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Chapter V. ITÔ (STOCHASTIC) CALCULUS. WEAK CONVERGENCE.

§1. Quadratic Variation.

A partition πn of [0, t] is a finite set of points tni such that 0 = tn0 < tn1 < . . . <

tn,k(n) = t; the mesh of the partition is |πn| := maxi(tni−tn,(i−1)), the maximal subinterval

length. We consider nested sequences (πn) of partitions (each refines its predecessors by

adding further partition points), with |πn| → 0. Call (writing ti for tni for simplicity)

πnB :=
∑
ti∈πn

(B(ti+1)−B(ti))
2

the quadratic variation of B on (πn). The following classical result is due to Lévy (in his

book of 1948); the proof below is from [Pro], §I.3.

THEOREM (Lévy). πnB → t (|πn| → 0) in mean square.

Proof.

πnB − t =
∑
ti∈πn

{(B(ti+i −B(ti))
2 − (ti+1 − ti)}

=
∑
i

{(∆iB)2 − (∆it)}

=
∑
i

Yi,

where since ∆iB ∼ N(0,∆it), E[(∆iB)2] = ∆ti, so the Yi have zero mean, and are

independent by independent increments of B. So

E[(πnB − t)2] = E[(
∑
i

Yi)
2] =

∑
i

E(Y 2
i ),

as variance adds over independent summands. Now as ∆iB ∼ N(0,∆it), (∆iB)/
√
∆it ∼

N(0, 1), so (∆iB)2/∆it ∼ Z2, where Z ∼ N(0, 1). So Yi = (∆iB)2 −∆it ∼ (Z2 − 1)∆it,

E[(πnB − t)2] =
∑
i

E[(Z2 − 1)2](∆it)
2 = c

∑
i

(∆it)
2,

writing c for E[(Z2 − 1)2], Z ∼ N(0, 1), a finite constant. But since∑
i

(∆it)
2 ≤ max

i
∆it.

∑
i

∆it = |πn|.t,

E[(πnB − t)2] ≤ c.t.|π|n → 0 (|πn| → 0). •
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Note. 1. From convergence in mean square, one can always extract an a.s. convergent

subsequence.

2. The conclusion above extends in full generality to a.s. convergence, but an easy proof

requires the reversed martingale convergence theorem, which we omit.

3. There is an easy extension to a.s. convergence under the extra restriction
∑

n |πn| < ∞,

using the Borel-Cantelli lemma and Chebychev’s inequality.

4. If we consider the theorem over [0, t + dt], [0, t] and subtract, we can write the result

formally as

(dBt)
2 = dt.

This can be regarded either as a convenient piece of symbolism, or acronym, or as the

essence of Itô calculus, to which we turn below.

Background on Other Integrals.

For simplicity, we fix T < ∞ and work throughout on time-set [0, T ] (in financial

applications, T is the expiry time, when – or by when – financial derivatives such as options

to buy or sell expire.

We want to define integrals of the form

It(f)(ω) =

∫ t

0

f(s, ω)dBs,

with suitable stochastic processes f as integrands and BM B as integrator.

Remark. We first learn integration with x as integrator, to get
∫ t

0
f(x)dx, first as a Riemann

integral (this is just the ‘Sixth Form integral’ in the ‘epsilon’ language of undergraduate

mathematics), then as the Lebesgue integral (better, as more general, and easier to ma-

nipulate, thanks to the monotone and dominated convergence theorems, etc.). Later, e.g.

in handling distribution functions, which may have jumps, we learn
∫ t

0
f(x)dF (x) for F

monotone. One can extend this by linearity to F a difference of two monotone functions –

a function locally of finite variation, FV. Again, such integrals
∫ t

0
fdF come in two kinds,

Riemann-Stieltjes (R-S) and Lebesgue-Stieltjes (L-S). If we want
∫ t

0
fdF to exist for all

continuous f – as we do – then one needs F to be FV (see e.g. [Pro], Th. 52 of I.7 – though

see [Mik], §2.1 for the surprising lengths to which one can push the R-S integral). Now

BM has finite quadratic variation, so infinite ordinary variation. So one needs something

new to handle BM as an integrator.

§2. Itô Integral.

We have our filtration (Ft) on Ω, where Ft handles randomness up to time t, and

the Borel σ-field B (the smallest containing the intervals) to handle the time-interval [0, T ].

