4 Sobolev spaces, trace theorem and normal derivative

Throughout, 2 C R"™ will be a sufficiently smooth, bounded domain.
We use the standard Sobolev spaces

HOR™) := Ly(R™), H(Q) := Ly(Q), HYR™), H*(Q) (k positive integer).

Note that all these spaces are based on the use of weak derivatives up to order k. We will use
the Fourier transform to redefine the norms in these spaces. Recall that the Fourier transform
F is defined by (there are different normalisations possible)

(&) == Fou(§) := / e 28Ty (1) da (& eR™).

n

Since
o =1 [ e <
R" R
it follows that v is well-defined whenever v € L;(R"™). The inversion formula for the Fourier
transform is

\e_w”g'mv(w)]dw:/ |v(x)| dx

n

Fli(z) = / T (€) dE.
One finds the following properties:
o Ifv, 9 € L1(R") then F~1Fv = v = FF lv wherever v is continuous.
e F generalises to a bounded linear mapping
F i La(R") — La(R")
and there holds
(Fo, Fv) = (p,0) = (F 1o, Flv) Vo, € Ly(R"),

i.e., F is a unitary isomorphism. This property is known as Plancherel’s theorem. The
symbol (+,-) denotes the Lo inner product on R™ and will be used throughout, also for its
extension by duality. When referring to the inner product on a subset of R”, e.g. on (),
we add this subset as an index, e.g. (-,")q.

e A conclusion from Plancherel’s theorem is the relation

vl o@ry = 19]lLy@ny Vv € La(R™).

Example 4.1 Consider the one-dimensional case, i.e., n = 1.
There holds ||V'||,w) = | F(V)||Lyw), and for any v € H'(R) with compact support we obtain

F') (&) = / e_izmgv/(a:) dx = v(m)e‘mm5

T / —i27m€ e 22y (1) dx = i27E O(€).
T=—00 R
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Therefore,
1| o) = 1127E D(E) o m) = 27 1€ D(E) | o (m)

and
[l gy = 101, m) + 1017wy = 1017, m) +47°1€0017,w) = /R(l +47°€%) [0 () de,
so that 12
lellmg — ond /R (L+)Na()dg) " = (1 + ) 20l qmy
are equivalent norms.

This example easily generalises to higher dimensions (n > 1). Moreover, it leads us to the
definition of Sobolev spaces on R" for any positive real order.

Definition 4.1 For s > 0 we define
HR") = {v € LoR™); (1 +]€P)20] aey < oo

with norm
0]l sy o= 1L + €% 20]| -

As in Example 4.1 one sees that, for integer s, this norm is equivalent to the usual one (based
on derivatives). For non-integer s, H*(R") is called a fractional order Sobolev space.

We are now in a position to analyse the trace operator in the half-space case. Consider the
situation given in Figure 4.1. For z = (z1,...,2,) € R™ we denote 2’ := (z1,...,2,-1). Then
we define for v € C§°(R") its trace onto the hyperplane R"~! x {0} by

you(z') :==v(a’, x, = 0), ' € R

Theorem 4.1 (trace theorem, half-space case) For s > 1/2 there exists a unique extension of
Yo to a bounded linear operator

Y : HS(Rn) —>HS_1/2(RH_1).

Proof. By density it suffices to consider v € C§°(R"). By the Fourier inversion formula we
find that

el = [ e dg

= /n ei27rsc'v§/{)(§) d¢ = - (/R@(g/’&L) d€n> pi2ma’-¢ de'.

Tn,=0

Therefore,

F(rov)(€) = / (€, &n) s = /R (L4 €221 + [€)7*0(¢, &) dén

0
R
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Figure 4.1: The trace in the half-space case.
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and an application of the Cauchy-Schwarz inequality yields
| F (vov) (€)]* < /R(l +[€%) 70 dé, /R(l + €22 [0(E, €n) P dén.

Now, by the substitution &, = (1 4 [¢/|?)'/?t,

/ — 2\—s o dgn
M(€) = /R(1+|g|) dg”_/f{<1+|g/|2+|gn|2)s
1 dt '
- (1+’§/’2)S_1/2/f{(1+t2)8 <oo iff s>1/2.

Therefore, we can bound
(14 [€17)* 21 F (rov)(€N)]* < Cy /R(l +1€1%)2[0(6)[? dé
for a constant C depending on s, and integration with respect to &' yields

ol o172 gn-1y < C2[10]| s ey -

|

So far we have dealt with Sobolev spaces on R". For boundary value problems on Lipschitz
domains this is obviously not enough.

