tTΣt} (t ∈ IRn).

If further Σ is positive definite (so non-singular), X has density

fX(x) =
1

(2π)
1
2n|Σ|

1
2

exp{−1

2
(x− µ)

T
Σ−1(x− µ)}

(Edgeworth’s Theorem, 1893).

A process X = (Xt)t≥0 is Gaussian if all its finite-dimensional distributions are

Gaussian. Such a process can be specified by:

(i) a measurable function µ = µ(t) with EXt = µ(t),

(ii) a non-negative definite function σ(s, t) with σ(s, t) = cov(Xs, Xt).

Gaussian processes have many interesting properties. Among these, we quote Be-

layev’s dichotomy (1961): with probability one, the paths of a Gaussian process are either

continuous, or extremely pathological: for example, unbounded above and below on any

time-interval, however short. Naturally, we shall confine attention in this course to con-

tinuous Gaussian processes.

3. BROWNIAN MOTION.

The Scottish botanist Robert Brown observed pollen particles in suspension under

a microscope in 1828 and 1829 (though Leeuwenhoek had observed the phenomenon before

him – indeed, so had Lucretius in antiquuity, in De rerum naturae), and observed that

they were in constant irregular motion.

In 1900 L. Bachelier considered Brownian motion a possible model for stock-market

prices (for a recent translation with commentary, see [Bach]) - the first time Brownian mo-

tion had been used to model financial or economic phenomena, and before a mathematical
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theory had been developed.

In 1905 Albert Einstein considered Brownian motion as a model of particles in

suspension, and used it to estimate Avogadro’s number (N ∼ 6 × 1023), based on the

diffusion coefficient D in the Einstein relation

varXt = Dt (t > 0).

Definition. Brownian motion (BM) on IR is the process B = (Bt : t ≥ 0) such that:

(i) B0 = 0;

(ii) B has stationary independent increments (so B is a Lévy process);

(iii) B has Gaussian increments: for s, t ≥ 0, Bt+s −Bs ∼ N(0, t);

(iv) B has continuous paths: t 7→ Bt is continuous (t 7→ B(t, ω) is continuous for all

ω ∈ Ω).

[The path-continuity in (iv) can be relaxed by assuming it only a.s.; we can then get

continuity by excluding a suitable null-set from our probability space.]

The fact that Brownian motion so defined exists is quite deep, and was first proved

by Norbert Wiener (1894-1964) in 1923. In honour of this, Brownian motion is also known

as the Wiener process, and the probability measure generating it - the measure W on

C[0, 1] (one can extend to C[0,∞)) by

W (A) = P (B. ∈ A) = P ({t 7→ Bt(ω)} ∈ A)

for all Borel sets A ∈ C[0, 1] is called Wiener measure.

Covariance. Before addressing existence, we first find the covariance function. For s ≤ t,

Bt = Bs + (Bt −Bs), so as EBt = 0,

cov(Bs, Bt) = E(BsBt) = E(B2
s ) + E[Bs(Bt −Bs)].

The last term is E(Bs)E(Bt −Bs) by independent increments, and this is zero, so

cov(Bs, Bt) = E(B2
s ) = s (s ≤ t) : cov(Bs, Bt) = min(s, t).

A Gaussian process (one whose finite-dimensional distributions are Gaussian) is specified

by its mean function and its covariance function, so among centred (zero-mean) Gaussian

processes, the covariance function min(s, t) serves as the signature of Brownian motion.

Finite-Dimensional Distributions.

For 0 ≤ t1 < . . . < tn, the joint law of X(t1), X(t2), . . . , X(tn) can be obtained

from that of X(t1), X(t2)−X(t1), . . . , X(tn)−X(tn−1). These are jointly Gaussian, hence
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so are X(t1), . . . , X(tn): the finite-dimensional distributions are multivariate normal. Re-

call that the multivariate normal law in n dimensions, Nn(µ,Σ) is specified by the mean

vector µ and the covariance matrix Σ (non-negative definite) by its CF:

E exp{iuTX} = exp{iuTX− 1

2
uTΣu},

and when Σ is positive definite (so non-singular), the joint density is given by Edgeworth’s

theorem. So to check the finite-dimensional distributions of BM - stationary independent

increments with Bt ∼ N(0, t) - it suffices to show that they are multivariate normal with

mean zero and covariance cov(Bs, Bt) = min(s, t) as above.

