
5 Equations of viscous-inviscid interaction (triple-
deck flow).

It is convenient to introduce a small parameter, ε = Re−1/8, and write the non-
dimensional Navier-Stokes equations as

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+ ε8

(
∂2u

∂x2 + ∂2u

∂y2

)
, (5.1)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+ ε8

(
∂2v

∂x2 + ∂2v

∂y2

)
, (5.2)

∂u

∂x
+ ∂v

∂y
= 0. (5.3)

For the flow field near the wall obstacle we take x = 1 + ε3X, with X = O(1)
and, to keep things a little more general, we also introduce a scaled time variable,
t = ε2T.

Figure 1: Local sublayers in flow past a hump.

5.1 Outer region or upper deck.
The normal coordinate is scaled according to y = ε3y1, y1 = O(1), and the flow
functions are perturbations to a uniform stream,

u = 1 + ε2u1(X, y1, T ) + ..., (5.4)

v = ε2v1(X, y1, T ) + ..., (5.5)

p = ε2p1(X, y1, T ) + ..., (5.6)
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From the Navier-Stokes equations we have,

∂u1

∂X
= −∂p1

∂X
, (5.7)

∂v1

∂X
= −∂p1

∂y1
, (5.8)

∂u1

∂X
+ ∂v1

∂y1
= 0, (5.9)

As we can see, the time is a parameter in effect hence the flow in the upper deck
is quasi-stationary.

The system (5.7)-(5.9) can be handled in several ways. One can easily derive a
Laplace’s equation for p1 or v1, for instance, showing that the flow in the upper deck
is potential. Alternatively, integrating (5.7) as u1 = −p1 and substituting for u1 in
the continuity equation (5.9), we recognize the resulting system,

∂v1

∂X
= −∂p1

∂y1
,
∂p1

∂X
= ∂v1

∂y1
, (5.10)

as the Cauchy-Riemann conditions for a function, F (z) = p1 + iv1, analytic in the
upper half plane of the complex variable z = xX + iy1. Then, from the Cauchy
integral formula, we have,

F (z) = 1
2πi

˛
C

F (ζ)
ζ − z

dζ, (5.11)

where z is a point in the upper half plane and the closed contour C consists of the
X-axis and a semi-circle of an ’infinitely’ large radius in the upper half plane.

For the purposes of matching with the subsequent expansion in the middle deck
(main part of the boundary layer), we need a relation between the flow quantities in
the limit as y1 → 0. Such a relation, derived from (5.11), is given by the Sokhotski-
Plemelji formula,

F (z) = 1
2F (z) + 1

2πi

 ∞
−∞

F (ζ)
ζ − z

dζ, (5.12)

where z is now a point on the boundary, i.e. z = X, the integration proceeds along
the X-axis, and the principal value of the integral is taken in (5.12). Taking the real
part of (5.12) we obtain the relation between the pressure function and the normal
velocity at y1 = 0,

p1(X, 0, T ) = 1
π

 ∞
−∞

v1(s, 0, T )
s−X

ds. (5.13)

Note: a student of aerodynamics will probably recognize the last equation as a
thin airfoil formula for a symmetric airfoil without angle of attack.
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5.2 Main part of the boundary layer or middle deck.
Here, as in the undisturbed boundary layer arriving at the location of the wall rough-
ness, we havey = ε4Y, Y = O(1). The flow functions expand as

u = U0(Y ) + εu2(X, Y, T ) + ..., (5.14)

v = ε2v2(X, Y, T ) + ..., (5.15)

p = ε2p2(X, Y, T ) + ..., (5.16)

where U0(Y ) is the streamwise velocity in the boundary layer just ahead of the hump.
The governing equations for the first disturbance terms are

U0
∂u2

∂X
+ v2

dU0

dY
= 0, (5.17)

∂p2

∂Y
= 0, (5.18)

∂u2

∂X
+ ∂v2

∂Y
= 0. (5.19)

For the velocity components we can write the solution in the form,

u2 = A(X,T )dU0

dY
, v2 = −∂A(X,T )

∂X
U0(Y ), (5.20)

with the function A(X,T ) undetermined at this stage, whereas the pressure does not
change across the middle deck,

p2 = p2(X,T ). (5.21)

We can now perform matching between the upper and middle decks. For the
pressure function we have

p2(X,T ) = p1(X, 0, T ). (5.22)

For the vertical velocity, recall that U0(Y )→ 1 as Y →∞,therefore

v1(X, 0, T ) = −∂A(X,T )
∂X

. (5.23)

This allows us to re-write (5.13) in the form

p1(X, 0, T ) = p2(X,T ) = − 1
π

 ∞
−∞

∂A(s, T )
∂s

ds

s−X
. (5.24)
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5.3 The viscous sublayer or lower deck.
Here we write y = ε5y3, y3 = O(1). The flow functions expand as

u = εu3(X, y3, T ) + ..., v = ε3v3(X, y3, T ) + ..., p = ε2p3(X, y3, T ) + ... . (5.25)

Substitution into the Navier-Stokes equations (5.1)-(5.3) gives the system of
boundary-layer equations,

∂u3

∂T
+ u3

∂u3

∂X
+ v3

∂u3

∂y3
= −∂p3

∂X
+ ∂2u3

∂y2
3
, (5.26)

∂p3

∂y3
= 0, (5.27)

∂u3

∂X
+ ∂v3

∂y3
= 0. (5.28)

Matching the pressure function with the solution in the main deck yields

p3(X,T ) = − 1
π

 ∞
−∞

∂A(s, T )
∂s

ds

s−X
. (5.29)

Matching the streamwise velocity component we have

u3(X, y3, T ) = λ0y3 + λ0A(X,T ) + ... as y3 →∞, (5.30)

using the property U0(Y ) = λ0Y + ... as Y → 0.
Far upstream (in terms of the flow in the triple-deck region) the flow is expected

to be unperturbed,

u3(X, y3, T )→ λ0y3, v3(X, y3, T )→ 0, p3(X,T )→ 0 as X → −∞. (5.31)

It remains to specify the shape of the wall obstacle. Suppose that, in the original
non-dimensional variables,

y = ε5f
(
x− 1
ε3 ,

t

ε2

)
, (5.32)

for some shape function f. In the scaled triple-deck variables we then have the no-slip
conditions of the form

u3 = 0, v3 = ∂f

∂T
at y3 = f(X,T ). (5.33)

An example of computations for the triple-deck equations in the case of flow past
a corner is shown in Figure 2 (from V.V. Sychev, A.I. Ruban, Vic.V. Sychev, G.L.
Korolev, Asymptotic theory of separated flows, CUP, 1998)

Discussion. The function A(X,T ) in (5.20) is commonly known as the displace-
ment function. Suggest the reason for this terminology.

Exercise. Show that the undisturbed shear coefficient, λ0, can be eliminated
from the sublayer equations by an Affine transformation.
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Figure 2: Flow past a corner, the wall shape is given by y = αx (in scaled variables).
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