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Applied Bayesian Methods

Solutions

1 (a) Let C = 0 be the event that a baby is born in a developing country, C = 1
be that a baby is born in a developed country.
Let D = 0 be the event that a baby survives the first four weeks, D = 1 be
that a baby dies in the first four weeks.
Given that P (C = 0 | D = 1) = 0.99 and P (C = 0) = 0.9, it follows that

P (D = 1 | C = 0)

P (D = 1 | C = 1)
=

P (C = 0 | D = 1)P (D = 1)

P (C = 0)

P (C = 1)

P (C = 1 | D = 1)P (D = 1)

=
0.99

0.9

0.1

0.01
= 11 .

(b) Let T1 = 1 be the event that a woman tests positive in the first test, T1 = 0
be test-negative; similarly T2 is used for the second test.

Let W = 1 be the event that a woman is pregnant, W = 0 be non-pregnant.

So we have the following conditions:
P (T1 = 1 | W = 1) = θ, P (T1 = 1 | W = 0) = η,
P (T2 = 1 | W = 1) = θ, P (T2 = 1 | W = 0) = η, and
P (W = 1) = λ.

It follows that the predictive probability P (T2 = 0 | T1 = 1) is

P (T2 = 0 | T1 = 1)

= P (T2 = 0,W = 1 | T1 = 1) + P (T2 = 0,W = 0 | T1 = 1)

= P (T2 = 0 | W = 1)P (W = 1 | T1 = 1) + P (T2 = 0 | W = 0)P (W = 0 | T1 = 1) .

Because

P (W = 1 | T1 = 1)

=
P (T1 = 1 | W = 1)P (W = 1)

P (T1 = 1)

=
P (T1 = 1 | W = 1)P (W = 1)

P (T1 = 1 | W = 1)P (W = 1) + P (T1 = 1 | W = 0)P (W = 0)

=
θλ

θλ+ η(1− λ)
,

we have

P (T2 = 0 | T1 = 1)

Turn Over



Solutions for Examination of LTTC, 2020 Page 2

= (1− θ) θλ

θλ+ η(1− λ)
+ (1− η)

{
1− θλ

θλ+ η(1− λ)

}

=
(1− θ)θλ+ (1− η)η(1− λ)

θλ+ η(1− λ)
.

(c) Under zero-one loss, an optimal estimator T (y) of θ is the posterior mode of
θ for which p(θ|y) equals its maximum.

Let us assume a loss function L(θ, T (y)) as:

L(θ, T (y)) =

{
0 if |θ − T (y)| ≤ ε ,
1 if |θ − T (y)| > ε .

with ε very small. Hence the posterior expected loss Eθ|y[L(θ, T (y))] is∫ ∞
−∞

L(θ, T (y)) p(θ | y)dθ

=
∫ T (y)−ε

−∞
1 · p(θ | y)dθ +

∫ ∞
T (y)+ε

1 · p(θ | y)dθ

= P (θ < T (y)− ε | y) + P (θ > T (y) + ε | y)

= 1− P (T (y)− ε ≤ θ ≤ T (y) + ε | y) ,

which is minimised when P (T (y) − ε ≤ θ ≤ T (y) + ε | y) is maximised,
i.e. when T (y) is the posterior mode of θ.

(d) Jeffreys’ prior for success probability θ of NegBin(r, θ) can be derived as:

p(y|θ) =

(
y + r − 1

y

)
θr(1− θ)y

log p(y|θ) = r log θ + y log(1− θ) + const

d

dθ
log p(y|θ) =

r

θ
− y

1− θ
d2

dθ2
log p(y|θ) = − r

θ2
− y

(1− θ)2

I(θ) = −EY |θ
[
− r

θ2
− Y

(1− θ)2

]

=
r

θ2
+

E(Y )

(1− θ)2

=
r

θ2
+
r(1− θ)/θ
(1− θ)2

=
r

θ2
+

r

(1− θ)θ

=
r(1− θ) + rθ

θ2(1− θ)
=

r

θ2(1− θ)

I(θ)
1
2 =

(
r

θ2(1− θ)

) 1
2

∝ θ−1(1− θ)−
1
2 .

