ltccsoln2.tex 15.10.2012

SOLUTIONS 2

Consider the following bivariate density:

$$f(x,y) = c \exp\{-\frac{1}{2}Q(x,y)\},\$$

where c is a constant, Q a positive definite quadratic form in x and y. Specifically:

$$c = \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}},$$

$$Q = \frac{1}{1-\rho^{2}} \Big[\Big(\frac{x-\mu_{1}}{\sigma_{1}}\Big)^{2} - 2\rho\Big(\frac{x-\mu_{1}}{\sigma_{1}}\Big) \Big(\frac{y-\mu_{2}}{\sigma_{2}}\Big) + \Big(\frac{y-\mu_{2}}{\sigma_{2}}\Big)^{2} \Big].$$

Here $\sigma_i > 0$, μ_i are real, $-1 < \rho < 1$. Since f is clearly non-negative, to show that f is a (probability density) function (in two dimensions), it suffices to show that f integrates to 1:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1, \quad \text{or} \quad \iint f = 1.$$

Write

$$f_1(x) := \int_{-\infty}^{\infty} f(x, y) dy, \qquad f_2(y) := \int_{-\infty}^{\infty} f(x, y) dx.$$

Then to show $\int \int f = 1$, we need to show $\int_{-\infty}^{\infty} f_1(x)dx = 1$ (or $\int_{-\infty}^{\infty} f_2(y)dy = 1$). Then f_1 , f_2 are densities, in *one* dimension. If $f(x, y) = f_{X,Y}(x, y)$ is the *joint* density of *two* random variables X, Y, then $f_1(x)$ is the density $f_X(x)$ of $X, f_2(y)$ the density $f_Y(y)$ of $Y(f_1, f_2, \text{ or } f_X, f_Y)$, are called the *marginal* densities of the *joint* density f, or $f_{X,Y}$).

To perform the integrations, we have to *complete the square*. We have the algebraic identity

$$(1 - \rho^2)Q \equiv \left[\left(\frac{y - \mu_2}{\sigma_2}\right) - \rho \left(\frac{x - \mu_1}{\sigma_1}\right) \right]^2 + (1 - \rho^2) \left(\frac{x - \mu_1}{\sigma_1}\right)^2$$

(reducing the number of occurrences of y to 1, as we intend to integrate out y first). Then (taking the terms free of y out through the y-integral)

$$f_1(x) = \frac{\exp(-\frac{1}{2}(x-\mu_1)^2/\sigma_1^2)}{\sigma_1\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{1}{\sigma_2\sqrt{2\pi}\sqrt{1-\rho^2}} \exp\left(\frac{-\frac{1}{2}(y-c_x)^2}{\sigma_2^2(1-\rho^2)}\right) dy,$$
(*)

where

$$c_x := \mu_2 + \rho \frac{\sigma_2}{\sigma_1} (x - \mu_1).$$

The integral is 1 ('normal density'). So

$$f_1(x) = \frac{\exp(-\frac{1}{2}(x-\mu_1)^2/\sigma_1^2)}{\sigma_1\sqrt{2\pi}},$$

which integrates to 1 ('normal density'), proving

Fact 1. f(x, y) is a joint density function (two-dimensional), with marginal density functions $f_1(x), f_2(y)$ (one-dimensional). So we can write

$$f(x,y) = f_{X,Y}(x,y),$$
 $f_1(x) = f_X(x),$ $f_2(y) = f_Y(y).$

Fact 2. X, Y are normal: X is $N(\mu_1, \sigma_1^2)$, Y is $N(\mu_2, \sigma_2^2)$. For, we showed $f_1 = f_X$ to be the $N(\mu_1, \sigma_1^2)$ density above, and similarly for Y by symmetry. **Fact 3.** $EX = \mu_1, EY = \mu_2, varX = \sigma_1^2, varY = \sigma_2^2$.

