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SOLUTIONS 2

Consider the following bivariate density:

f(x, y) = c exp{−1

2
Q(x, y)},

where c is a constant, Q a positive definite quadratic form in x and y. Specif-
ically:

c =
1

2πσ1σ2

√
1− ρ2

,

Q =
1

1− ρ2

[(x− µ1

σ1

)2
− 2ρ

(x− µ1

σ1

)(y − µ2

σ2

)
+
(y − µ2

σ2

)2]
.

Here σi > 0, µi are real, −1 < ρ < 1. Since f is clearly non-negative, to show
that f is a (probability density) function (in two dimensions), it suffices to
show that f integrates to 1:∫ ∞

−∞

∫ ∞

−∞
f(x, y)dxdy = 1, or

∫ ∫
f = 1.

Write
f1(x) :=

∫ ∞

−∞
f(x, y)dy, f2(y) :=

∫ ∞

−∞
f(x, y)dx.

Then to show
∫ ∫

f = 1, we need to show
∫∞
−∞ f1(x)dx = 1 (or

∫∞
−∞ f2(y)dy =

1). Then f1, f2 are densities, in one dimension. If f(x, y) = fX,Y (x, y) is the
joint density of two random variables X, Y , then f1(x) is the density fX(x)
of X, f2(y) the density fY (y) of Y (f1, f2, or fX , fY , are called the marginal
densities of the joint density f , or fX,Y ).

To perform the integrations, we have to complete the square. We have
the algebraic identity

(1− ρ2)Q ≡
[(y − µ2

σ2

)
− ρ

(x− µ1

σ1

)]2
+ (1− ρ2)

(x− µ1

σ1

)2
(reducing the number of occurrences of y to 1, as we intend to integrate out
y first). Then (taking the terms free of y out through the y-integral)

f1(x) =
exp(−1

2
(x− µ1)

2/σ2
1)

σ1

√
2π

∫ ∞

−∞

1

σ2

√
2π

√
1− ρ2

exp

(
−1

2
(y − cx)

2

σ2
2(1− ρ2)

)
dy,

(∗)

1



where
cx := µ2 + ρ

σ2

σ1

(x− µ1).

The integral is 1 (‘normal density’). So

f1(x) =
exp(−1

2
(x− µ1)

2/σ2
1)

σ1

√
2π

,

which integrates to 1 (‘normal density’), proving
Fact 1. f(x, y) is a joint density function (two-dimensional), with marginal
density functions f1(x), f2(y) (one-dimensional). So we can write

f(x, y) = fX,Y (x, y), f1(x) = fX(x), f2(y) = fY (y).

Fact 2. X, Y are normal: X is N(µ1, σ
2
1), Y is N(µ2, σ

2
2). For, we showed

f1 = fX to be the N(µ1, σ
2
1) density above, and similarly for Y by symmetry.

Fact 3. EX = µ1, EY = µ2, varX = σ2
1, varY = σ2

2.
This identifies four out of the five parameters: two means µi, two variances

σ2
i . Next, recall the definition of conditional probability:

P (A|B) := P (A ∩B)/P (B).

In the discrete case, if X, Y take possible values xi, yj with probabilities
fX(xi), fY (yj), (X,Y ) takes possible values (xi, yj) with probabilities fX,Y (xi, yj):

fX(xi) = P (X = xi) = ΣjP (X = xi, Y = yj) = ΣjfX,Y (xi, yj).

Then the conditional distribution of Y given X = xi is

fY |X(yj|xi) = P (Y = yj&X = xi)/P (X = xi) = fX,Y (xi, yj)/
∑
j

fX,Y (xi, yj),

and similarly with X, Y interchanged.
In the density case, we have to replace sums by integrals. Thus the con-

ditional density of Y given X = x is (see e.g. Haigh (2002), Def. 4.19, p.
80)

fY |X(y|x) := fX,Y (x, y)/fX(x) = fX,Y (x, y)/
∫ ∞

−∞
fX,Y (x, y)dy.

