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We follow the book by Donald Cohn, Mea-
sure Theory:.



Algebras and Measures:

A collection A of subsets of X is called an
algebra if

(a) all of X is a member of A,

(b) for all A € A, the set X\ A is in A,

(c) for every Aq,..., A, € A, UL A; € A,
(d) for every Ay,..., A, € A, N A € A

The condition (d) is superfluous,

as My Ai = X\ (UL (X\Ay).

The empty set () is always in the collection.



The collection A is called a sigma-algebra
(or o-algebra)

if (a) and (b) hold and additionally

for every infinite sequence Ay, Ao, ... of sets

in A:

In general we work with sigma-algebras.

A set in the sigma-algebra A is called a A-
measurable set.

A space X with a sigma algebra A is ex-
pressed as (X, A) and is called a measurable
space.



Examples:

(a) A is the collection of all subsets of some
set X. — sigma-algebra

(b) A ={X, 0} — sigma-algebra

(c) X is infinite and A is the collection of
sets A such that A is finite or X'\ A is finite.
— algebra, but not a sigma-algebra.

(d) X is infinite and A is the collection of

sets A such that A is finite or countable or
X\ A is finite or countable.

— sigma-algebra.



(e) X = R and A is the collection of all
intervals of R.

— not an algebra
(f) X = R and A is the collection of all
finite unions of intervals of R.

— algebra, but not sigma-algebra.

If A were a sigma-algebra,
all points of R would be in A,

and so the rational numbers Q should be in

A.



Given a collection of sets A that may not
be a sigma-algebra,

we want to way to construct a collection

a(A)
that is a sigma-algebra

and is the sigma-algebra that is generated

by A-

meaning that all sets which must be in the
sigma algebra are there and all that need
not be there are not there.

We mean that it is the smallest sigma-algebra
containing A.



Lemma: Let X be aset and let (A; | 7 €
I) be an arbitrary collection of sigma alge-
bras.

The collection A :={A |Viel Aec A}

is a sigma-algebra.
Proof:
(a) X € A; foreveryi € I = X € A.

b)) Ae A=Viel Ac A,
=Viel X\Ae A= X\Ac A

(c) Ay,---€e A=Viel A,--- €A

]



Lemma: For any collection A of subsets of
X there is a smallest sigma-algebra, called
o(A), containing A. This means that any
other sigma algebra containing A also con-
tains o(A).

Proof: Let (B; | ¢+ € I) be all the sigma
algebras of X that contain A.

There is at least one member of the family,
namely all the subsets of X.

By the above lemma, the collection B :=
{B|Viel B € B} isasigma-algebra.

Fix any sigma algebra B; containing A: any
B € B is also contained in B;. O



Determining the smallest sigma algebra con-
taining a collection of sets can be a difficult
task.

Consider the collection A of subsets Ay, Ao, . ..
of the integers such that A; = {ni |n is an integer}.

What is o(A)?



Topology: A topology for a set X is a
collection A of open subsets of X such that:

(a) X € A,

(b) VA, Ase A AT NA e A,

(c)if (A; | € I) is any collection in A then
U;A; € A.

As the empty intersection is included, the
empty set 1s an open set.

In R" a set A is open if for every x €
A there is some 0 such that the open ball

Bs(x) ={y | |ly — z|| <} is contained in
A.

[t is easy to check that this definition satis-
fies the three conditions (a), (b), (c).
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A base for a topology is a special collection
B of open sets such that every open set A of
the topology is a union of sets of the base.

Lemma: A base for the topology of R”
is the collection of sets Bs(x) where § is a
rational number and each coordinate of x is
rational.
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Proof: Let x be a member of A, an open
set.

With ¢ small enough so that Bs(x) C A,

let T be a point with rational coefficients

within §/3 of  and let d be a rational num-
ber with §/2 < § < 20/3.

The ball B5(Z) both contains « and is con-
tained within A.

Unioning such open balls for every x € A
will recreate the set A. O.
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The above base of open sets of R" is a count-
able collection,

meaning that every open set is the union of
countably many open balls of this base.

For any space X with a topology

B(X) is defined to be the smallest sigma-
algebra containing all the open sets of X.

This special sigma-algebra is called the col-
lection of Borel sets.

B(R™) include most of the sets one could
lmagine.
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Let F be the collection of closed sets of R"
and

G the collection of open sets of R".

Let F, be the collection of sets of the form

U2, A; for some sequence Ay, Ao, ... of closed
sets (in F).

Let Gs be the collection of sets of the form
M2, A; for some sequence Ay, Ao, ... of open
sets (in G).

Members of Gs are called G sets and mem-
bers of F, are called F, sets.
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Lemma: Every closed set of R" is in G;
and every open set of R" is in F,,.

Proof: Let C be a closed set of R". For
every € > 0 define C, .= {y | ||y — z|| <
e for some x € C.

C. is open: if ||y — z|| < € for some z € C
then Be_j,—.(y) is also in C..
e—lly—all

We claim that N;C is equal to C.

Any points y of N;C'1 has a sequence 1, o, . . .

of points in C' such that ||y — z;|| < 3.
Therefore the sequence x; converges to y.

As (' is closed, this means that y is in C.
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Now take any open set A and consider its
complement B = R"\ A.