Write Ft×B for the smallest σ-field containing all A×B, where A is Ft-measurable and B
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is B-measurable. Call f(., .) measurable if it is FT ×B- measurable and adapted if f(t, .) is

Ft-measurable for each t ∈ [0, T ]. Finally, write H2 = H2[0, T ] for the class of measurable

adapted f satisfying the integrability condition

E[

∫ T

0

f2(t, ω)dt] < ∞.

For (a, b] ⊂ [0, T ], f = I(a,b), the only plausible candidate for I(f) :=
∫
fdB is

I(f)(ω) =

∫ b

a

dBt = Bb −Ba.

Similarly for other kinds of interval, (a, b], [a, b], [a, b), since Bt is continuous in t.

Next, integration should be linear, so I should extend from indicators to simple

functions by linearity. Write H2
0 for the class of simple square- integrable functions – those

f of the form

f(t, ω) =
n−1∑
i=0

ai(ω)I(ti < t ≤ ti+1)

with ai F(ti)-measurable, E(a2i ) < ∞ and 0 = t0 < . . . < tn = T . The only plausible

candidate for It(f) for f ∈ H2
0 is

It(f)(ω) =

n−1∑
i=0

ai(ω)(B(t ∧ ti+1)−B(t ∧ ti)).

By continuity of Bt in t, It(f) is continuous in t. Next, for u ≥ s, E(Bu|Fs) = Bs as B is

a mg, while for u ≤ s, E(Bu|Fs) = Bu as then Bu is known at time s. Combining,

E(Bu|Fs) = B(min(u, s)).

Thus for s ≤ t,

E[It(f)(ω)|Fs] =
n−1∑
i=0

ai(ω)(B(s ∧ t ∧ ti+1)−B(s ∧ t ∧ ti),

which – as s ≤ t – is
n−1∑
i=0

ai(ω)(B(s ∧ ti+1)−B(s ∧ ti),

which is Is(f). Combining, this says that It(f) is a martingale. So, from the mg property,

the products of increments over disjoint intervals have zero mean (all relevant expectations

exist as we are assuming square-integrability). Consider

E[It(f)
2] = E[(

k−1∑
i=0

ai(B(ti+1)−B(ti)) + ak(B(t)−B(tk))
2] (tk ≤ t < tk+1).
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Expand out the square; the cross-terms have zero expectation, leaving

E[

k−1∑
i=0

a2i (B(ti+1)−B(ti))
2 + a2k(B(t)−B(tk))

2] =

k−1∑
i=0

E(a2i )(ti+1 − ti) + E(a2k)(t− tk),

which is
∫ t

0
E(f2(s, ω))ds as f2 is a2i on (ti, ti+1]. Combining:

PROPOSITION. For f ∈ H2
0 a simple function, and (Itf)(ω) defined as above,

(i) Itf is a continuous martingale,

(ii) E[(Itf)(ω)
2] = E[

∫ t

0
f2(s, ω)ds] (Itô isometry).

One seeks to extend It from simple functions f ∈ H2
0 to general f ∈ H2 (an

extension analogous to the extension of the Lebesgue integral from simple to measurable

functions, in the most basic non-random measure-theoretic set-up). It is not at all obvious,

but it is true, that – with H2
0 , H2 regarded as Hilbert spaces with the norm ∥f∥ :=

(
∫ T

0
f2(s, ω)ds)1/2 – H2

0 is dense in H2 - that is, each f ∈ H2 is the limit in norm of an

approximating sequence fn ∈ H2
0 . It is further true that the map It extends from H2

0 to

H2 via

(Itf)(ω) := limn→∞(Itfn)(ω)

(the limit is in the Hilbert-space norm), and that the limit above does not depend on the

particular choice of approximating sequence. That is:

PROPOSITION. For f ∈ H2 and (Itf)(ω) defined by approximation as above:

(i) (Itf)(ω) is a continuous martingale,

(ii) The Itô isometry E[(Itf)(ω)
2] = E[

∫ t

0
f2(s, ω)ds holds.

We must refer to a rigorous measure-theoretic treatment for details of the proof.

Full accounts are in [R-Y], IV, [K-S], Ch. 3. See also [Pro], Ch. II. An accessible recent

account is [Ste], Ch. 6; [Mik], Ch. 2 is non-rigorous, but useful.

We now call Itf the Itô integral of f ∈ H2, and use the suggestive Leibniz integral

sign (which dates from 1675):

(Itf)(ω) =

∫ t

0

f(s, ω)dB(s, ω) or

∫ t

0

fsdBs (0 ≤ t ≤ T ).

An alternative notation is

(f.B)t :=

∫ t

0

fsdBs.

