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Introduction to Applied Topology
In the next 5 weeks

,
we will toughly ) cover :

-  invariants : euler characteristic
,

Cool homology ,

persistence diagrams
- notions of stability : classical I recent thus

§ proofs

- applications : functionals of persistence
diagrams

manifold learning

topology of random spaces

- generalisations : multi parameter persistence

sheaf theory
other applications o o  o

What we will not cover : homotopy
limit theorems

a  o  o  I

Note that these note will be expanded
during theeoosse



Preliminaries

Topological space
-

very general
- defined in terms of

neighborhoods

- lead to
many pathological

examples

Other types of spaces
: Manifolds , stratified

spaces ,

metric spaces ,
ooo

1st model : Simplicial complex

Def : A k - simplex is the convex combination

of 4th - points

••

••
•

• •

point
° - simplex

• Be••• •

edge triangle tetrahedron

1- simple 2- simplex 3 - simplex

If points are embedded in Euclidean space
then a simplex is just the convex hell

Mete : Simplices can be abstract
,

wet necessarily
embedded ( we will see this later )



One simplex is not terribly interesting
- consider simplicial complexes .

Deff : A simplicial complex D is a set of

simplices { on } such that

1) if re D
'

a
,

T Er then Te D

2) if o
, nor ¥9 then rinse

EDExamples •

•

. \
I

⑤
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•# @

•

Q @ d

simplicial not simplicial
complexes

complex

We will introduce related concepts as we

need them
, e-of carrier

,
closure

,
star

,
link

,
. . .

Note : A simplicial complex is often the easiest to

work with in a computer
,

but for hand computed

examples we will often use cellular complexes



Defy : A cellular complex consists of k - cells g
'

attaching maps ( how to glue the cell to

lower dimensional cells

Example :

my I
•

I A
.

2 cells are discs
.

simplicial

cellular

There  are other models : D - complexes
,

simplicial sets

Here we will mainly use simplicial complexes

( with cellular for some small examples )

Note :

Simplicial ⇒ cellular

* Simplicial is always cellular

cellular
is

"

equivalent
"

to simplicial

€
e will see exactly how later

,
but

owe can s - beliuide a cells into

simplices .



Equivalences
We will see many type of equivalences
however

, topological invariants are invariant

under continuous transformations
( this could be

any
continuous functions ,

homeomorphisms ,
diffeomorphisms ,

etc )

For our purposes , if f is a homeomorphism

for f :X → y then we consider

X my equivalent ,

As we introduce these

Concepts we will place them into

co - text ( stranger us
.

weaker )



Euler Characteristic

One of the most basic I most ubiquitous topological
invariants

.

For surfaces ( Euler )

X -
- IVI - IE I t let

Example
-

:

÷
.

÷÷
. .

Ht
X = 4 - 6 t 4=2

General formula

X = €o C- Dif# k - simplices in

D)Facts .

-

"

- Topological invariant

- Easy to compute

- Ubiquitous ( topology ,
differential

geometry , category theory ,

random fields ,
a . o )



Chain Complexes

We are after computable  invariants
.

Much of

What we will use will be based on

linear algebra .

Our starting point is

the chain complex .

We will first describe the west relevant example

before formally defining it
.

Let Kd be the set of all d- simplices
in K

Define Cdc's ) :  = Ilka ,

The d- the chain
group Cdc

D.)
is the vector

Space where each simplex is its own dimension

Example

a b c ab be
a

•

t.no It :.it :L ::]
D a

Cock ) C. Ck



Note : In everything we consider
,

the chain
group

is really the chain vector space .

* Why is it called the chain
group

?

We can add simplices together ( or more

precisely ,

we can take linear combinations

of simplices )

Defy .

.

A k - chain is the linear combination

of k - simplices

c-  - EXorTE Kd

or  in  other words
,

it  is a vector indexed by the

K - simplices .

So far
,

we have only defined chains

what is a chain complex ?



Recall : Simplices ( or cells ) of different dimensions

are related ( if T is a face of  a simplex rink

then T must be in K )

This gives rise to maps dk : ex → Ce
- i

t k

die is called the k - th boundary operator .
It

describes how a k - simplex maps to a

( k - A - chain
.

