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SOLUTIONS 1

Q1.

(i) Area of a triangle: A = 1
2bh: area = half base times perpendicular height.

Proof: In the acute-angled case, drop a perpendicular from the vertex to the base. The

rectangle on this base with this height has area bh. Its area is that of four triangles, similar

in pairs. One of each pair gives the triangle, which thus has area a half this, as required.

In the obtuse-angled case, divide the triangle into elements parallel to the base.

Push these over to make the triangle acute-angled, without change of area, and use the

above result.

(ii) Area of a polygon: Triangulate, and use (i).

(iii) Area of a circle.

(a) Without calculus (as the Greeks did it): divide the circle into a large even number of

equi- angular segments. Re-arrange into a pile, with the even-numbered segments pointing

one way and the odd-numbered ones the other. The pile is approximately a rectangle, with

base the radius r, and with height approximately πr (by symmetry, half the circumference

2πr is on each side). This gives A ∼ r.πr = πr2, and the approximation can be made as

accurate as we like by taking the subdivision of the circle fine enough.

(b) With calculus: use plane polar co-ordinates, with element of area dA = dr.rdθ = rdrdθ.

Then A =
∫ ∫

rdrdθ =
∫ r

0
udu.

∫ 2π

0
dθ = 1

2r
2.2π = πr2.

(iv) Area of an ellipse. Use plane cartesians, element of area dA = dx.dy. If the ellipse

is round (semi-axes a = b), it is a circle and A = πa2 by (iii). If not, squash it to make

it round, with radius a (a < b say). Then dA → (a/b)dA, giving ‘squashed area’ πa2.

‘Unsquashing’ blows this up by a factor of b/a, giving area A = (b/a).(πa2) = πab.

Q2. In Q1, we have exhausted our available plane co-ordinate systems, and so there are

no more easy examples to hand!

In general, we must sub-divide, by super-imposing a square grid (‘graph paper’),

and counting squares, (a) inside, (b) round the edge.

Q3. We should not expect the general region in the plane to have an area. The above

square-counting method fails with regions that are ‘all edge and no middle’, and we can

make the edge as badly behaved as we like.
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Q4. (i) The integral does not exist as a Riemann integral. Between any two reals there are

both (infinitely many) rationals and (infinitely many) irrationals. So all upper Riemann

sums – on [0, 1] say – are 1 and all lower Riemann sums are 0, regardless of how fine we

make the partition.

(ii) The integral exists as a Lebesgue integral, and is 0. For, almost all reals are irrational.

So the indicator of the rationals is a.e. 0, so integrates to 0 (we can change an integrand

on a set of measure 0 without changing the integral.

The contrast here indicates how vastly more general the Lebesgue integral is than

the Riemann integral. Recall also that a function f is Riemann integrable iff it is contin-

uous a.e. The indicator of the rationals is discontinuous everywhere, so as far from being

Riemann integrable as it could be.

Q5 (Georges BOULIGAND, 1935). For the region S1 with area A1 with base the hy-

potenuse, side 1: use cartesian coordinates to approximate its area, arbitrarily closely, by

decomposing it into small squares of area dA1 = dxdy.

For each such small square on side 1, construct similar small squares on sides 2

and 3, of areas dA2, dA3.

By Pythagoras’ theorem, dA1 = dA2 + dA3.

Summing, we get A1 = A2 +A3 arbitrarily closely, and so exactly.
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