Construction of BM.

It suffices to construct BM for t ∈ [0, 1]). This gives t ∈ [0, n] by dilation, and

t ∈ [0,∞) by letting n → ∞.

First, take L2[0, 1], and any complete orthonormal system (cons) (ϕn) on it. Now

L2 is a Hilbert space, under the inner product

⟨f, g⟩ =
∫ 1

0

f(x)g(x)dx (or
∫
fg),

so norm ∥f∥ := (
∫
f2)1/2). By Parseval’s identity,∫ 1

0

fg =
∞∑

n=0

⟨f, ϕn⟩⟨g, ϕn⟩

(where convergence of the series on the right is in L2, or in mean square: ∥f−
∑n

0 ⟨f, ϕk⟩ϕk∥
→ 0 as n → ∞). Now take, for s, t ∈ [0, 1],

f(x) = I[0,s](x), g(x) = I[0,t](x).

Parseval’s identity becomes

min(s, t) =

∞∑
n=0

∫ s

0

ϕndx

∫ t

0

ϕn(x)dx.

Now take (Zn) independent and identically distributed N(0, 1), and write

Bt =
∞∑

n=0

Zn

∫ t

0

ϕn(x)dx.

This is a sum of independent random variables. Kolmogorov’s theorem on random series

(‘three-series theorem’ – see e.g. [Brei] §3.4, [G-S], 7.11.35) says that it converges a.s. if
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the sum of the variances converges. This is
∑∞

n=0(
∫ t

0
ϕn(x)dx)

2, = t by above. So the

series above converges a.s., and by excluding the exceptional null set from our probability

space (as we may), everywhere.

The Haar System. Define

H(t) = 1 on [0, 1
2 ), −1 on [ 12 , 1], 0 else.

Write H0(t) ≡ 1, and for n ≥ 1, express n in dyadic form as n = 2j + k for a unique

j = 0, 1, . . . and k = 0, 1, . . . , 2j − 1. Using this notation for n, j, k throughout, write

Hn(t) := 2j/2H(2jt− k)

(so Hn has support [k/2j , (k+1)/2j ]). So if m,n have the same j, HmHn ≡ 0, while if m,n

have different js, one can check that HmHn is 2(j1+j2)/2 on half its support, −2(j1+j2)/2

on the other half, so
∫
HmHn = 0. Also H2

n is 2j on [k/2j , (k + 1)/2j ], so
∫
H2

n = 1.

Combining: ∫
HmHn = δmn,

and (Hn) form an orthonormal system, called the Haar system. For completeness: the

indicator of any dyadic interval [k/2j , (k+1)/2j ] is in the linear span of the Hn (difference

two consecutive Hns and scale). Linear combinations of such indicators are dense in

L2[0, 1]. Combining: the Haar system (Hn) is a cons in L2[0, 1].

The Schauder System.

We obtain the Schauder system by integrating the Haar system. Consider the

triangular function (or ‘tent function’)

∆(t) := 2t (0 ≤ t ≤ 1

2
), 2(1− t) (

1

2
≤ t ≤ 1), 0 else.

Write ∆0(t) := t, ∆1(t) := ∆(t), and define the nth Schauder function ∆n by

∆n(t) := ∆(2jt− k) (n = 2j + k ≥ 1).

Note that ∆n has support [k/2j , (k+1)/2j ] (so is ‘localized’ on this dyadic interval, which

is small for n, j large). We see that∫ t

0

H(u)du =
1

2
∆(t),

and similarly ∫ t

0

Hn(u)du = ln∆n(t),

where l0 = 1 and for n ≥ 1,

ln =
1

2
.2−j/2 (n = 2j + k ≥ 1).