Example :
• • dead- atb

a b

( over 2221 to
• •

a b

a

& I Cab c) =  ab e be toe

b
••
I

C

✓
aa

• •

b • &
a

a- a

b c



n general ,
we will have orientation C - l -

s)as well

Notice that de takes a k - simplex I returns a Ck- e )

chain
.

Since it  is linear
,

more generally it takes

a k - chain ! returns a Ck- I ) -

chain
.

c -

- Ebr ⇒ old = o ( Eso )

= Exo Ocr )

Note : vertices map
to o

,
d Cool = o

Example C
•

-

: d

II.i
a s

do d
,

a b c I e
ab one be bae

[ o O 0 O O ]
a I I O O

b I O I I
c O I I O

d
o O O I

e

02 abc

ab I

÷:L :L
.



Since Ok : Ck → Cat
,

the chain complex is

•  ooo Cee , Ce Cece ,
. . o -05C

, Co - so

The collection { Gc
,

de }←⇐zz is the chain

complex .

Property : A chain complex must also have

the property dk.dk#-- o A
this is the

key
Alternatively im aka E ke - dk condition

Example :
•

.
:c::c:c:::c .

=D Cabled Cac ) ed Cbc )

= at b t ate t be c

= O

( at  a  =  o

,

by 8=0
,

Ctc = o )
since we are

over 222

Deff : An element of Kendra is called a

k - cycle .



Why ? Think cycles in graph theory

ii.:. ÷ :noO O

Exercise .

erify that doo C HT ) -

- o
,

that the

boundary of an empty tetrahedron C 4 triangles )
is 0

.

Def: The space of all k - cycles is called

the cycle space .

Def : An element of im done
,

C- Cia is called a

k - boundary ( because it bounds a k - cycle)

Lbs: These are all vector spaces
( though this holds only in our case )



Homology
Given a chain complex { Ce

,
de }

let Za demote the space of cycles ( ke - da )

B
,⇐ ,

denote
the space of boundaries ( indica )

The k - the homology group is

He (g) =

ke - % more ,

"

All cycles which are not bounded
"

( In our case again a vector space )

Defee . The k.TL
Betti number is the rank

of He

Be = rk ( Hed = rk ( Y-f⇒=
= rk ke - de - r ki - duct ,



Why is this well - defined ?

Recall dkodke ,
= O

,
so

im 2kt ,
I Ker Ok E Ce

I I I
boundaries cycles chains

rk ( im diced Erk ( Ker @ a) Erk (G)

Picture :

.

Ce

Ze Zk

Be

J 'D

How can we compute this ?

Gaussian elimination



Example l . Graphs

Hv eco dcv ) = O All vertices are

cycles

⇒ Co = ke - do so homology are all
the equivalence classes

of vertices modulo  edges
c e.g .

connected
he

co - parents

Ig.  
t

. baedhoof
a

in

Q
= ?

ab be ad ad de e f gu
a I I
b

It
I

,c

I
I I

d I I
F- E' I 'It¥

,

e

f

g
h

There are 8 cycles L vertices ) '

g rkcimo , ) = 6

So rk ( Ho ) = 8 - 6--2

The equivalence classes are the components

! sum  of  components

Formally ,aebtct
Ite tf

, gth



Example 2 H
,

d
•

\• ke - d
,

= ?

↳¥ ab bc ad bd ad

a b a I I

b IIII I

c ITI
d

III I I

ke - d
, spanned by { belt cdtbc

,
adtcdtbc tab }

im da = ? abd

ab I

bc
→ need to make row spaceCd

bd a
= ke - d

,

ad I

H

abd ab

bolt cdtbc It 0+0 Z
, I

→

adtcdtbctab Ito toll Zz O

Each simplex bowels I cycle
( if our chosen basis is the sum of

multiple cycles then we need to

make a choice )
I



Picture of  homologous I - cycles

Zz

* Z
,

- Zz ⇒ we can write 2- it ¥, ?gi.ci

*
Z

, i.s not homologous to Zzt Zz

⇒ because Zz ¢ im d
,

( by definition )



Euler Characteristic { Homology
Recall X-i.EC - Nil Kal

Now : / Kael - r KC Ca ) .

since is just the

¥÷÷iE. aces
)

By the rank nullity theorem

rk C Ce ) = r KC Ker QI trkciun de )

So

X = €?( - Dirk Cce ) =!§( - Nitric Lacerda ) - irk Linde )

= i€tN ( rk Her .de ) - rk ( indeed trk.imdo )

= if C- mirk Ceil-

- ETC .
hi Bi

Oddly , computing alternating sums of

Betti numbers is much easier than

computing Betti numbers
.