Predictability. We used (ti, ti+1] to ensure left-continuity, so predictability. The distinction

is not critical with Brownian motion as an integrator, or more generally a continuous mg
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integrator, but it is critical with a general semimg integrator.

The appropriate topology (or convergence concept, in metric-space situations as

here) is that of uniform convergence in probability on compact time-sets (ucp). The simple

predictable functions (class S) are dense in the adapted càglàd functions (class L) in the

ucp topology ([Pro], II.4), and this allows the approximation and extension results we need

(and assume) to go through.

An Example. We calculate
∫ t

0
BsdBs, using Brownian motion both as (continuous, so

previsible) integrand and as integrator. Take a sequence of partitions πn with mesh |πn| →
0, and write ti for the partition points tni of πn, as above. The approximation properties

sketched above allow us to identify
∫ t

0
BsdBs with the limit of∑

ti∈πn

B(ti)(B(ti+1 −B(ti)).

But this is∑ 1

2
(B(ti+1) +B(ti))(B(ti+1)−B(ti))−

∑ 1

2
(B(ti+1)−B(ti))(B(ti+1)−B(ti)).

The first sum is 1
2

∑
(B(ti+1)

2 − B(ti)
2), which telescopes to 1

2B(t)2 (B(0) = 0). The

second sum is 1
2

∑
(∆iB)2, which tends to1

2 t by Lévy’s theorem on the quadratic variation

of BM . Combining: ∫ t

0

BsdBs =
1

2
B2

t − 1

2
t.

This formula of course differs dramatically from that for ordinary (Newton-Leibniz) calcu-

lus, or its Riemann-Stieltjes or Lebesgue-Stieltjes extensions. The role of the second term

– the correction term or Itô term – illustrates both the contrast between the Itô and earlier

integrals and the decisive influence of the quadratic variation on the Itô integral.

Quadratic Variation. For continuous semimartingales X, the quadratic variation process

⟨X⟩ = (⟨X⟩t : t ≥ 0) is defined by

⟨X⟩ = X2 − 2

∫
X−dX

(of course X− = X when X is continuous, as here). Alternatively, X2 is a submg, and

then

X2 = ⟨X⟩+ 2

∫
X−dX

is the Doob (or Doob-Meyer) decomposition of X2 into an increasing previsible process

⟨X⟩ and a mg 2
∫
X−dX.
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For general (not necessarily continuous) mgs X, the quadratic variation [X] in-

volves the jumps ∆Xt of X also. Then if [X]c is the continuous part of the increasing

process [X],

[X]t = [X]ct +
∑

0≤s≤t

(∆Xs)
2,

and if Xc is the continuous mg part of X in its semimg decomposition,

⟨Xc⟩ = [Xc] = [X]c.

Both ⟨X⟩ and [X] are shorthand for ⟨X,X⟩ and [X,X]. By polarization,

⟨X,Y ⟩ := 1

4
(⟨X + Y,X + Y ⟩ − ⟨X − Y,X − Y ⟩)

(and similarly for [X,Y ]), both quadratic forms extend to different arguments X and Y .

Both ⟨X,Y ⟩ and [X,Y ] are locally of BV, so are semimgs. For details, see e.g. [Pro], II.6.

Product Rule.

The quadratic covariation [X,Y ] is, by polarization,

[X,Y ] = XY −
∫

X−dY −
∫

Y−dX.

Rearranging: for X, Y semimgs, so is XY , and then

XY =

∫
X−dY +

∫
Y−dX + [X,Y ].

This is the integration-by-parts formula, or product rule. It is the principal special case of

Itô’s formula (below) – to which it is in fact equivalent.

With H, K previsible integrands and X, Y semimg integrators, we can form both

the stochastic integrals H.X =
∫
HdX, K.Y =

∫
KdY . We can then form the

(square-)bracket processes, for which

[H.X,K.Y ]t =

∫
HsKsd[X,Y ]s;

in particular,

[H.X,H.X]t =

∫
H2

sd[X,X]s or [H.X]t =

∫
H2

sd[X]s.

For Brownian motion, [B]t = ⟨B⟩t (as there are no jumps) = t (by Lévy’s result

on quadratic variation). So specialising,

⟨
∫

fdB⟩ =
∫ t

0

f2
s ds, ⟨

∫
fsdBs,

∫ t

0

gsdBs⟩ =
∫ t

0

fsgsds.
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§3. Itô’s Formula

The change-of-variable formula (or chain rule) of ordinary calculus extends to the

Lebesgue-Stieltjes integral, and tells us that for smooth f (∈ C1) and continuous A, of FV

(on compacts),

f(At)− f(A0) =

∫ t

0

f ′(As)dAs.