The Schauder system (∆n) is again a cons on L2[0, 1].
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THEOREM (Paley-Wiener-Zygmund, 1933). For (Zn)
∞
0 independent N(0, 1) ran-

dom variables, ln, ∆n as above,

Bt :=
∞∑

n=0

lnZn∆n(t)

converges uniformly on [0, 1], a.s. The process B = (Bt : t ∈ [0, 1]) is Brownian motion.

LEMMA. For Zn independent N(0, 1),

|Zn| ≤ C
√
log n ∀n ≥ 2,

for some random variable C < ∞ a.s.

Proof. For x > 1,

P (|Zn| ≥ x) =
2√
2π

∫ ∞

x

e−
1
2u

2

du ≤
√
2/π

∫ ∞

x

ue−
1
2u

2

du =
√
2/πe−

1
2x

2

.

So for any a > 1,

P (|Zn| >
√
2a log n) ≤

√
2/π exp(−a log n) =

√
2/π.n−a.

Since
∑

n−a < ∞ for a > 1, the Borel-Cantelli lemma (see e.g. [Brei] §3.3, or [G-S] §7.3
Th. 10) gives

P (|Zn| >
√
2a log n for infinitely many n) = 0 : C := sup

n≥2

|Zn|√
log n

< ∞ a.s.

Proof of the Theorem.

1. Convergence. Choose J and M ≥ 2J ; then

∞∑
n=M

ln|Zn|∆n(t) ≤ C
∞∑
M

ln
√
log n∆n(t).

The right is majorized by

C.
∞∑
J

2j−1∑
k=0

1

2
.2−j/2

√
j + 1∆2j+k(t)

(perhaps including some extra terms at the beginning, using n = 2j + k < 2j+1, log n ≤
(j +1) log 2, and ∆n(.) ≥ 0, so the series is absolutely convergent). In the inner sum, only
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one term is non-zero (t can belong to only one dyadic interval [k/2j , (k+1)/2j)), and each

∆n(t) ∈ [0, 1]. So

LHS ≤ C

∞∑
j=J

1

2
.2−j/2

√
j + 1 ∀t ∈ [0, 1],

and this tends to 0 as J → ∞, so as M → ∞. So the series
∑

lnZn∆n(t) is absolutely

and uniformly convergent, a.s. Since continuity is preserved under uniform convergence

and each ∆n(t) (so each partial sum) is continuous, Bt is continuous in t.

2. Covariance. By absolute convergence, we can interchange integral and expectation

(Fubini’s theorem):

EBt = E

∞∑
0

lnZn∆n(t) =
∑

ln∆n(t).EZn =
∑

0 = 0.

So the covariance is

E(BsBt) = E[
∑
m

Zm

∫ s

0

ϕm.
∑
n

Zn

∫ t

0

ϕn] =
∑
m

∑
n

E[ZmZn]

∫ s

0

ϕm

∫ t

0

ϕn,

or as E[ZmZn] = δmn, ∑
n

∫ s

0

ϕm

∫ t

0

ϕn = min(s, t),

by the Parseval calculation above.

3. Joint Distributions. Take t1, . . . , tm ∈ [0, 1], we have to show that (B(t1), . . . , B(tn)) is

multivariate normal, with mean vector 0 and covariance matrix (min(ti, tj)). The multi-

variate CF is

E exp{i
m∑
j=1

ujB(tj)} = E exp{i
m∑
j=1

uj

∞∑
n=0

lnZn∆n(t)},

which by independence of the Zn is

∞∏
n=0

E exp{ilnZn

m∑
j=1

uj∆n(tj)}.

Since each Zn is N(0, 1), the RHS is

∞∏
n=0

exp{−1

2
l2n
( m∑
j=1

uj∆n(tj)
)2} = exp{−1

2

∞∑
n=0

l2n
( m∑
j=1

uj∆n(t)
)2}.

The sum in the exponent on the right is

∞∑
n=0

l2n

m∑
j=1

m∑
k=1

ujuk∆n(tj)∆n(tk) =

m∑
j=1

m∑
k=1

ujuk

∞∑
n=0

∫ tj

0

Hn(u)du.