Persistent Homology
Until now

,
we have had only one space I

Now we consider a filtration

D
,

E De E
.

.  . .

E D
-

What is the homology of a filtration ?

Digression : What are some typical

filtration s we will look at ?

1) Functions on simplicial complexes

f : D - is I

( we assume for simplicity ,
that f  is constant

on each simplex )

The fit - at  ion f
-  ' ( - a

,

x ] is called a

lower
- star fit ration

.

We require that f
- '

( - o
,

a ] is a simplicial
complex ( E dels brunner I Harer call this

a monotone function )

We will not prove it here - but there is a

closely related notion - the sub level

set filtration .



Intuition : Track homological features
over the filtration .

Example :

a

•

•

a

→
here  comp .

- ,

← new  co - p .

7

-

T2
comp .  merge z co - p . merge .

* Features can be born ( rk C Health
Features can die ( r k ( Hid - 1)

Sane example for A
,

C with apologies )

0

to



Note : There is more information then

just  -11/-1 of the rank

e a

td a a

i •.

of#
a

Notice tf ranks of components is the

same but what happens if we track

how long live ?

Key Fact
.

When 2 components lcycles
merge ,

we kill the youngest one
,

ie

the one which was born last .

This is called the Elder rule

( There is a good algebraic reason for this )



Case I :

e •

• ofd •

. • Ti
.b a

a o

. yr

case 2 different
- ←

Be
Haim.¢

°

In red we see barcodes - notice They

distinguish between the 2 functions

Remark A completely general characterisation

of what the
" barcode " defects is still open .



Formal Definitions
Given a filtration of simplicial complexes

D
, E D

,
E Dz E

 
.  - .  -

E D
n

This gives rise to an increasing sequence of
chain groups for all k

Ce( D.) ↳ Calm ↳ Cec Dz ) C > - -
. Cs Ce

CDH
This is called the persistent chain complex

✓
✓ ✓ ✓

C.

⇐f
D.) ↳

Cut,LDz)
↳

Cece
,

( Dz ) ↳ - -
i ↳

Cee
, CD

diet ,
0kt I dktl diet I

✓ V V ✓

Ce ( D.) ↳ Calm ↳ Cec Dz ) ↳ - -
. Cs Ce CDXda da de da

v V
✓ V

Cy
,

( D.) ↳ Ck
- i CD 2) ↳ Ck , CDs ) C > - -

. C >CetCDL
u

V
V u

Each column is a chain complex & Cs denotes

mono morphisms



Applying homology in each column

Ce ( D
,
) ↳ Cia CDI ↳ Ce CDs ) c > - -

. Cs Ce CDayI
He CDT → Hec Dj -3 He C Dz ) → -

- .
 -7 Held )

Note : Usually in topology we compute homology
over 22 ( ie we treat the entries in de as

integers ) but we will treat them as 22
,

Cor

Zp fo - p prime )
.

This cheers He C Di ) are vector spaces !

He LD i ) → He C Dj ) are linear maps .

Reina : The linear
maps are induced

from the inclusions on the chain groups

¥ : Check that the wraps are well defined .

Hint : CkCsi ) a , Ca Lbj )

⇒ Ze C Di ) ↳ Zac Dj )

⇒ Be CDI ) ↳ Bel Dj )



Remark 2 : The linear maps are just
matrices again

Demark 3 : Though the chain maps are

mono morphisms
,

this is not the case

=

for the linear maps .

Defoe : A persistence module is the

collection of vector spaces and maps

between them :

{ He ( Dil } ice
I He Cbi → He Lbj) Hi

, j

This is just :

He CDT → Hec Dj -3 He C Dz ) → -
- .

 -7 Held )

One thing which makes persistence useful

Module I Diagram 1B arcade



Def : A barcode is a decomposition

of a persistence module

TLDs
)

RED
) E

ITCH
a

IELTS
to - - - to

If
Lts

such that each

Ig. (f) = {
"  - k ' biEtc dj bj , djez

O otherwise

( These an called(
interval modules )

I

9

I

rk

#
ECD

is
→ He Is ) =

i

min Ij ( t ) n Ist )

So we decompose into -

"
intervals

"
such that

the rank of any map is the sum  of  intervals

which "

span
"

the map Lie the interval contains

the end points of the map )

Why does this exist ?

