operator from Theorem 4.2(ii). We estimate

1000l 172y = sup {Onv, wir. <C sup RGN
weHY/2(T)\{0} ||w||H1/2(F) weHY/2(I)\{0} H&UHHl(Q)
_ sup fQVv-V€w+fQAU€wSC sup Jo Vv - VW + [ Av W
weHY2(M)\ {0} [Ewl g1 (q) WeHL(2)\{0} W& (o)
. [0l @) IW @) + 1A =10y Wl 1 (@)
T weH'(Q)\{0} Wl e ()

= C(IPla @ +11Av] g-1q)-

Remark 4.3 Av € Ly(Q) implies Av € H-1(Q).

5 Finite element error analysis for elliptic problems

In this section we deal with the error analysis of the finite element method. Key steps in the
error analysis are the Lax-Milgram lemma (Theorem 2.1), which proves the unique existence of
up, and its stability, and Céa’s lemma (Theorem 3.2) proving

C
le —unll < —=llu—=vll Vo € Vi

Here, several assumptions are needed, in particular the boundedness of a (with bound C,) and
its V-ellipticity (with ellipticity constant «). Therefore, to bound the error in the energy norm
(or the norm of V') we only need to select an appropriate function v € Vj, for which we are
able to further estimate ||ju — v||. If V}, consists of continuous, piecewise linear functions then a
standard candidate is the piecewise linear interpolant Iu € V}, (defined below). First, in §5.1,
we deal with approximation theory in a more general and abstract form. Then, in §5.2, we apply
the approximation results to the finite element method.

5.1 Approximation theory

Definition 5.1 Let (X, || - [|x), (Y, - |ly) be normed linear spaces, and A € L(X,Y), where
L(X,Y) denotes the space of bounded linear operators X — Y. Then, A is compact if and only
if (Azp)nen CY has a convergent subsequence for any bounded sequence (xp)nen C X.

This can be equivalently formulated as: A is compact if and only if every bounded subset of
X is mapped to a relatively compact subset of Y.

Proposition 5.1 (Rellich’s embedding theorem) Let Q be a Lipschitz domain. Then for any
t > s, the injection i: H'(Q) — H*(Q) is compact.

23



Proposition 5.2 (Sobolev’s embedding theorem) Let Q be a Lipschitz domain in R"™. Then,
the injection i: H™?T¢(Q) — C°(Q) is continuous for all € > 0, that is,

sup [u(z)| < Ccllull gnszteqy  for all u € H2e(Q).
€

Remark 5.1 A simple argument for the influence of the dimension n is the following: Using
the Fourier transform, we see for u € C§°(R™) that

wlz i — 2\—s/2 8/2,&
ol < [ 1@l = [ (@I ) lae)] de
1/2
< ([ avirrea) o

where the last inequality follows from the Cauchy-Schwarz inequality. Thus, [gn(1+[£*)7%d€ <
oo will be sufficient. As the integrand is bounded on every bounded set, we only need to study
the behaviour as |{| — oo. Transforming to polar coordinates and choosing some r* > 0,

/ (1+ |£|2)—8 dg ~ / p28pn=1 g / yn—2s=1 g,
R" - -

The last integral is finite if and only if n—2s—1 < —1. This corresponds exactly to the condition
5> 3.

Lemma 5.1 Let Q C R? be a Lipschitz domain, t > 2 integer, s = t(t;rl), and {z1,29,...,25} C
Q be given points such that the interpolation operator I: H'(Q) — P,_1 is well-defined. Here,
P,_1 are the polynomials of degree up to t — 1. Then, there exists C > 0 such that

Ju— Tull ey < Clulgrqy  for all u € HY(Q).

Proof. We first prove that ||v|| () and |[|v|]| := |v| g @) + i1 [v(2)] are equivalent norms.
Then it follows that

IN

lw — Tull gt (o)

Clju~ Tull| = C (ru ~ Tulguay + 3 fu(z) - zu@,.)\)
=1

= Clu— Tu|gyq) = Clu|gq),
since the tth derivatives of Iu € P,_1 vanish.

