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SOLUTIONS 2
Consider the following bivariate density:

() = coxp{— Q. )},

where c is a constant, () a positive definite quadratic form in z and y. Specif-
ically:
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Here o; > 0, p; are real, —1 < p < 1. Since f is clearly non-negative, to show
that f is a (probability density) function (in two dimensions), it suffices to
show that f integrates to 1:

// fl,y)dedy =1,  or //le.

o0

fi(z) = /_O; [z, y)dy, faly) == fx,y)dx.

Then to show [ [ f =1, we need to show [ fi(z)dx =1 (or [72, fa(y)dy =
1). Then fi, fo are densities, in one dimension. If f(x,y) = fxy(z,y) is the
joint density of two random variables X, Y, then fi(z) is the density fx(z)
of X, fo(y) the density fy(y) of Y (f1, fa, or fx, fy, are called the marginal
densities of the joint density f, or fxy).

To perform the integrations, we have to complete the square. We have
the algebraic identity

(1 —02)Q = [(y_,u2> —P(w)}2 + (1 _p2)($—/i1>2
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Write

(reducing the number of occurrences of y to 1, as we intend to integrate out
y first). Then (taking the terms free of y out through the y-integral)

exp(—3(z — w)?/0}) [ Yy —c)
Ail) == am—i /mmlﬂ—* <5<y p2>>dy’
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where

Cyp 1= [+ p 2(90—#1)-
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The integral is 1 (‘normal density’). So

_exp(—5(z — m)*/o})

fl(x)_ 0'1\/% ’

which integrates to 1 (‘normal density’), proving
Fact 1. f(z,y) is a joint density function (two-dimensional), with marginal
density functions fi(x), fo(y) (one-dimensional). So we can write

fzy) = fxy(zy),  filz)=fx(@),  foly) = [r(y)

Fact 2. X,Y are normal: X is N(uy,0}), Y is N(p9,05). For, we showed
f1 = fx to be the N(u1,0?) density above, and similarly for Y by symmetry.
Fact 3. EX = uy, EY = uy,varX = o},varY = o3.

This identifies four out of the five parameters: two means p;, two variances
o?. Next, recall the definition of conditional probability:

P(A|B) := P(AN B)/P(B).

In the discrete case, if X,Y take possible values z;,y; with probabilities
fx (@), fy(y;), (X,Y) takes possible values (x;, y;) with probabilities fx y (z;, y;):

Ix(x) = P(X = ;) = 5, P(X = 2, Y = ;) = X fx v (i, y5)-
Then the conditional distribution of Y given X = x; is

frix(yjlzi) = P(Y = y;&X = 2;)/P(X = x;) = fx,y(:vi,yj)/fo,y(wi,yj),

and similarly with X, Y interchanged.

In the density case, we have to replace sums by integrals. Thus the con-
ditional density of Y given X = z is (see e.g. Haigh (2002), Def. 4.19, p.
80)

fY|X(y|x) = fX,Y($7y)/fX($) = fX,Y(xay>//_o:o fX,Y(957y)dy-

Returning to the bivariate normal:
Fact 4. The conditional distribution of y given X =z is N(uz2 + p2 (2 —

p), o3(1—p%).



Proof. Go back to completing the square (or, return to (*) with | and dy
deleted):

exp(—3(z — m)?/0}) exp(—5(y — c2)*/(05(1 = p*)))
o1V 2 . 09V 2m\/T — p? .

The first factor is fi(x), by Fact 1. So, fyx(y|z) = f(x,y)/fi(z) is the
second factor:

flr,y) =

- 1 —(y—c)’
frix(ylz) = mwmex (203(1—P2))7

where ¢, is the linear function of x given below (*). //

This not only completes the proof of Fact 4 but gives
Fact 5. The conditional mean E(Y|X = z) is linear in z:

o
E(Y|X =) =+ p_>(x = n).
1
Note. This simplifies when X and Y are equally variable, o1 = 05:
E(Y|X =)= p2 + p(x — 1)

(recall EX = py, EY = pg). Recall that in Galton’s height example, this
says: for every inch of mid-parental height above/below the average, © — 1,
the parents pass on to their child, on average, p inches, and continuing in
this way: on average, after n generations, each inch above/below average
becomes on average p™ inches, and p® — 0 as n — oo, giving regression
towards the mean.

This line is the population regression line (PRL), the population version
of the sample regression line (SRL).

The relationship in Fact 5 can be generalized: a population regression
function — more briefly, a regression — is a conditional mean.

This also gives
Fact 6. The conditional variance of Y given X = x is

var(Y|X = z) = a3(1 — p?).

Recall (Fact 3) that the variability (= variance) of Y is varY = o3. By
Fact 5, the variability remaining in Y when X is given (i.e., not accounted
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for by knowledge of X) is 62(1 — p?). Subtracting: the variability of Y which
is accounted for by knowledge of X is o3p?. That is: p* is the proportion of
the variability of Y accounted for by knowledge of X. So p is a measure of
the strength of association between Y and X.