This identifies four out of the five parameters: two means μ_i , two variances σ_i^2 . Next, recall the definition of conditional probability:

$$P(A|B) := P(A \cap B)/P(B).$$

In the discrete case, if X, Y take possible values x_i, y_j with probabilities $f_X(x_i), f_Y(y_j), (X, Y)$ takes possible values (x_i, y_j) with probabilities $f_{X,Y}(x_i, y_j)$:

$$f_X(x_i) = P(X = x_i) = \sum_j P(X = x_i, Y = y_j) = \sum_j f_{X,Y}(x_i, y_j).$$

Then the *conditional* distribution of Y given $X = x_i$ is

$$f_{Y|X}(y_j|x_i) = P(Y = y_j \& X = x_i) / P(X = x_i) = f_{X,Y}(x_i, y_j) / \sum_j f_{X,Y}(x_i, y_j),$$

and similarly with X, Y interchanged.

In the *density* case, we have to replace *sums* by *integrals*. Thus the conditional *density* of Y given X = x is (see e.g. Haigh (2002), Def. 4.19, p. 80)

$$f_{Y|X}(y|x) := f_{X,Y}(x,y) / f_X(x) = f_{X,Y}(x,y) / \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$

Returning to the bivariate normal:

Fact 4. The conditional distribution of y given X = x is $N(\mu_2 + \rho \frac{\sigma_2}{\sigma_1}(x - \mu_1), \sigma_2^2(1 - \rho^2))$.

Proof. Go back to completing the square (or, return to (*) with \int and dy deleted):

$$f(x,y) = \frac{\exp(-\frac{1}{2}(x-\mu_1)^2/\sigma_1^2)}{\sigma_1\sqrt{2\pi}} \cdot \frac{\exp(-\frac{1}{2}(y-c_x)^2/(\sigma_2^2(1-\rho^2)))}{\sigma_2\sqrt{2\pi}\sqrt{1-\rho^2}}.$$

The first factor is $f_1(x)$, by Fact 1. So, $f_{Y|X}(y|x) = f(x,y)/f_1(x)$ is the second factor:

$$f_{Y|X}(y|x) = \frac{1}{\sqrt{2\pi}\sigma_2\sqrt{1-\rho^2}} \exp\Big(\frac{-(y-c_x)^2}{2\sigma_2^2(1-\rho^2)}\Big),$$

where c_x is the linear function of x given below (*). //

This not only completes the proof of Fact 4 but gives Fact 5. The conditional mean E(Y|X = x) is *linear* in x:

$$E(Y|X = x) = \mu_2 + \rho \frac{\sigma_2}{\sigma_1} (x - \mu_1).$$

Note. This simplifies when X and Y are equally variable, $\sigma_1 = \sigma_2$:

$$E(Y|X = x) = \mu_2 + \rho(x - \mu_1)$$

(recall $EX = \mu_1, EY = \mu_2$). Recall that in Galton's height example, this says: for every inch of mid-parental height above/below the average, $x - \mu_1$, the parents pass on to their child, on average, ρ inches, and continuing in this way: on average, after n generations, each inch above/below average becomes on average ρ^n inches, and $\rho^n \to 0$ as $n \to \infty$, giving regression towards the mean.

This line is the population regression line (PRL), the population version of the sample regression line (SRL).

The relationship in Fact 5 can be generalized: a population regression function – more briefly, a regression – is a *conditional mean*.

This also gives

Fact 6. The conditional variance of Y given X = x is

$$var(Y|X = x) = \sigma_2^2(1 - \rho^2).$$

Recall (Fact 3) that the variability (= variance) of Y is $varY = \sigma_2^2$. By Fact 5, the variability remaining in Y when X is given (i.e., not accounted for by knowledge of X) is $\sigma_2^2(1-\rho^2)$. Subtracting: the variability of Y which is accounted for by knowledge of X is $\sigma_2^2\rho^2$. That is: ρ^2 is the proportion of the variability of Y accounted for by knowledge of X. So ρ is a measure of the strength of association between Y and X.

