
operator from Theorem 4.2(ii). We estimate

‖∂nv‖H−1/2(Γ) = sup
w∈H1/2(Γ)\{0}

〈∂nv,w〉Γ
‖w‖H1/2(Γ)

≤ C sup
w∈H1/2(Γ)\{0}

〈∂nv,w〉Γ
‖Ew‖H1(Ω)

= C sup
w∈H1/2(Γ)\{0}

∫

Ω ∇v · ∇Ew +
∫

Ω ∆v Ew

‖Ew‖H1(Ω)
≤ C sup

W∈H1(Ω)\{0}

∫

Ω ∇v · ∇W +
∫

Ω ∆v W

‖W‖H1(Ω)

≤ C sup
W∈H1(Ω)\{0}

‖v‖H1(Ω) ‖W‖H1(Ω) + ‖∆v‖H̃−1(Ω) ‖W‖H1(Ω)

‖W‖H1(Ω)

= C
(

‖v‖H1(Ω) + ‖∆v‖H̃−1(Ω)

)

.

2

Remark 4.3 ∆v ∈ L2(Ω) implies ∆v ∈ H̃−1(Ω).

5 Finite element error analysis for elliptic problems

In this section we deal with the error analysis of the finite element method. Key steps in the
error analysis are the Lax-Milgram lemma (Theorem 2.1), which proves the unique existence of
uh and its stability, and Céa’s lemma (Theorem 3.2) proving

‖u − uh‖ ≤
Ca

α
‖u − v‖ ∀v ∈ Vh.

Here, several assumptions are needed, in particular the boundedness of a (with bound Ca) and
its V -ellipticity (with ellipticity constant α). Therefore, to bound the error in the energy norm
(or the norm of V ) we only need to select an appropriate function v ∈ Vh for which we are
able to further estimate ‖u − v‖. If Vh consists of continuous, piecewise linear functions then a
standard candidate is the piecewise linear interpolant Ihu ∈ Vh (defined below). First, in §5.1,
we deal with approximation theory in a more general and abstract form. Then, in §5.2, we apply
the approximation results to the finite element method.

5.1 Approximation theory

Definition 5.1 Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ) be normed linear spaces, and A ∈ L(X,Y ), where
L(X,Y ) denotes the space of bounded linear operators X → Y . Then, A is compact if and only
if (Axn)n∈IN ⊂ Y has a convergent subsequence for any bounded sequence (xn)n∈IN ⊂ X.

This can be equivalently formulated as: A is compact if and only if every bounded subset of
X is mapped to a relatively compact subset of Y .

Proposition 5.1 (Rellich’s embedding theorem) Let Ω be a Lipschitz domain. Then for any
t > s, the injection i : Ht(Ω) → Hs(Ω) is compact.
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Proposition 5.2 (Sobolev’s embedding theorem) Let Ω be a Lipschitz domain in IRn. Then,
the injection i : Hn/2+ε(Ω) → C0(Ω̄) is continuous for all ε > 0, that is,

sup
x∈Ω

|u(x)| ≤ Cε‖u‖Hn/2+ε(Ω) for all u ∈ Hn/2+ε(Ω).

Remark 5.1 A simple argument for the influence of the dimension n is the following: Using
the Fourier transform, we see for u ∈ C∞

0 (IRn) that

|u(x)| ≤

∫

IRn
|û(ξ)| dξ =

∫

IRn
(1 + |ξ|2)−s/2(1 + |ξ|)s/2|û(ξ)| dξ

≤

(∫

IRn
(1 + |ξ|2)−s dξ

)1/2

‖u‖Hs(IRn),

where the last inequality follows from the Cauchy-Schwarz inequality. Thus,
∫

IRn(1+ |ξ|2)−s dξ <

∞ will be sufficient. As the integrand is bounded on every bounded set, we only need to study
the behaviour as |ξ| → ∞. Transforming to polar coordinates and choosing some r∗ > 0,

∫

IRn
(1 + |ξ|2)−s dξ ∼

∫ ∞

r∗
r−2srn−1 dr =

∫ ∞

r∗
rn−2s−1 dr.