(This of course does not apply to
∫ t

0
BsdBs = 1

2B
2
t − 1

2 t, but there the integral is Itô, not

Lebesgue-Stieltjes.)

Rather less well-known is the extension to A only right-continuous:

f(At)− f(A0) =

∫ t

0+

f ′(As−)dAs +
∑

0<s≤t

{f(As(−f(As−)− f ′(As−)∆As}.

(None of the analysis books on integration that I have to hand – by Burkill, Saks, Kestel-

man, McShane, Hildebrandt and Pesin – seem to contain this.) Proof is deferred, as this

is a special case of the result below (or see a book on stochastics, e.g. [R-W2], IV.18).

One thus seeks a setting capable of handling both the last two displayed results

together.

THEOREM (Itô’s Formula). For X a semimartingale and f ∈ C2, then f(X) is also

a semimartingale, and

f(Xt)− f(X0) =

∫ t

0+

f ′(Xs−)dXs +
1

2

∫ t

0+

f ′′(Xs−)d[X,X]cs

+
∑

0<s≤t

{f(Xs)− f(Xs−)− f ′(Xs−)∆Xs}.

First, we note the special case for X continuous.

THEOREM (Itô’s Formula). For X a continuous semimartingale and f ∈ C2, f(X)

is also a continuous semimartingale, and

f(Xt)− f(X0) =

∫ t

0

f ′(Xs)dXs +
1

2

∫ t

0

f ′′(Xs)d[X,X]s.

COROLLARY. IfX = X0+M+A is the decomposition of the continuous semimartingale

X, that of f(X) is

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)dMs + {
∫ t

0

f ′(Xs)dAs +
1

2

∫ t

0

f ′′(Xs)d[M ]s}.
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Proof. Let A be the class of C2 functions f for which the desired result holds. Then A
is a vector space. But A is also closed under multiplication, so is an algebra. Indeed, if

f , g ∈ A, write Ft, Gt for the semimgs f(Xt) and g(Xt) and use the product rule. If

X = X0 + M + A is the decomposition of X into a (continuous) local mg M and a BV

process A, the continuous local mg part of F = f(X) is
∫
f ′(Xs)dMs. So

[F,G]t = [F cm, Gcm]t = [

∫ .

0

f ′(Xs)dMs,

∫ .

0

g′(Xs)dMs]t,

which by above is ∫ t

0

f ′(Xs)g
′(Xs)d[M,M ]s.

The product rule now says that

FtGt − F0G0 =

∫ t

0

FsdGs +

∫ t

0

GsdFs +

∫ t

0

(f ′g′)(Xs)d[M ]s.

As Itô’s formula holds for f (by assumption),

dFt = f ′(Xt)dXt +
1

2
f ′′(Xt)d[M ]t,

and similarly for g. Substituting,

FtGt − F0G0 =

∫ t

0

{Fsg
′(Xs) + f ′(Xs)Gs}dXs+

1

2

∫ t

0

{Fsg
′′(Xs) + 2f ′(Xs)g

′(Xs) + f ′′(Xs)Gs}d[M ]s.

This says that Itô’s formula also holds for fg. So A is an algebra, and a vector space.

Since A contains f(x) = x, A contains all polynomials.

One can now reduce from the local-mg to the mg case by a localization argument,

and extend from A to C2 by an approximation argument. For details, we refer to [R-

W2], IV.32 (and for the extension to discontinuous X, VI.39). A different approach, using

Taylor’s formula for f , is in [Pro], II.7. •
Note. 1. Higher dimensions. For vector functions f = (F1, . . . , fn) and vector processes

X = (X1, . . . , Xn), we use the Einstein summation convention and Dif for ∂f/∂i. Then

the Itô formula extends (with much the same proof) as

f(Xt)− f(X0) =

∫ t

0

Dif(Xs)dX
i
s +

1

2

∫ t

0

Dijf(Xs)d[X
i, Xj ]s.
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2. With f(x, y) = xy, we then recover the product rule (integration-by-parts formula). As

we used the second in the proof above, in this sense Itô’s formula and the product rule are

equivalent.

3. In particular, the class of semimgs is closed under C2 functions. This gives a powerful

– and highly non-linear – closure property of the class of semi-martingales.

4. Differential Notation. In the one-dimensional case, we may re-write Itô’s formula in

shorthand form using differential notation instead of integral notation as

df(Xt) = f ′(Xt)dXt +
1

2
f ′′(Xt)d[X]t.