Recall that the covariance is defined by

cov(X,Y) = E[(X - EX)(Y - EY)] = E[(X — p1)(Y — p2)],
= E(XY) - (EX)(EY),

and the correlation coefficient p, or p(X,Y), defined by
p=pX,Y):=cov(X,Y)/(VvarXvVvarY) = E[(X — i1 )(Y — p2)]/o109

is the usual measure of the strength of association between X and Y (-1 <
p<1; p==£1iff one of XY is a function of the other).

Fact 7. The correlation coefficient of X,Y is p.

Proof.

o(X.Y) ::E[(X_Ml) Y — u2 // a:—/h y;2u2)f(x,y)dxdy.

01

Substitute for f(z,y) = cexp(—%@), and make the change of variables u :=
(x —p)/o1, vi=(y — p2) /02
—[u? = 2puv + v?]

271'\/1—7// 2(1 - p?)

Completing the square as before, [u? — 2puv + v?] = (v — pu)? + (1 — p?)u?.
So

p(X,Y) = \/_/uexp< 2) \/ﬂ\/l_i/vep< M)dv.

Replace v in the inner integral by (v—pu)+pu, and calculate the two resulting
integrals separately. The first is zero (‘normal mean’, or symmetry), the
second is pu (‘normal density’). So

p(X,Y) = )dudv.

uv exp

1 u?
p(X,Y) = m.p/uz exp (—2> du = p

(‘normal variance’), as required. //
This completes the identification of all five parameters in the bivariate
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normal distribution: two means y;, two variances o?, one correlation p.

Note. The above holds for —1 < p < 1; always, —1 < p < 1. In the limiting
cases p = *1, one of XY is a linear function of the other: Y = aX + b, say,
as in the temperature example (Fahrenheit and Centigrade). The situation
is not really two-dimensional: we can (and should) use only one of X and Y,
reducing to a one-dimensional problem.

The slope of the regression line y = ¢, is pos/o; = (po102)/(0%), which
can be written as cov(X,Y)/varX = o15/011, or g13/0?: the line is

y—EY = 22(z — EX).

011

This is the population version (what else?!) of the sample regression line

y-¥ =22 X),
Sxx

familiar from linear regression.

The case p = +1 — apparently two-dimensional, but really one-dimensional
— is singular; the case —1 < p < 1 - genuinely two-dimensional - is non-
singular, or (see below) full rank.

We note in passing
Fact 8. The bivariate normal law has elliptical contours.

For, the contours are Q(x,y) = const, which are ellipses (as Galton
found).

Moment Generating Function (MGF). Recall (see e.g. Haigh (2002), 102-6)
M(t), or Mx(t), := E(eX). For X normal N (u,o?),

M(t) =

J\/ﬂ/e exp( —1(56— w)?/o?)dx

Change variable to u := (v — p)/o:
1
M(t) = — /exp(ut + out — §u2)du.

Completing the square,

1
V2T

o2¢2

M(t) = et /exp(—;(u — ot)?)du. 27",
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or My (t) = exp(ut + 30°t?) (recognising that the central term on the right is
1 — ‘normal density’) . So My_,(t) = exp(302t?). Then (check) p = EX =
My (0), varX = E[(X — p)?] = M}_,(0).

Similarly in the bivariate case: the MGF is

M)Qy(fl, tg) =F exp(th + th)
In the bivariate normal case:
M(ty,t) = Elexp(ti X + 1Y) = //exp(tlx + toy) f(x, y)dxdy

— [ exp(tin) fi(w)da [ exp(tay)f (ylr)dy.

The inner integral is the MGF of Y| X = x, which is N(c,, 03, (1 — p?)), so is
exp(cta + 203(1 — p?)t3). By Fact 5 ¢ty = [u2 + p22(x — p11)]ta, so

1

o 1 o
M(t1,12) = expltagia — 22 + 5031 = 1)) [ expllta + tap 2 1) u(w)d
1 1

Since fi(x) is N(uy,0%), the inner integral is a normal MGF, which is thus
exp(pu [t +t2p 2] + +0?[...]*). Combining the two terms and simplifying, we
obtain

Fact 9. The joint MGF is

1
M)Qy(tl, tg) = M(tl, tg) = exp(,ultl + [I,th + 5[0’%25% + 2p0'10'2t1t2 + O'%tg])
Fact 10. X,Y are independent if and only if p = 0.

Proof. For densities: X,Y are independent iff the joint density fxy(z,v)
factorises as the product of the marginal densities fx (z).fy (y) (see e.g. Haigh
(2002), Cor. 4.17).

For MGFs: XY are independent iff the joint MGEF My y (t1,t2) factorises
as the product of the marginal MGFs Mx (t;).My(t3). From Fact 9, this
occurs iff p = 0. Similarly with CFs, if we prefer to work with them. //
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