Definition 4.2 Let Q C R" be a Lipschitz domain. For s > 0 we introduce the following spaces:
H*(Q) := H*(R") with norm  ||[v]|gs(q) := inf ||[V]|gs®n),
Q Vig=v
H(Q) = Cgo) ™ with norm || - ||+,
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and
H(Q) == {v e H*(Q); v° € H*(R")} with norm ||v||gs(9) = ||v0||Hs(Rn)

where v° denotes the extension of v by 0 onto R™\ Q.
For s < 0 we define

~ /
H*(QY) := <H_8(Q)) (dual space) with operator norm

and
~ /
H?(Q) = (H_S(Q)> (dual space) with operator norm.

Remark 4.1 One can show that, for s >0, H*(Q) = H§(Q) if s # integer +1/2. In the cases

s = integer 4 1/2 the spaces are different, H*(Q) C H§(Q) in general.

Without going into the details, we mention that on a Lipschitz surface or boundary I' all the
above spaces can be defined analogously when |s| < 1. To this end one uses a partition of unity
and local transformations onto subsets of R"~!. Higher order spaces require more regularity of
r.

The trace theorem can be generalised to Lipschitz domains.

Theorem 4.2 (trace theorem, general form)
Let Q C R" be a bounded Lipschitz domain with boundary T.
(i) For 1/2 < s < 3/2, v has a unique extension to a bounded linear operator

Y0 : H*(Q) — HY2(ID).
(ii) For any s € (1/2,3/2) and any v € H*"Y2(T) there exists V := Ev € H*(Q) such that
Y% (V) =v and
€] a5 () < Cs(2) [|0]l gra-1/2y Vv e HSTVA(T).
Remark 4.2 Part (ii) of Theorem 4.2 means that g has a right-inverse:

v="V =1

which is continuous, and that
Y01 HH(Q) — H2(D)

is surjective, i.e., Yo <H5(Q)> = H*Y2(). Of course, this right-inverse £ is an extension
operator.

Having the trace operator at hand we can now make an interpretation of the Dirichlet
boundary condition. Studying the Poisson equation with Dirichlet boundary condition
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we conclude two things. First, the equation u|r = ¢ means that you = g in H 1/ 2(T) since
the variational formulation of the Poisson equation is posed in H'(Q2) (subject to the Dirichlet
condition). Second, the Dirichlet condition makes sense only for g € HY/2(I'). If g ¢ H'/?(T)
then there does not exist a solution u € H'(2) of the given boundary value problem. This is a
conclusion of the surjectivity of the trace operator.

Besides the trace operator g, in §1 we were concerned about the definition of the normal

derivative d,v of a function v € H'(2). We now deal with this operator.
The origin for the definition of the normal derivative is the first Green’s formula, in the form

/—Avw:/Vv-Vw—/ﬁnvw.
Q Q r

This leads us to the definition of d,v for v € H'(Q) by
(Opv, w)p = / Vo - VW—I—/ AvW
Q Q

where W € H'(Q) is any extension of w € H'/?(T"). The notation (®, ¢)r means the application
of the functional ® to ¢ defined on T', in this case it is the duality between H~Y2(I') and
H'Y2(T"). For ®, ¢ € Ly(T") it is simply the Ly(T')-inner product between ® and ¢.

Lemma 4.1 3
Oy : {ve H'(Q); Ave HHQ)} — HY2(T)

is well-defined and continuous when defining
/ AvW = (Av,W)q
Q

as duality between H='(Q) and H(Q).

Proof. (i) First we show that the definition of (9, v, w)r is independent of the extension W of
w. Let Wy, Wy € H'(Q) be two extensions of w, i.e., voW1 = 70W2 = w. Then

/VU'V(Wl—WQ)‘l-/A’U(Wl—WQ):O
Q Q

by the second Green identity since Wi — Wy € H}(2). This proves that (9,v,y0(W1 —Wa))r =0
as wanted.
(ii) Now we show the boundedness of 0,. Let & : HY?(') — H(Q) denote the extension
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operator from Theorem 4.2(ii). We estimate

Onv, o,
1000l -172(r) = sup {Onv, wir. <C sup <5v7w>p
werr/2en(oy [Wllenzmy = wemramn oy 1€wlae)
= C sup fQVv-VSw—i-fQAvSwSC s Joy Vo VW + [ AvW
weH/2(M)\{0} 1wl p1(0) WeH (Q)\{0} W le

. [oll @) Wi 9) + 1A g-1.@) Wl o

WeH(Q)\{0} HWHHl(Q)
= C (Il + 1Av] g-1q)-

Remark 4.3 Av € Ly(Q) implies Av € H-1(Q).
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