LTCC COURSE ON FINITE CLASSICAL GROUPS: EXAM 2025

- (1) Let V be a vector space of dimension n > 1 over a perfect field of characteristic 2. Let β be a non-degenerate symmetric bilinear form. Let U be the set of isotropic vectors.
 - (a) Prove that U is a vector subspace of V.
 - (b) Prove that $\dim(U) = n 1$ if and only if β is not alternating.
 - (c) Prove that if β is not alternating, then $\text{Isom}(\beta)$ is a reducible subgroup of GL(V).
- (2) Let V be a vector space of dimension 2r over \mathbb{F}_q . Let W be a vector subspace of V of dimension m. Let $G = \operatorname{Sp}_{2r}(q)$, the isometry group of a non-degenerate alternating form on V, and let G_W be the stabilizer of W in G.
 - (a) Show that if G_W is maximal in G, then $G_W = G_U$ where U is a vector subspace of V that is either non-degenerate or totally isotropic.
 - (b) Assuming W is non-degenerate, describe W^{\perp} and describe G_W .
 - (c) Assuming W is totally isotropic, describe W^{\perp} and describe G_W . A complete description in this case is hard so you may choose to restrict your attention to the case r = 2. A description of G_W when $\dim(W) = 1$ was given in class.
- (3) Let n = 2r for some positive integer r and let V be an n-dimensional vector space over \mathbb{F}_{q^2} . Let $\beta: V \times V \to \mathbb{F}_{q^2}$ be a hermitian σ -sesquilinear form and suppose that we can write

$$V = H_1 \perp H_2 \perp \cdots \perp H_r$$

where H_1, \ldots, H_r are hyperbolic lines with $H_i = \langle e_i, f_i \rangle$ for (e_i, f_i) a hyperbolic pair. Let ζ be an element of $\mathbb{F}_{q^2} \setminus \mathbb{F}_q$ satisfying $\zeta^q = -q$ and define

$$V_1 := \{\lambda_1 \zeta e_1 + \lambda_2 \zeta e_2 + \dots + \lambda_r \zeta e_r + \mu_1 f_1 + \mu_2 f_2 + \dots + \mu_r f_r \mid \lambda_1, \dots, \lambda_r, \mu_1, \dots, \mu_r \in \mathbb{F}_q\}.$$

(a) Prove that V_1 is a vector space over \mathbb{F}_q .

E

- (b) Write $\beta|_{V_1}$ for the restriction of β to $V_1 \times V_1$. Prove that $\beta|_{V_1} = \zeta \beta_1$ where $\beta_1 : V_1 \times V_1 \to \mathbb{F}_q$ is an alternating sesquilinear form.
- (c) Deduce that $\operatorname{Sp}_n(q) \leq \operatorname{SU}_n(q)$ where $\operatorname{SU}_n(q)$ is the set of determinant 1 isometries of a non-degenerate Hermitian form β over a vector space V of dimension n over the field \mathbb{F}_{q^2} .
- (4) For this question you may want to refer to the notes for more details about types of quadratic forms. Let Q be a quadratic form on V, a 2-dimensional vector space over F_q with q an odd prime power. We say Q is of type O₂⁺ if V is a hyperbolic line with respect to Q; we say Q is of type O₂⁻ if V is anisotropic with respect to Q (there are no singular vectors).

Write $O_2^+(q)$ (resp. $O_2^-(q)$) for the set of isometries of Q in each case.

acts:
$$|O_2^+(q)| = 2(q-1)$$
 and $|O_2^-(q)| = 2(q+1)$.

Use these facts to show that $O_2^+(q)$ and $O_2^-(q)$ are both dihedral.