The last integral is finite if and only if n−2s−1 < −1. This corresponds exactly to the condition
s > n

2 .

Lemma 5.1 Let Ω ⊂ IR2 be a Lipschitz domain, t ≥ 2 integer, s = t(t+1)
2 , and {z1, z2, . . . , zs} ⊂

Ω be given points such that the interpolation operator I : Ht(Ω) → Pt−1 is well-defined. Here,
Pt−1 are the polynomials of degree up to t − 1. Then, there exists C ≥ 0 such that

‖u − Iu‖Ht(Ω) ≤ C|u|Ht(Ω) for all u ∈ Ht(Ω).

Proof. We first prove that ‖v‖Ht(Ω) and |||v||| := |v|Ht(Ω) +
∑s

i=1 |v(zi)| are equivalent norms.
Then it follows that

‖u − Iu‖Ht(Ω) ≤ C |||u − Iu||| = C

(

|u − Iu|Ht(Ω) +

s
∑

i=1

|u(zi) − Iu(zi)|

)

= C|u − Iu|Ht(Ω) = C|u|Ht(Ω),

since the tth derivatives of Iu ∈ Pt−1 vanish.

1. As t ≥ 2 we see that the embedding Ht(Ω) → H2(Ω) is continuous and by Proposition 5.2
we have that H2(Ω) → C0(Ω̄) is continuous. Therefore, the injection Ht(Ω) → C0(Ω̄) is
continuous. Thus, |v(zi)| ≤ C‖v‖Ht(Ω), i = 1, . . . , s, and

|||v||| = |v|Ht(Ω) +

s
∑

i=1

|v(zi)| ≤ (1 + sC)‖v‖Ht(Ω) for all v ∈ Ht(Ω).
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2. Assume that ‖v‖Ht(Ω) ≤ C |||v||| for every v ∈ Ht(Ω) is false for any constant C > 0.

Then, there exists a sequence (vn)n∈IN ⊂ Ht(Ω) such that ‖vn‖Ht(Ω) = 1 and |||vn||| ≤
1
n

for all n ∈ IN. We see that (vn) is bounded in Ht(Ω), so by Proposition 5.1 there is a
subsequence of (vn) which converges in Ht−1(Ω). We assume without loss of generality
that this subsequence is (vn). In particular, it follows that (vn) is a Cauchy sequence in
Ht−1(Ω) and thus, since |vn|Ht(Ω) ≤ |||vn||| → 0 for n → ∞,

‖vk − vl‖
2
Ht(Ω) ≤ ‖vk − vl‖

2
Ht−1(Ω) + (|vk|Ht(Ω) + |vl|Ht(Ω))

2 → 0 for k, l → ∞.

Therefore, (vn) is a Cauchy sequence in Ht(Ω) and by completeness there exists v∗ ∈ Ht(Ω)
such that vn → v∗ in Ht(Ω) for n → ∞. By the continuity of the norms it follows from
‖vn‖Ht(Ω) = 1 that ‖v∗‖Ht(Ω) = 1, and from |||vn||| ≤

1
n that |||v∗||| = 0 since, by the first

part,

|||v∗||| ≤ |||v∗ − vn||| + |||vn||| ≤ C‖v∗ − vn‖Ht(Ω) + |||vn||| → 0 as n → ∞.

By definition of |||·||| it follows that |v∗|Ht(Ω) = 0, that is, v∗ ∈ Pt−1, and |v∗(zi)| = 0,

i = 1, . . . , s. Therefore, v∗ vanishes at t(t+1)
2 distinct points. It follows that v∗ = 0 and

this is a contradiction to ‖v∗‖Ht(Ω) = 1.

Therefore, there exists a constant C such that ‖v‖Ht(Ω) ≤ C |||v|||.