Returning to the bivariate normal:
Fact 4. The conditional distribution of y given X = x is N(µ2 + ρσ2

σ1
(x −

µ1), σ2
2(1− ρ2)).
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Proof. Go back to completing the square (or, return to (*) with
∫
and dy

deleted):

f(x, y) =
exp(−1

2
(x− µ1)

2/σ2
1)

σ1

√
2π

.
exp(−1

2
(y − cx)

2/(σ2
2(1− ρ2)))

σ2

√
2π

√
1− ρ2

.

The first factor is f1(x), by Fact 1. So, fY |X(y|x) = f(x, y)/f1(x) is the
second factor:

fY |X(y|x) =
1√

2πσ2

√
1− ρ2

exp
( −(y − cx)

2

2σ2
2(1− ρ2)

)
,

where cx is the linear function of x given below (*). //

This not only completes the proof of Fact 4 but gives
Fact 5. The conditional mean E(Y |X = x) is linear in x:

E(Y |X = x) = µ2 + ρ
σ2

σ1

(x− µ1).

Note. This simplifies when X and Y are equally variable, σ1 = σ2:

E(Y |X = x) = µ2 + ρ(x− µ1)

(recall EX = µ1, EY = µ2). Recall that in Galton’s height example, this
says: for every inch of mid-parental height above/below the average, x− µ1,
the parents pass on to their child, on average, ρ inches, and continuing in
this way: on average, after n generations, each inch above/below average
becomes on average ρn inches, and ρn → 0 as n → ∞, giving regression
towards the mean.

This line is the population regression line (PRL), the population version
of the sample regression line (SRL).

The relationship in Fact 5 can be generalized: a population regression
function – more briefly, a regression – is a conditional mean.

This also gives
Fact 6. The conditional variance of Y given X = x is

var(Y |X = x) = σ2
2(1− ρ2).

Recall (Fact 3) that the variability (= variance) of Y is varY = σ2
2. By

Fact 5, the variability remaining in Y when X is given (i.e., not accounted
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for by knowledge of X) is σ2
2(1−ρ2). Subtracting: the variability of Y which

is accounted for by knowledge of X is σ2
2ρ

2. That is: ρ2 is the proportion of
the variability of Y accounted for by knowledge of X. So ρ is a measure of
the strength of association between Y and X.

Recall that the covariance is defined by

cov(X,Y ) := E[(X − EX)(Y − EY )] = E[(X − µ1)(Y − µ2)],

= E(XY )− (EX)(EY ),

and the correlation coefficient ρ, or ρ(X,Y ), defined by

ρ = ρ(X,Y ) := cov(X,Y )/(
√
varX

√
varY ) = E[(X − µ1)(Y − µ2)]/σ1σ2

is the usual measure of the strength of association between X and Y (−1 ≤
ρ ≤ 1; ρ = ±1 iff one of X,Y is a function of the other).
Fact 7. The correlation coefficient of X, Y is ρ.
Proof.

ρ(X, Y ) := E
[(X − µ1

σ1

)(Y − µ2

σ2

)]
=
∫ ∫ (x− µ1

σ1

)(y − µ2

σ2

)
f(x, y)dxdy.

Substitute for f(x, y) = c exp(−1
2
Q), and make the change of variables u :=

(x− µ1)/σ1, v := (y − µ2)/σ2:

ρ(X, Y ) =
1

2π
√
1− ρ2

∫ ∫
uv exp

(−[u2 − 2ρuv + v2]

2(1− ρ2)

)
dudv.

Completing the square as before, [u2 − 2ρuv + v2] = (v − ρu)2 + (1− ρ2)u2.
So

ρ(X, Y ) =
1√
2π

∫
u exp

(
−u2

2

)
du.

1√
2π

√
1− ρ2

∫
v exp

(
−(v − ρu)2

2(1− ρ2)

)
dv.

Replace v in the inner integral by (v−ρu)+ρu, and calculate the two resulting
integrals separately. The first is zero (‘normal mean’, or symmetry), the
second is ρu (‘normal density’). So

ρ(X, Y ) =
1√
2π

.ρ
∫

u2 exp

(
−u2

2

)
du = ρ

(‘normal variance’), as required. //
This completes the identification of all five parameters in the bivariate
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normal distribution: two means µi, two variances σ2
i , one correlation ρ.