∫ tk

0

Hn(u)du,
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giving
m∑
j=1

m∑
k=1

ujuk min(tj , tk),

by the Parseval calculation, as (Hn) are cons. Combining,

E exp{i
m∑
j=1

ujB(tj)} = exp{−1

2

m∑
j=1

m∑
k=1

ujuk min(tj , tk)}.

This says that (B(t1), . . . , B(tn)) is multinormal with mean 0 and covariance function

min(tj , tk) as required. This completes the construction of BM.

Wavelets. The Haar system (Hn), and the Schauder system (∆n) obtained by integration

from it, are examples of wavelet systems. The original function, H or ∆, is a mother

wavelet, and the ‘daughter wavelets’ are obtained from it by dilation and translation. The

expansion of the Theorem is the wavelet expansion of BM with respect to the Schauder

system (∆n). For any f ∈ C[0, 1], we can form its wavelet expansion

f(t) =

∞∑
n=0

cn∆n(t),

with wavelet coefficients cn. Here cn are given by

cn = f
(k + 1

2

2j
)
− 1

2

[
f
( k

2j
)
+ f

(k + 1

2j
)]
.

This is the form that gives the ∆n(.) term its correct triangular influence, localized on

the dyadic interval [k/2j , (k + 1)/2j ]. Thus for f BM , cn = lnZn, with ln, Zn as above.

The wavelet construction of BM above is, in modern language, the classical ‘broken-line’

construction of BM due to Lévy in his book of 1948. The account above is from [Ste].

Note. 1. We shall see that Brownian motion is a fractal, and wavelets are a useful tool for

the analysis of fractals more generally.

2. Wavelets have also proved extremely useful in data compression. This is because many

signals with lots of ‘local discontinuities’ may be accurately summarized by a sparse wavelet

expansion (i.e. one with only a few non-zero coefficients). For example, the FBI digitized

its finger-print data bank using wavelets. For background on the extensive uses of wavelets

in statistics, see e.g. Iain Johnstone’s forthcoming book [Joh].

Zeros. It can be shown that Brownian motion oscillates:

lim supt→∞Xt = +∞, lim inft→∞Xt = −∞ a.s.
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Hence, for every n there are zeros (times t with Xt = 0) of X with t ≥ n (indeed, infinitely

many such zeros). So, denoting the zero-set of BM(IR) by

Z := {t ≥ 0 : Xt = 0} :

1. Z is an infinite set.

Next, if tn are zeros and tn → t, then by path-continuity B(tn) → B(t); but B(tn) = 0, so

B(t) = 0:

2. Z is a closed set (Z contains its limit points).

Less obvious are the next two properties:

3. Z is a perfect set: every point t ∈ Z is a limit point of points in Z. So there are infinitely

many zeros in every neighbourhood of every zero (so the paths must oscillate amazingly

fast!).

4. Z is a (Lebesgue) null set: Z has Lebesgue measure zero.

In particular, this shows that it is impossible to draw a realistic picture of a Brow-

nian path.

Brownian Scaling. For each c ∈ (0,∞), X(c2t) is N(0, c2t), so Xc(t) := c−1X(c2t) is

N(0, t). Thus Xc has all the defining properties of a Brownian motion (check). So, Xc IS

a Brownian motion:

THEOREM. IfX is BM(IR) and c > 0, Xc(t) := c−1X(c2t), thenXc is again a BM(IR).

COROLLARY. X is self-similar (reproduces itself under scaling), so a Brownian path

X(.) is a fractal. So too is the zero-set Z.

Brownian motion owes part of its importance to belonging to all the important

classes of stochastic processes: it is (strong) Markov, a (continuous) martingale, Gaussian,

a diffusion, a Lévy process (process with stationary independent increments), etc.

Brownian motion is the dynamic counterpart of the standard normal distribution

Φ = N(0, 1), and this owes much of its importance to the Central Limit Theorem (CLT)

(‘Law of Errors’). The dynamic counterpart of the CLT is Donsker’s Invariance Principle

(see e.g. [Bil]), which we touch on briefly at the end of this course.

10