2

Theorem 5.1 (Bramble-Hilbert Lemma) Let Ω ⊂ IR2 be a Lipschitz domain, and t ≥ 2 integer.
For a normed linear space Y let L ∈ L(Ht(Ω), Y ).

If Pt−1 ⊂ ker L then there exists a constant C ≥ 0 such that

‖Lv‖Y ≤ C|v|Ht(Ω) for all v ∈ Ht(Ω).

Proof. As L is bounded and linear there exists D ≥ 0 such that ‖Lv‖Y ≤ D‖v‖Ht(Ω). Let
I : Ht(Ω) → Pt−1 be an interpolation operator as in Lemma 5.1. Then, Iv ∈ Pt−1 ⊂ ker L for
all v ∈ Ht(Ω) and

‖Lv‖Y = ‖L(v − Iv)‖Y ≤ D‖v − Iv‖Ht(Ω) ≤ CD|v|Ht(Ω)

by Lemma 5.1. 2
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5.2 Finite element error estimate for elliptic problems

We deal with the case V = H1(Ω) and Vh = {v ∈ V : v|K ∈ Pt−1(K) ∀K ∈ Th} where
Th = {K} is a triangulation of Ω, which is assumed to be polygonal (so that it can be discretised
by triangular meshes). Here, Pt−1(K) denotes the space of polynomials of degree t − 1 on K.
The mesh needs to satisfy certain conditions. We define

hk = diameter of K = length of longest side of K,

ρk = diameter of the largest circle in K,

h = max
K∈Th

hk

and require that there exists β > 0 which is independent of h such that

ρk

hk
≥ β ∀K ∈ Th. (5.1)

This means that the elements K ∈ Th are not too thin, i.e. the interior angles of K are not too
small (they are bounded from below by a positive constant). One also says that the elements of
Th, or Th, are shape regular. Since we are interested in a sequence of meshes {Th} such that we
can study the behaviour of the finite element error ‖u − uh‖ for a sequence of mesh sizes {h},
the constant β in (5.1) must be independent of h.

We now apply the Bramble-Hilbert Lemma to prove a piecewise polynomial approximation
result.

Theorem 5.2 For a Lipschitz domain Ω ⊂ IR2 with polygonal boundary and a given integer
t ≥ 2 let {T : T ∈ Th} be a shape regular triangulation of Ω.

Then, for a piecewise polynomial interpolation operator Ih of degree t − 1 (piecewise with
respect to Th) there holds





∑

T∈Th

‖u − Ihu‖2
Hm(T )





1/2

≤ Cht−m|u|Ht(Ω) for all u ∈ Ht(Ω) and all 0 ≤ m ≤ t.

Here, the constant C is independent of h and u.

Proof. The idea of the proof is to transform to the reference element T̂ , make a transition
from Hm to Ht, and transform back. The transformations give the required powers of h since
the Bramble-Hilbert Lemma gives the transition to a semi-norm on T̂ .

By the assumption of shape regularity it is enough to consider the case that Th is congruent
to T̂ . Then we can assume without loss of generality that Th = hT̂ := {(x1, x2) : 0 ≤ x1, x2 ≤
h, x1 + x2 ≤ h}. For v ∈ Ht(Th) we define v̂ ∈ Ht(T ) by v̂(x1, x2) := v(hx1, hx2). For a
multi-index α = (α1, α2) of order |α| = α1 + α2 with non-negative integers α1, α2 let Dα denote
the partial derivative operator defined by

Dαv(x1, x2) :=
∂|α|

∂xα1

1 ∂xα2

2

v(x1, x2).
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We see that Dαv = h−αDαv̂ for all multi-indices α with |α| ≤ t. Thus,

|v|2Hl(Th) =
∑

|α|=l

∫

Th

(Dαv)2 dx =
∑

|α|=l

h−2lh2

∫

T̂
(Dαv̂)2 dξ = h2−2l|v̂|2

Hl(T̂ )
.