So, Jeffreys’ prior for θ is Beta
(
0, 1

2

)
.
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(e) There are at least two ways for the students to solve this problem: one is
via factorising the full-conditional distribution, and the other is via simple
Bayesian inference for Normal distributions with only a single parameter un-
known. The answers are:

µ|τ,y ∼ Normal
(

nτ

nτ + 10−6
ȳ, (nτ + 10−6)−1

)
,

τ |µ,y ∼ Gamma

(
0.001 +

n

2
, 0.001 +

1

2

n∑
i=1

(yi − µ)2
)
.
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2 (a) Here, an acceptable hierarchical Bayesian model contains

(i) an appropriate distribution for the data Yi with mean tiθi, where Yi is a
discrete random variable with values of 0, 1, 2, . . .; e.g. Yi|θi ∼ Poisson(tiθi)
(credits to any reasonable alternatives);

(ii) an appropriate prior distribution for the parameter θi, where θi is pos-
itive and can be larger than 1; e.g. θi ∼ Gamma(α, β) (credits to any
reasonable alternatives); and

(iii) appropriate distributions for hyper-parameters; for example, hyper-priors
for the positive hyper-parameters α and β in Gamma(α, β) (credits to any
reasonable alternatives).

(b) Choose M such that the chain has reached the highest posterior region of
the stationary distribution. Choose N such that the sample is adequate for
required estimates of posterior summaries of interest (mention thinning and
possible storage problems). Sort the data in the sample in ascending order
and find the 5%, 50% and 95% quantiles (denoted by θ0.05, θ0.5 and θ0.95,
respectively). The posterior median is θ0.5; the 90% posterior credible interval
is [θ0.05, θ0.95].

The highest posterior density (HPD) interval of θ6 is an interval such that the
posterior density p(θ6|y) at any point inside the interval is greater than that at
any point outside the interval. One way to estimate the 50% HPD interval of
θ6 is to first build a binned histogram of θ6|y from the sample (or equivalently
count the frequencies of binned values of θ6 from the sample), then add the
bins of highest frequencies into the interval until half of the sample have been
included. There can be other ways; credits to any reasonable suggestions.

(c) Taking into account the autocorrelation in the sample of θ6, a ‘batching’
method for the MCSE of the posterior mean of θ6 can be described by the
following steps:

(i) Divide the sequence θ
(M+1)
6 , . . . , θ

(N)
6 intoQ batches, b1, . . . , bQ; each batch

is of a sufficiently large length L.

(ii) Calculate µq = 1
L

∑
i∈bq θ

(i)
6 for q = 1, . . . , Q, and µ̄ = 1

Q

∑Q
q=1 µq.

(iii) Estimate the required MCSE by

ŜE(θ̄6) =

√√√√√ 1

Q(Q− 1)

Q∑
q=1

(µq − µ̄)2 .

(d) In order to use a Gibbs sampler to obtain samples from the predictive dis-
tribution p(ỹ|y), we recall that p(ỹ|y) =

∫
p(ỹ, η|y)dη, where η includes all

the unknown parameters (θi, θ̃ and all hyper-parameters) and y includes all
the observed values (yi, ti and t̃), in which θ̃ is the unknown parameter cor-
responding to ỹ, and t̃ = 50.

Essentially, we can add ỹ and θ̃ into the original hierarchical Bayesian model,
treat ỹ and θ̃ as two new unknown parameters, derive the full conditional
distributions for them, and update the Gibbs sampler. Then we can use the
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updated Gibbs sampler to obtain samples for each unknown ‘parameter’ from
its posterior distribution, including those for ỹ from p(ỹ|y).

End of Paper


