Measure Theory Second Week



Outer Measures:

Let X be a set,
P(X) the collection of all subsets of X.

An outer measure p @ P(X) — |0, 00] (de-
fined on all Subsets) is a function such that

() (D) =

(b )1fACBthen u(A) < u(B),
(c

t

) if Ay, Ag, ... is a sequence of subsets
hen

(U2 A < >0%0 pu(A;) (subadditive).



For outer measures 1 that are not measures
there is some sequence Aj, Ao, ... of dis-
joint sets such that

D iy (A7) > (U A;).

For finitely additive measures p that are not
measures there is some sequence Ay, As, . .
of disjoint sets such that

Doy M(A) < p(UR Ay,

In general, outer measures are not measures,
as they are defined on all subsets:

usually measures require some restriction to
a collection of measurable subsets.



Lemma: If an outer measure p on a sigma-
algebra is finitely additive, then p is also
countably additive on that sigma algebra.

Proof: Let thesets By, Bo, ... in the sigma
algebra be disjoint.  With Y 1 u(B;) =
p(U_, B;) we can go to the limit:

Zz?il M(BZ> — hHln—>oo 2?21 M(BZ> — hmn—mo ILL( ?ZIBZ)

By monotonicity, (U B;) < u(UX,B;),
and so this holds also for the limits:

limy, 00 (Ui Bi) < (U2 B;).

Assuming that p is an outer measure we get

(Ul Bi) < 300, u(By).

But now all values are sandwiched by > -7, u(B;),
hence the equality of Y > u(B;) and p(U2, B;).



Examples:

(a) u(A) =01if A =0 and
u(A) =1if A #£0.

(b) u(A) =0 if A is countable and
u(A) = 11if A is uncountable.

(c) Let (X, A, ) be a measurable space.
Define p*(B) = infaea. a5 p(A).

— origin of the term outer measure.



Lebesgue outer measure:
A" is defined on all subsets of R.

N(A) =
mf{Zfil b, — a; | Ufil (CLZ', b@) D) A}

Lemma (1.3.2): Lebesgue outer measure
is an outer measure and assigns to every in-
terval its length.



Proof: The empty set is covered by any
collection of open intervals, hence also of
lengths €/2,€/4, ...,

therefore A*(()) = 0.

If A C B then any collection of intervals
covering B also covers A.

Hence the collection of coverings for A in-
volves a larger collection than that for B,

and therefore \*(A) < \*(B).

Let € > 0 be given. Any covering collection
used to define A*(A;) to within 5; also is a
covering collection for U;A,;.

Hence after taking the infinum on all cover-
ings of U;A; and ignoring the €

it follows that A*(U;4;) < > A*(A)).



Finally, letting I be any interval from a to
b with b > a, be in closed, open, or open on
one end and closed on the other,

the sequence (a—¢, b+€) covers the interval,

and so \* of the interval is no more than

b— a.

One the other hand, it suffices to show that
A* of the closed interval |a, b] is at least b—a.

Because it is compact, any collection of cov-
ering open intervals can be reduced to a fi-
nite covering collection.

Now easy to show that if the lengths of this
finite cover did not add up to at least b — a
they could not reach from a to b.



Definition: Let p be a outer measure on
X. A subset B is u-measurable if for every

subset A of X it holds that
u(A) = (AN B) + p(A\B).

Subadditivity of outer meaures implies al-
ready that u(A) < u(AN B) + u(A\B),

so whenever u(A) = oo it is automatically
true.

A Lebesgue measurable set is one that is
measurable with respect to Lebesgue outer
measure,

and the measure A\ is the measure A* re-
stricted to the Lebesgue measurable sets.



Lemma: (1.3.5) Let pu be an outer mea-
sure on X . Every subset B such that u(B)
0 or u(X\B) = 0 is u-measurable.

Proof: We need only show for every subset
A that u(A) > (AN B) 4+ u(AN(X\B)).

With u(B) = 0 or u(X\B) = 0 it follows
by monotonicity:.
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If 1 is an outer measure,

let M, be the collection of 1 measurable
sets.

Theorem (1.3.6):
M, is a sigma-algebra and

{4 is a measure on M,,.
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Proof: From the previous lemma and the
definintion of M, X is in M, u(0) = 0,
and A € M, if and only if X\A € M,,.

Next we show that M, is an algebra and p
is finitely additive.

Let By, By € M,,; with closure by comple-
mentation already demonstrated, it suffices
to show that By N By is also in M.