As B = NA,; for a sequence of open sets
A17 AQ, c e ey
we can write X\ B = A = U2, X\ A,

(as not in B is the same as not in A; for
some %) for a sequence X\ Ay, X\ Ay, ... of
closed sets. O
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Corollary: The Borel collection of R" are
the sigma-algebra generated by

(a) the open sets of R",
(b) the closed sets of R”,

(¢) a countable base for the topology of R".

17



Any countable process of taking unions and
intersections, starting with the open sets,
will result in a Borel set.

Indeed, it is consistent logically to assume
that all subsets of R" are Borel sets,

and it requires some axiom of choice to prove
that a non-Borel set exists.
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Measure:

Let X be a set with an algebra A. A func-
tion p : A — |0, 00] is called finitely ad-

ditive if for every finite collection A4, Ao, . ..

of mutually disjoint sets in A,
p(UiL Ag) = >0, m(A).

It is called a finitely additive measure it
additionally p(0) = 0.

Let X be a set with a sigma algebra A. A
function g : A — |0, 00] is called count-
ably additive if for every infinite collec-
tion Ay, As, ... of mutually disjoint sets in

A,

(U2 Ay) = 221 p(A;) = limy, o0 Z?ﬂ f(A;).

[t is called a measure if additionally p(0) =
0.
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Countably additive implies finitely additive,

by equating A; = () for all j > n such that
n is large enough.

But does finite additivity on a sigma algebra
imply countable additivity?

People thought so, until about 1900.

The theory of finite additive measures is deep,
related to duality in functional analysis.

For us, usually measure means countably
additive.
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Examples:
(a) u(A) = |A|, the cardinality of A.

(b) x € X chosen, §,(A) =1if x € A and
0.(A)=0ifx & A
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(¢c) Z is the set of integers and A is the
collection of subsets such that A is in A if
and only if A is finite or Z\ A is finite.

pu(A) = 1if Z\ A is finite and p(A) = 0 if
A is finite.

Now try to extend u to the sigma algebra
o(A), which are all the subsets of Z.

Problem: what should be the weight given
to the set of even numbers and the set of
odd numbers? And what of the other ways
to partition the integers into finitely many
disjoint infinite subsets?”

[t can be done, but never in a sigma additive
way. Ifso, u({i}) = O0forall¢ € Z, but then
u(Z) = 0, a contradiction.
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Measures (finitely or countably additive) are
always monotonic,

meaning that A, B measurable and A C B
implies that u(A) < u(B).
This follows because B = AU (B\A),

so that u(B) = p(A)+u(B\A) and u(B\A) >
0.
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Likewise countable additivity implies

(U A;) < D07 (A,

as we can always write, for every ¢ > 2,
Ai = (AN (U1 A)) U (AN (U1 A)))

and recognise U, A; as a disjoint union of

Ay with the (A;\(U/Z1A))),
and use that ,LL((AZ-\(U;;llAj)) < u(A;).
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By a measure space (X, A, 1) we mean a
set X, a sigma algebra A of subsets of X,
and a sigma additive measure defined on all
sets in A.

A finite measure p on X is one where pu(X) <
Q.

1 is o-finite if X is the union of countably
many subsets Ay, Ag, ... such that u(A;) <
oo for every 1 =1,2,....
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Lemma: Let (X, A, 1) be a measure space
(sigma-additive).

If Ay, Ay, ... is an increasing sequence of
sets belonging to A (meaning A; C Ay C
c+ - then p(U2 1 A;) = lim; oo i1(A4;).

If Ay, Ao, ... is a decreasing sequence of sets
belonging to A (meaning Ay 2O Ay O ---
and p(Ay) < oo for some k, then p(N2,A;) =
lim; o0 1(A).

This 1s called the

continuity of measure.
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Proof:

Let A = U@QilAi and define Bl = Al, BQ —
AZ\Ala B@ — Az’\Az’—l :

As the union of the B; is equal to A the B;
are disjoint,

we have S°5%, u(By) = u(A).

But also U!_, By, is a disjoint union equal to

A,

So p(A;) = 22:1 #(Bk).

The conclusion follows from lim; o p1(A;) =
lim; o0 3 oy #(Br) = >y #(Br) = p(A)
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If A=nNXA; and pu(A,) < oo for some n,
we can start at A,, and look at the sequence

Cr = A\Ay for all k& > n.

This is an increasing sequence, with limy_ . u(Cy) =
M(Uk>nckz) < Q.

[t follows thatA; = A,\ Ui>n C' and

A= An\ Uk>n Ck

By the finiteness of all measures, that the
sets are mutual disjoint, and the above equal-
ity of the measures we get

wA) = w(An) — pUsnCr) = pu(An) —
lim; o0 D23y, (Ck) = limjjsoo 1(A;).

Not true if p(A;) = oo for all ¢:
Ai = [’L, OO>

28



Lemma: Let (X, A) be a measurable space
(with A a sigma algebra) and p a finitely
additive measure defined on A.

For u to be a (sigma additive) measure, it
suffices that for every increasing sequence

Aq, Ag, ... of setsin A
it follows that lim; o u(A;) = p(U2A4;).
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Proof: Let By, By,... be an infinite se-
quence of mutually disjoint sets of A.

We need to know that p(U;B;) = > . u(By).

Define A; = U _, By, and let B := U2, A; =

The A; are an increasing sequence of sets,

and so lim;_, ,LL(AZ-) = ,LL(UfilAz') — M(UfilBi) —
u(B).

Now notice that
u(A;) =S, pu(By) from finite additivity,

80 lim; 00 p4( A;) is also equal to > 7o | u(By).

30