1. Ast > 2 we see that the embedding H'(Q) — H?*(Q) is continuous and by Proposition 5.2
we have that H?(Q) — C%(Q) is continuous. Therefore, the injection H'(2) — C%(Q) is
continuous. Thus, |v(2;)| < Cljv||gey, i=1,...,s, and

[olll = lolae) + Y (=) < (1+ sO)l|ollme()  for all v e HY(Q).
1=1
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2. Assume that [|v||geq) < C|||v]|| for every v € H'(Q) is false for any constant C' > 0.
Then, there exists a sequence (vn)nex C H(€2) such that |[v,][geo) = 1 and |[[|v,]|| < 1
for all n € N. We see that (v,) is bounded in H!(Q), so by Proposition 5.1 there is a
subsequence of (v,) which converges in H'=1(2). We assume without loss of generality
that this subsequence is (v,). In particular, it follows that (v,) is a Cauchy sequence in
H'"(Q) and thus, since |vp|gt(q) < |[|vn]|] — 0 for n — oo,

ok = villFre () < low = oillFr-1(q) + (ke @) + ol me@)® — 0 for k1 — oo,

Therefore, (v,,) is a Cauchy sequence in H(Q) and by completeness there exists v* € H({)
such that v, — v* in HY(Q) for n — oco. By the continuity of the norms it follows from
lvnllge) = 1 that [[v*|| ey = 1, and from [||vy||| < L that |[[v*||| = 0 since, by the first
part,

™I < o™ = on[ll + [lfonl]| < Cllo*™ = vnllge(@) + lllonlll = 0 as n — oo

By definition of |||-||| it follows that [v*|gt) = 0, that is, v* € Py, and [v*(z;)| = 0,
1 =1,...,s. Therefore, v* vanishes at @ distinct points. It follows that v* = 0 and

this is a contradiction to [[v*| gt () = 1.

Therefore, there exists a constant C' such that [|v[|g: ) < C[[|v][].

Theorem 5.1 (Bramble-Hilbert Lemma) Let  C R? be a Lipschitz domain, and t > 2 integer.
For a normed linear space Y let L € L(H'(Q),Y).
If P,y C ker L then there exists a constant C > 0 such that

|Lvlly < Clv|gt)y for allv e H'(S).

Proof. As L is bounded and linear there exists D > 0 such that ||Lv[ly < D|v||gt(q). Let
I: Ht(Q) — P;_1 be an interpolation operator as in Lemma 5.1. Then, Iv € P,_1 C ker L for
all v € HY(Q) and

[Lvlly = [[L(v = Iv)|ly < Dljv = Iv[lge(o) < CDlv|p(q)

by Lemma 5.1. O
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5.2 Finite element error estimate for elliptic problems

We deal with the case V.= HY(Q) and V}, = {v € V : v|g € P_1(K) VK € 7} where
Ty, = {K} is a triangulation of 2, which is assumed to be polygonal (so that it can be discretised
by triangular meshes). Here, P;_1(K) denotes the space of polynomials of degree ¢t — 1 on K.
The mesh needs to satisfy certain conditions. We define

hir = diameter of K = length of longest side of K,
pr = diameter of the largest circle in K,
h = max hg
KeT,

and require that there exists § > 0 which is independent of A such that
Pk >3 VKeT. (5.1)
k

This means that the elements K € 7}, are not too thin, i.e. the interior angles of K are not too
small (they are bounded from below by a positive constant). One also says that the elements of
Ty, or Ty, are shape regular. Since we are interested in a sequence of meshes {7} such that we
can study the behaviour of the finite element error ||u — uy|| for a sequence of mesh sizes {h},
the constant (3 in (5.1) must be independent of h.

We now apply the Bramble-Hilbert Lemma to prove a piecewise polynomial approximation
result.

Theorem 5.2 For a Lipschitz domain Q@ C R? with polygonal boundary and a given integer
t>2let {T: T € T} be a shape regular triangulation of ).

Then, for a piecewise polynomial interpolation operator I, of degree t — 1 (piecewise with
respect to Ty ) there holds

1/2

Z |lu — IhuH%{m(T) < Cht_m|u|Ht(Q) for allw € HY(Q) and all 0 < m < t.
TeT,

Here, the constant C is independent of h and wu.