Since the transform Î of the interpolation operator Ih is again an interpolation operator, we can
transform to the reference element, apply the Bramble-Hilbert Lemma and transform back to
obtain

‖v − Ihv‖2
Hm(Th) ≤ Ch2−2m‖v̂ − Î v̂‖2

Hm(T̂ )
≤ Ch2−2m‖v̂ − Î v̂‖2

Ht(T̂ )

≤ Ch2−2m|v̂|2
Ht(T̂ )

= Ch2−2mh2t−2|v|2Ht(Th) = Ch2(t−m)|v|2Ht(Th).

Summing up this yields

∑

T∈Th

‖v − Ihv‖2
Hm(Th) ≤ Ch2(t−m)

∑

T∈Th

|v|2Ht(Th) = Ch2(t−m)|v|2Ht(Th).

2

Remark 5.2 Note that in Theorem 5.2 we cannot write ‖u−Ihu‖Hm(Ω) in general since u−Ihu

might not be in Hm(Ω). The operator Ih represents only a piecewise interpolation from which,
in general, no global regularity properties follow.

Let Ni, i = 1, . . . ,M , be the nodes of Th. For a continuous function u ∈ C0(Ω̄) we now
consider the piecewise linear interpolant (again using the same operator symbol Ih) Ihu ∈ Vh by

Ihu(Ni) = u(Ni), i = 1, . . . ,M. (5.2)

Note that on K ∈ Th, Ihu is the linear interpolant of u.

Corollary 5.1 Let Ω ⊂ IR2 be a polygon with a quasi-uniform, regular and shape-regular mesh,
and Ih be the piecewise linear interpolation operator (piecewise with respect to the triangulation)
with respect to the vertices of the mesh.

Then,
‖u − Ihu‖H1(Ω) ≤ Ch|u|H2(Ω) for all u ∈ H2(Ω).

Proof. As Ih interpolates at the vertices of the mesh, Ihu is continuous and piecewise linear,
i.e. Ihu ∈ H1(Ω). An application of Theorem 5.2 proves

‖u − Ihu‖2
H1(Ω) =

∑

T∈Th

‖u − Ihu‖2
H1(T ) ≤ Ch2|u|2H2(Ω).
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2

Now we are in a position to present an a priori error estimate for the finite element method
dealing with elliptic problems of second order. Assume that we are solving a variational problem
in V = H1

0 (Ω) (Ω ⊂ IR2 is a Lipschitz continuous polygonal domain),

u ∈ V : a(u, v) = L(v) ∀v ∈ V, (5.3)

where a is a continuous, V -elliptic bilinear form, and L is a continuous linear form on V . We
then consider the finite element approximation uh to u defined by

uh ∈ Vh : a(uh, v) = L(v) ∀v ∈ Vh. (5.4)

Selecting any finite-dimensional subspace Vh ⊂ V there holds Céa’s lemma. In particular,
selecting Vh to be the space of continuous, piecewise linear functions defined on a mesh Th

satisfying the shape-regularity condition (5.1) there holds (applying Céa’s lemma)

‖u − uh‖H1(Ω) ≤
Ca

α
‖u − Ihu‖H1(Ω). (5.5)

Here, Ih is the interpolation operator defined in (5.2).
Therefore, applying the results from §5.1, in particular Corollary 5.1, we conclude that there

holds the following a priori error estimate.

Theorem 5.3 (a priori error estimate)
Assume that the solution u of (5.3) satisfies u ∈ H2(Ω) and that uh ∈ Vh is the finite element
approximation defined by (5.4) (using piecewise linear functions on a shape regular mesh). Then
there exists a constant C > 0 which is independent of h such that

‖u − uh‖H1(Ω) ≤ C h |u|H2(Ω). (5.6)

This means that uh converges linearly in h to u in the H1(Ω)-norm.
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