Short answer :

Gabriel 's Thur ( Representation theory )

A quiver of the form
a  ← o  ← 3 a ← .  - i( →

a

admits a decomposition .



More constructive viewpoint :

Say we build an interval decomposition

incrementally :

£23
He CAN He CDS → He C Dz )

1¥: f.  a
= fog ° Fiz

A
e CD e) He C De ) HID g)211

Ken ¥2 to coin fr → in f iz
Q Coker f. a

211

Ker . fzz a  coin fez → im fog to Cokerfzz

Decay : w/ slight  abuse

al ke - fire = El ,
2) Remark

b) in fu n Ker fzz ⇐ E ! 3)
Ei

, j
) is usually

c) in fan co im fez I [ I
,

3 ] considered as

Coker fi z n Ker fzz = [ 2
,

3) Ei
, j

- I ]

Coker f. z
A co i - fez = [ 2,3 ]

Coker fzz I [ 3 ]

' I 2 3

Picture :

⇐
•

Cdo a Cf )

• - (e)
(b) o_0

Cg
. -



Observation : All the information is

contained in ranks of all the vector

spaces and Ilmaps .

This makes sense since

the rank determines Cup to isomorphism ) a

vector spaces

Computation
Good news No harder than ordinary homology

Idea : Ordered Gaussian elimination

Except :
* We will refer to simplices

I

z 5 by Suction value

" Ft4
6

> increasing
%

3
'

5 G 7 ← cycle
§ O I O O O LT are the intervals
i

a-
i ItI 0 I

§ 2 O ITI 0 I,3)
,

[ 2,5 )
,

[ 4,6 ]
Is v 4 0 O

III
'

[ 0,5 ) - unmatched

rows are infinite
bars

Carlsson - Zourorodian showed

that we can restrict de to just include rows

which create cycles
d

,
8

7- D
→ E 7,8 ]



This restriction  makes computation
easier but it is important to keep in

mind
why this works

.

Algebraic interpretation : Treat coefficients

as monomials in 1 variable
,

w/ powers

3 5encoding tie

o •↳•2d
3 5 6 7 7¥

'

O t
's

O o O
u

6

I t
' t

"
O to

2 O t
's t

4
o

4 O O th t ' The power is the

difference between

edge
'

tire
"

's
,

vertex
' '

time
"

* Multiplication by t moves things forward in

time

Example : % -

b flat -
- I f Cass =3

- f (b) =L

d ( ab ) = that tb

Notice these polynomials keep track of
"

time "

-

' 
-

carlsson-Zojrd.cn : Persistent homology
is homology over monomials w/

field coefficients ( 22pct ] )



Upshot : 22pct ] is a principle ideal

domain
,

so dpersistence module
.

is a module over a p .

id
'

q
admits

a decomposition into a free part L infinite

bars ) 's torsion ( finite bars ) * these are

precisely the interval modules
.

From barcodes to diagrams
It will often be useful to present

barcodes as a diagram .

For each

interval draw a point w/ the start point
on the x-axis 4 the end point on the

y-axis
a

- •

- •

El,
3 ]

,
[ 2,5 )

,
[ 4

,
6 ] →

-

- •

- a

-

I l I I
. I I )



Diagrams will be useful for stability .

But first ,

I more interpretation :

Recall
,

all the information we want is

in the rank of all the maps . For a

filtration of length 3
,

this is

represented by
beof e3

TEI

ON

Hence
,

we need 6 integers C ranks )
This is called the rank function .

R : I → 22

R is an integer valued function on

the space of all possible intervals



Patel 2016

The persistence diagram B the

Mobius inversion of R
.

* This is just inclusion - exclusion

Example a-of
"

Haf- Cab ) -
- 2 @

f- La ) -

- O
b

fcb )= 2
Flack I

f- C c) =/
flashy

f- Cd ) -

- o

fled
) =L

O I
-

2

C

O_O
a

•ad aoa-o.ecage
a

# d

@

b

Rank
- ,2 2

• a d

• To
.#

I

I



Inclusion - Exclusion

2 2
I

• a d

¥! .

I

I

Izcyo
• .

y /
°

• HII.

##
XoXO

O
•

µ
,

/
• a

•  ISI

I

Final result 0,2 ]

I 0,1 )