The left is called the stochastic differential of f(X). So the above gives the stochastic

differential of f(X) in terms of the stochastic differential dX of X and the quadratic

variation [X,X] or [X] of X.

5. Formalism. For the continuous case, we can obtain Itô’s formula from Taylor’s formula

in differential form, if we adopt the following rules for differentials:

dXidXj = d[Xi, Xj ],

dXidXjdXk = 0,

dXdV = 0

whenever V has FV. In particular, for X = B BM in one dimension,

dBi
tdB

j
t = 0 (i ̸= j), (dBi

t)
2 = dt,

dBdV = 0 V of finite variation on compacts.

The interpretation here is that for i ̸= j, the Brownian increments dBi and dBj are

independent with zero mean, so E(dBi
tdB

j
t ) = E(dBi

t).E(dBj
t ) = 0.0 = 0, while for i = j

the earlier symbolism (dBt)
2 = dt becomes (dBi

t)
2 = dt. The formalism above works well,

and is a flexible and reliable tool in practice.

Recall that normally in calculus we simply omit all differentials of order higher

than one. We do have some prior experience of retaining second-order differentials, e.g.

in differential geometry (first and second quadratic forms, curvature, geodesics etc.). So

retaining second-order differentials, and manipulating them by the above simple rules,

is not a complete culture-shock. (Differential geometry and stochastic calculus in fact

combine, as stochastic differential geometry - see e.g. [R-W2], V §5.)
One can also do stochastic calculus for Lévy processes (stochastic processes with

stationary independent increments); see Applebaum [A]. Apart from Brownian motion,

the prime example is the Poisson process; see Kingman [K].
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§4. Weak convergence

Convergence in Distribution. If cn, c are constants, and cn → c, then regarding cn, c as

random variables one should have cn → c in any sense of convergence of random variables

– in particular, for convergence in distribution. If Fcn , Fc are their distribution functions,

one has Fcn(x) → Fc(x) as n → ∞ for all x ̸= c – the point where the limit function has a

jump. For a set A, write Ā for its closure, Ao for its interior, ∂A := Ā\Ao for its boundary.

With Pn, P the corresponding probability measures, Pn((−∞, x]) → P ((−∞, x]) for all x /∈
∂(−∞, c]. It turns out that this is the right definition of convergence in distribution, as it

generalizes – to d dimensions (random vectors), and infinitely many dimensions (stochastic

processes). We confine ourselves here to processes with continuous paths (e.g. Brownian

motion). We take the (time) parameter set as [0, 1] for simplicity. If X is such a process,

its paths lie in C[0, 1], the space of continuous functions on [0, 1]. This is a metric space

under the sup-norm metric d(f, g) := sup{|f(t) − g(t)| : t ∈ [0, 1]}. The Borel σ-field

B = B(C([0, 1]) of C[0, 1] is the σ-field generated by the open sets of C[0, 1] w.r.t. this

metric. The distribution, or law, of a process X on C[0, 1] is given by

P (B) := P (X(.) ∈ B), B ∈ B.

If Xn, X are such processes, with laws Pn, P , one says Xn → X in distribution, or in law,

or weakly, or Pn → P weakly, if

Pn(B) → P (B) (n → ∞) ∀B ∈ B with P (∂B) = 0.

It turns out that this is equivalent to∫
fdPn →

∫
fdP (n → ∞)

for all f bounded and continuous on [0, 1] (as [0, 1] is compact, f continuous on [0, 1]

implies f bounded also, but in general we have to require f bounded and continuous). It

turns out also (Prohorov’s Theorem) that weak convergence is equivalent to:

(i) convergence of finite-dimensional distributions (clearly a minimal requirement), and

(ii) tightness: for all ϵ > 0 there exists a compact set K such that Pn(K) > 1− ϵ for all n.

For proof, see e.g. Billingsley [B].

Statistical Applications. These include the Kolmogorov-Smirnov (K-S) tests for equality of

two distributions F , G, in terms of the Kolmogorov-Smirnov statistic Dn := sup{|Fn(.)−
Gn(.)} of the distance between their empirical distribution functions. In fact Dn has the

same law as sup{B0(t) : t ∈ [0, 1]}, where B is Brownian motion and B0 is the Brownian

bridge: B0(t) := B(t) − t. Similarly for many other functionals – Donsker’s Invariance

Principle. This is the dynamic form of the Central Limit Theorem (CLT).
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