Proof. The idea of the proof is to transform to the reference element 7', make a transition
from H™ to H', and transform back. The transformations give the required powers of h since
the Bramble-Hilbert Lemma gives the transition to a semi-norm on T.

By the assumption of shape regularity it is enough to consider the case that T}, is congruent
to 7. Then we can assume without loss of generality that Ty = hT = {(z1,22) : 0 < xy,m9 <
h,z1 + 3 < h}. For v € HY(T}) we define © € HY(T) by 9(x1,22) := v(hzy, hzs). For a
multi-index o = (o, ) of order |a| = ag + as with non-negative integers aq, as let D denote
the partial derivative operator defined by

olel

Da'U(.Z'l, 1'2) = Wv(xl, .Z'Q).
1 2
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We see that D% = h=*D%¢ for all multi-indices o with || < ¢t. Thus,

[0l3n ) Z/ D*v)’dx =Y h~ 2lh2/ (DY9)? d¢ = h* 2|52 ity

|af=l laf=l

Since the transform I of the interpolation operator [, is again an interpolation operator, we can
transform to the reference element, apply the Bramble-Hilbert Lemma and transform back to
obtain

IN

Ch*~ 2mHv—IUH2 <Ch2 2”””?}—]@”

< O _Ch2 S Ul :Chz(t ™ol z,)-

[o = 10l Fm 7
Hi(T)

Summing up this yields

Z ”'U . Ih'l)”%{m(Th) < ChQ(t—m) Z ‘U‘%{t(Th) = Ch2(t—m)’U’?;It(Th).
TE'T}L TETh

Remark 5.2 Note that in Theorem 5.2 we cannot write ||u— Ipul| gm () in general since u—Ipu
might not be in H™(Y). The operator Ij, represents only a piecewise interpolation from which,
in general, no global regularity properties follow.

Let N;, i = 1,...,M, be the nodes of 7;,. For a continuous function v € C°(Q) we now
consider the piecewise linear interpolant (again using the same operator symbol I},) Iyu € V}, by

Ihu(N;) = u(V;), 1=1,..., M. (5.2)
Note that on K € 73, Iju is the linear interpolant of u.

Corollary 5.1 Let Q C R? be a polygon with a quasi-uniform, reqular and shape-reqular mesh,
and Iy, be the piecewise linear interpolation operator (piecewise with respect to the triangulation)
with respect to the vertices of the mesh.
Then,
lu — Inull i) < Chlu|g2qy  for all u € H?(9Q).

Proof. As Ij interpolates at the vertices of the mesh, [,u is continuous and piecewise linear,
i.e. Iyu € H'(2). An application of Theorem 5.2 proves

le = Inull ey = D llu— InullFp ) < CRfulfpzq).
TeT),
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Now we are in a position to present an a priori error estimate for the finite element method
dealing with elliptic problems of second order. Assume that we are solving a variational problem
in V= H}(Q) (2 C R? is a Lipschitz continuous polygonal domain),

weV: a(u,v)=Lw) YveV, (5.3)

where a is a continuous, V-elliptic bilinear form, and L is a continuous linear form on V. We
then consider the finite element approximation uy, to uw defined by

up € Vi o a(up,v) = L(v) Yv € V. (5.4)

Selecting any finite-dimensional subspace V;, C V there holds Céa’s lemma. In particular,
selecting V}, to be the space of continuous, piecewise linear functions defined on a mesh 7
satisfying the shape-regularity condition (5.1) there holds (applying Céa’s lemma)

Cq
lu = unllm(e) < —~llu = Inull i o)- (5.5)

Here, Iy, is the interpolation operator defined in (5.2).
Therefore, applying the results from §5.1, in particular Corollary 5.1, we conclude that there
holds the following a priori error estimate.

Theorem 5.3 (a priori error estimate)

Assume that the solution u of (5.3) satisfies u € H*(Q) and that uy, € Vj, is the finite element
approzimation defined by (5.4) (using piecewise linear functions on a shape reqular mesh). Then
there exists a constant C > 0 which is independent of h such that

lu = unll 1) < Chlulgq)- (5.6)

This means that uj, converges linearly in h to u in the H'(2)-norm.
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