Recall that the *covariance* is defined by

$$cov(X,Y) := E[(X - EX)(Y - EY)] = E[(X - \mu_1)(Y - \mu_2)],$$

= $E(XY) - (EX)(EY),$

and the correlation coefficient ρ , or $\rho(X, Y)$, defined by

$$\rho = \rho(X, Y) := cov(X, Y) / (\sqrt{varX}\sqrt{varY}) = E[(X - \mu_1)(Y - \mu_2)] / \sigma_1 \sigma_2$$

is the usual measure of the strength of association between X and Y ($-1 \le \rho \le 1$; $\rho = \pm 1$ iff one of X, Y is a function of the other).

Fact 7. The correlation coefficient of X, Y is ρ . *Proof.*

$$\rho(X,Y) := E\Big[\Big(\frac{X-\mu_1}{\sigma_1}\Big)\Big(\frac{Y-\mu_2}{\sigma_2}\Big)\Big] = \int \int \Big(\frac{x-\mu_1}{\sigma_1}\Big)\Big(\frac{y-\mu_2}{\sigma_2}\Big)f(x,y)dxdy.$$

Substitute for $f(x, y) = c \exp(-\frac{1}{2}Q)$, and make the change of variables $u := (x - \mu_1)/\sigma_1$, $v := (y - \mu_2)/\sigma_2$:

$$\rho(X,Y) = \frac{1}{2\pi\sqrt{1-\rho^2}} \int \int uv \exp\Big(\frac{-[u^2 - 2\rho uv + v^2]}{2(1-\rho^2)}\Big) dudv.$$

Completing the square as before, $[u^2 - 2\rho uv + v^2] = (v - \rho u)^2 + (1 - \rho^2)u^2$. So

$$\rho(X,Y) = \frac{1}{\sqrt{2\pi}} \int u \exp\left(-\frac{u^2}{2}\right) du \cdot \frac{1}{\sqrt{2\pi}\sqrt{1-\rho^2}} \int v \exp\left(-\frac{(v-\rho u)^2}{2(1-\rho^2)}\right) dv.$$

Replace v in the inner integral by $(v - \rho u) + \rho u$, and calculate the two resulting integrals separately. The first is zero ('normal mean', or symmetry), the second is ρu ('normal density'). So

$$\rho(X,Y) = \frac{1}{\sqrt{2\pi}} \cdot \rho \int u^2 \exp\left(-\frac{u^2}{2}\right) du = \rho$$

('normal variance'), as required. //

This completes the identification of all five parameters in the bivariate

normal distribution: two means μ_i , two variances σ_i^2 , one correlation ρ .

Note. The above holds for $-1 < \rho < 1$; always, $-1 \le \rho \le 1$. In the limiting cases $\rho = \pm 1$, one of X, Y is a linear function of the other: Y = aX + b, say, as in the temperature example (Fahrenheit and Centigrade). The situation is not really two-dimensional: we can (and should) use only *one* of X and Y, reducing to a one-dimensional problem.

The slope of the regression line $y = c_x$ is $\rho \sigma_2 / \sigma_1 = (\rho \sigma_1 \sigma_2) / (\sigma_1^2)$, which can be written as $cov(X, Y) / varX = \sigma_{12} / \sigma_{11}$, or σ_{12} / σ_1^2 : the line is

$$y - EY = \frac{\sigma_{12}}{\sigma_{11}}(x - EX).$$

This is the *population* version (what else?!) of the *sample regression line*

$$y - \bar{Y} = \frac{S_{XY}}{S_{XX}}(x - \bar{X}),$$

familiar from linear regression.

The case $\rho = \pm 1$ – apparently two-dimensional, but really one-dimensional – is *singular*; the case $-1 < \rho < 1$ - genuinely two-dimensional - is *non-singular*, or (see below) *full rank*.

We note in passing

Fact 8. The bivariate normal law has *elliptical contours*.