Let A be any subset: as By is in M,
HANBy) =

w(AN BN By) + u((AN By)\Bsy) and

p(A\B1) = u(AN (X\By)) =
u((A\B1) N By) + pu((A\B1)\ Ba).
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As By € M,: u(A) = u(ANBy)+u(A\By)

u(A) = W(ANB1N By) 4+ pu((ANB1)\B2) +
u((A\B1)) =

HAN BN By) + p(A\(B1N By)) > p(A),
(by subadditivity)

hence By N By is also in M,,.

Furthermore, assuming By, B» € M, are
disjoint,

and letting A = By U By be the set chosen,
we have A\B; = By, AN By = By

and p(A) = p(B1 U Ba) = pu(Bi) + pu(Bz).

Therefore pu is finitely additive on M,,.
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Let By, By, ... be an infinite sequence of
mutually disjoint members of M, and let
A be any subset:

It follows from finite additivity and induc-
tion that

p(A) =37 (AN Bi) + u(A\(ULZ, By).

Letting n go to infinity,
p(A) = 3772 W(ANB;)+limy, 00 (AN (UL By)).

By monotonicity lim,, o p(A\ (U B;)) >
p(AN(UZ, By)),

so u(A) > 377 u(ANBy)+p(A\(U2, B;))
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Therefore by the above and p being an outer
measure, pu(A) >

>y AN B + p(A\(UE, B;)) >
AN (U B;)) + (AU, Bi)) > u(A).

It follows that U2, B; is in M,,.

The sigma additivity of p on M,, follows
from previous lemma. O
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Lemma: Every Borel subset of R is Lebesgue
measurable.

Proof: Given that the Lebesgue measur-
able sets define a sigma algebra,

and the Borel subsets are the smallest sigma
algebra containing intervals of the form [ =
(—o0, ], given any subset A we need that

N(A) =X (ANT)+ N (A\]).

We can break the ith open interval (a;, b;)
covering A into two inteverals, (a;,c + ;)
and (c, b;) whenever a; < ¢ < b;.

In this way we cover both ANI and A\ and
show that A*(ANT)+ A *(A\]) < A*(A)+e
for every € > 0;

together with subadditivity, the equality fol-
lows.

16



More on Lebesgue measure:

Lemma (regularity): Let B be a Lebesgue
measurable subset of finite measure.

For every € > 0 there is an open set A and
a compact set C' such that C C B C A

and A(A\C') < e.

Proof:

As the measure A(B) is approximated by
open Covers,

there is an open cover of B whose union A
has measure less than A\(B) + €/3
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By sigma additivity,
there is an n large enough so that

AMBN[—n,n]) > XB) —¢/3.

Cover |[—n, n]\ B with an open set G so that
AMG) > M|—n,n]\B) + ¢/3.

C' = |—n,n]\G is a closed set contained in
B whose measure is more than \(B)—2¢/3.
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Lemma: Lebesgue measure is translation
invariant,

meaing that for any given r € R,
a set A is Lebesgue measurable

if and only if A+r:={a+r|aé€ A} is
Lebesgue measurable

and A*(A) = N (A + 7).
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Proof: Let (I; | : = 1,2,...) be a collec-
tion of open intervals covering A.

The intervals (I; + r) cover A + r and each
interval has the same length.

This shows that A*(A +r) < \*(A),
and the same arguement shifting by —r shows

the opposite inequality:.

Likewise the intersection property with any
subset of R that confirms that A and X'\ A

are Lebesgue measurable

shows the same for A +r and (X\A) +r
after all sets are shifted by r.
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Theorem: Given the axiom of choice,

there is a subset of |0, 1) that is not Lebesgue
measurable.

Proof: Define an equivalence relation on
r,s €0,1)

by r ~ s & r — s is rational.

Define addition modulo 1,

sothat b+cisb+c—1ifb+c> 1.

List the rational numbers ay, ag, ... in [0, 1).
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Let B be a set of representatives for the
equivalence relation (Axiom of Choice)

meaning that B intersects every equivalence
class one and only once,

or that for every r € [0, 1) there is one and
only one ¢ with r + a; € B.

This means that UX,(B — a;) partitions
0,1);

for every r there is some b € B and a; such
that r = b — q;

and if r € (B —a;) N (B —a;) # 0 for
distinct a; # a;

thenr = b,—a; = bj—CLj for some bi, bj e B
and the equivalence relation sharing both
r + a; and 7 + a; have two representatives
b; and b; in B, a contradiction.

22



Assume that B is Lesbegue measurable.

Notice that translation invariance holds also
in the modulo arithmetic.

So every B — a; must be Lebesgue measur-
able and have the same measure.

This measure can neither be 0 or anything
positive,

as that would imply that the whole set [0, 1)
1s either infinite in measure or zero in mea-
sure,

when it is really of measure one.
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