Note. The above holds for −1 < ρ < 1; always, −1 ≤ ρ ≤ 1. In the limiting
cases ρ = ±1, one of X, Y is a linear function of the other: Y = aX + b, say,
as in the temperature example (Fahrenheit and Centigrade). The situation
is not really two-dimensional: we can (and should) use only one of X and Y ,
reducing to a one-dimensional problem.

The slope of the regression line y = cx is ρσ2/σ1 = (ρσ1σ2)/(σ
2
1), which

can be written as cov(X,Y )/varX = σ12/σ11, or σ12/σ
2
1: the line is

y − EY =
σ12

σ11

(x− EX).

This is the population version (what else?!) of the sample regression line

y − Ȳ =
SXY

SXX

(x− X̄),

familiar from linear regression.
The case ρ = ±1 – apparently two-dimensional, but really one-dimensional

– is singular; the case −1 < ρ < 1 - genuinely two-dimensional - is non-
singular, or (see below) full rank.

We note in passing
Fact 8. The bivariate normal law has elliptical contours.

For, the contours are Q(x, y) = const, which are ellipses (as Galton
found).

Moment Generating Function (MGF). Recall (see e.g. Haigh (2002), 102-6)
M(t), or MX(t), := E(etX). For X normal N(µ, σ2),

M(t) =
1

σ
√
2π

∫
etx exp(−1

2
(x− µ)2/σ2)dx.

Change variable to u := (x− µ)/σ:

M(t) =
1√
2π

∫
exp(µt+ σut− 1

2
u2)du.

Completing the square,

M(t) = eµt.
1√
2π

∫
exp(−1

2
(u− σt)2)du.e

1
2
σ2t2 ,
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or MX(t) = exp(µt+ 1
2
σ2t2) (recognising that the central term on the right is

1 – ‘normal density’) . So MX−µ(t) = exp(1
2
σ2t2). Then (check) µ = EX =

M ′
X(0), varX = E[(X − µ)2] = M ′′

X−µ(0).
Similarly in the bivariate case: the MGF is

MX,Y (t1, t2) := E exp(t1X + t2Y ).

In the bivariate normal case:

M(t1, t2) = E(exp(t1X + t2Y )) =
∫ ∫

exp(t1x+ t2y)f(x, y)dxdy

=
∫

exp(t1x)f1(x)dx
∫
exp(t2y)f(y|x)dy.

The inner integral is the MGF of Y |X = x, which is N(cx, σ
2
2, (1− ρ2)), so is

exp(cxt2 +
1
2
σ2
2(1− ρ2)t22). By Fact 5 cxt2 = [µ2 + ρσ2

σ1
(x− µ1)]t2, so

M(t1, t2) = exp(t2µ2 − t2
σ2

σ1

µ1 +
1

2
σ2
2(1− ρ2)t22)

∫
exp([t1 + t2ρ

σ2

σ1

]x)f1(x)dx.

Since f1(x) is N(µ1, σ
2
1), the inner integral is a normal MGF, which is thus

exp(µ1[t1+ t2ρ
σ2

σ1
]+ 1

2
σ2
1[. . .]

2). Combining the two terms and simplifying, we
obtain
Fact 9. The joint MGF is

MX,Y (t1, t2) = M(t1, t2) = exp(µ1t1 + µ2t2 +
1

2
[σ2

1t
2
1 + 2ρσ1σ2t1t2 + σ2

2t
2
2]).

Fact 10. X, Y are independent if and only if ρ = 0.

Proof. For densities: X, Y are independent iff the joint density fX,Y (x, y)
factorises as the product of the marginal densities fX(x).fY (y) (see e.g. Haigh
(2002), Cor. 4.17).

For MGFs: X,Y are independent iff the joint MGFMX,Y (t1, t2) factorises
as the product of the marginal MGFs MX(t1).MY (t2). From Fact 9, this
occurs iff ρ = 0. Similarly with CFs, if we prefer to work with them. //

NHB
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