For, the contours are Q(x, y) = const, which are ellipses (as Galton found).

Moment Generating Function (MGF). Recall (see e.g. Haigh (2002), 102-6) M(t), or $M_X(t)$, := $E(e^{tX})$. For X normal $N(\mu, \sigma^2)$,

$$M(t) = \frac{1}{\sigma\sqrt{2\pi}} \int e^{tx} \exp(-\frac{1}{2}(x-\mu)^2/\sigma^2) dx.$$

Change variable to $u := (x - \mu)/\sigma$:

$$M(t) = \frac{1}{\sqrt{2\pi}} \int \exp(\mu t + \sigma u t - \frac{1}{2}u^2) du.$$

Completing the square,

$$M(t) = e^{\mu t} \cdot \frac{1}{\sqrt{2\pi}} \int \exp(-\frac{1}{2}(u - \sigma t)^2) du \cdot e^{\frac{1}{2}\sigma^2 t^2},$$

or $M_X(t) = \exp(\mu t + \frac{1}{2}\sigma^2 t^2)$ (recognising that the central term on the right is 1 – 'normal density'). So $M_{X-\mu}(t) = \exp(\frac{1}{2}\sigma^2 t^2)$. Then (check) $\mu = EX = M'_X(0), var X = E[(X - \mu)^2] = M''_{X-\mu}(0)$.

Similarly in the bivariate case: the MGF is

$$M_{X,Y}(t_1, t_2) := E \exp(t_1 X + t_2 Y)$$

In the bivariate normal case:

$$M(t_1, t_2) = E(\exp(t_1 X + t_2 Y)) = \int \int \exp(t_1 x + t_2 y) f(x, y) dx dy$$

= $\int \exp(t_1 x) f_1(x) dx \int \exp(t_2 y) f(y|x) dy.$

The inner integral is the MGF of Y|X = x, which is $N(c_x, \sigma_2^2, (1 - \rho^2))$, so is $\exp(c_x t_2 + \frac{1}{2}\sigma_2^2(1 - \rho^2)t_2^2)$. By Fact 5 $c_x t_2 = [\mu_2 + \rho \frac{\sigma_2}{\sigma_1}(x - \mu_1)]t_2$, so

$$M(t_1, t_2) = \exp(t_2\mu_2 - t_2\frac{\sigma_2}{\sigma_1}\mu_1 + \frac{1}{2}\sigma_2^2(1-\rho^2)t_2^2)\int \exp([t_1 + t_2\rho\frac{\sigma_2}{\sigma_1}]x)f_1(x)dx$$

Since $f_1(x)$ is $N(\mu_1, \sigma_1^2)$, the inner integral is a normal MGF, which is thus $\exp(\mu_1[t_1 + t_2\rho_{\sigma_1}^{\frac{\sigma_2}{\sigma_1}}] + \frac{1}{2}\sigma_1^2[\ldots]^2)$. Combining the two terms and simplifying, we obtain

Fact 9. The joint MGF is

$$M_{X,Y}(t_1, t_2) = M(t_1, t_2) = \exp(\mu_1 t_1 + \mu_2 t_2 + \frac{1}{2} [\sigma_1^2 t_1^2 + 2\rho \sigma_1 \sigma_2 t_1 t_2 + \sigma_2^2 t_2^2]).$$

Fact 10. X, Y are independent if and only if $\rho = 0$.

Proof. For densities: X, Y are independent iff the joint density $f_{X,Y}(x, y)$ factorises as the product of the marginal densities $f_X(x).f_Y(y)$ (see e.g. Haigh (2002), Cor. 4.17).

For MGFs: X, Y are independent iff the joint MGF $M_{X,Y}(t_1, t_2)$ factorises as the product of the marginal MGFs $M_X(t_1).M_Y(t_2)$. From Fact 9, this occurs iff $\rho = 0$. Similarly with CFs, if we prefer to work with them. //

NHB