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CHAPTER 0

Introduction

These notes were produced to accompany an LTCC1 course given in Octo-
ber 2016. The pre-requisites for the course were not particular clearly stated,
but probably included

• Basic familiarity with manifolds and vector bundles, in particular the
tangent bundle, differential forms and the de Rham complex;
• The simplest notions of functional analysis, in particular bounded

operators on Hilbert spaces and the like.

Almost everything is rather classical (index theory goes back to the 1960s,
after all) but I wanted to try to give a treatment which combines the classic
papers with various insights that I’ve gleaned over the years.

0.1. Approach

The approach is to construct a class of linear operators, the pseudodif-
ferential operators, which have very good properties and which are general
enough to contain ‘approximate inverses’ of elliptic differential operators. We
start with a black-box approach, based on extending the algebraic properties
of the symbol sequence we say for differential operators.

1London Taught Course Centre
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CHAPTER 1

Elliptic operators

1.1. Definitions

We begin in Rn (or in an open set X of Rn). Let p(x, ξ) be a function on
X × Rn, smooth in x, polynomial in ξ, of degree 6 k. If necessary, we write
this in terms of its coefficients ∑

|α|6k

pα(x)ξα

using multi-index notation ξα = ξα1
1 · · · ξαnn , where α = (α1, . . . , αn) and |α| =

α1 + · · ·+ αn.
A differential operator of order k on X is obtained by formally substituting

ξj → Dj = −i ∂
∂xj

into this polynomial. It is denoted P = p(x,D). The set of all differential

operators on X of order 6 k is denoted Diffk(X). The set of all differential
operators on X is denoted Diff∗(X): it is filtered by the order. Diff∗ is a
filtered algebra, in that the sum of two operators of order 6 k is again of order
6 k, while under composition, the degrees add:

Diffk(X)×Diff`(X) −→ Diffk+`(X), (P,Q) 7→ P ◦Q. (1.1.1)

The commutator of operators is also important,

[P,Q]u = P (Qu)−Q(Pu);

if ordP = k, ordQ = `, then the order of [P,Q] is k + `− 1.

Remark 1.1.1. There are a number of reasons for the factor of −i in the
definition. It fits in very well with the Fourier transform, which will get much
usage later; more fundamentally, Dj is a formally self-adjoint operator and so
real polynomials correspond to formally self-adjoint operators (at least if p is
independent of x).

Example 1.1.2. The laplacian is associated to the metric, |ξ|2. For a
variable metric, it is a little more complicated, namely the p in question is |ξ|2g
plus lower order times.

Note that Diff0(X) = C∞(X), viewed as multiplication operators.
Note that if P ∈ Diff∗(X), then P defines linear maps

P : C∞(X)→ C∞(X) (1.1.2)

and

P : C∞0 (X)→ C∞0 (X) (1.1.3)

7



8

where the 0 denotes compact support. Differential operators are also local in
the sense that

supp(Pu) ⊂ supp(u) (1.1.4)

for any function u.

Definition 1.1.3. If P ∈ Diffk(X), the (principal) symbol σk(P ) is de-
fined to be

σk(P )(x, ξ) =
∑
|α|=k

pα(x)ξα. (1.1.5)

p(x,D) is said to be elliptic at x if σk(P )(x, ξ) 6= 0 for all (real) non-zero ξ.

Example 1.1.4. The Laplacian is elliptic with symbol |ξ|2.

Theorem 1.1.5. For each integer k and any given open subset X ⊂ Rn,
there is an exact sequence

0→ Diffk−1(X)→ Diffk(X)
σk−→ Sk(X)→ 0. (1.1.6)

Here Sk(X) is the space of polynomials homogeneous of degree k in ξ, with
coefficients smooth functions in X (the typical element of Sk(X) looks like the
RHS of (1.1.5)).

Furthermore, the symbol map is an algebra homomorphism: if

ordP = k, ordQ = `, (1.1.7)

then
σk+`(P ◦Q) = σk(P )σ`(Q). (1.1.8)

Proof. The exactness of (1.1.6) should be pretty clear. For (1.1.8) it is
enough to consider the case of monomials

p(x, ξ) = pαξ
α, q(x, ξ) = qβ(x)ξβ

where |α| = k, |β| = `. Then if u is a smooth function,

P (x,D)(q(x,D)u) = pα(x)Dα(qβ(x)Dβu) (1.1.9)

= pα(x)qβ(x)Dα+βu+ r(x,D)u (1.1.10)

where r is of order < k + `.

Exercise 1.1.6. Show that the piece of r(x, ξ) homogeneous of degree
k + `− 1 in ξ can be written

− i∂ξp∂xq = −i
n∑
j=1

∂p

∂ξj

∂q

∂xj
. (1.1.11)

The assertion (1.1.8) follows by C-bilinearity of composition. �

In algebraic terms, (1.1.8) has the interpretation that the algebra S∗(X)
of polynomials in ξ with coefficients smooth functions of x is the associated
graded algebra of the filtered algebra Diff∗.

Note the interesting fact that σk is a homomorphism of algebras but the
algebra structure of S∗(X) is much simpler than that of Diff∗(X)—in par-
ticular it is abelian (at least for this setting of scalar differential operators).
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Obviously there is much more to a differential operator than its symbol, but we
shall see that (once these notions have been suitably extended) basic questions
about differential operators on compact manifolds are answered by knowledge
of the principal symbol. For example, if the symbol is invertible, and the
manifold is compact, the operator is also ‘essentially invertible’, that is, up to
finite-dimensional errors.

Exercise 1.1.7. Show that the ∂-operator

∂ =
1

2

(
∂

∂x
+ i

∂

∂y

)
is elliptic as an operator on complex-valued function in R2.

Exercise 1.1.8. Show that the grad-div-curl operator

(a, φ) 7−→ (curl a +∇φ,div a) (1.1.12)

is elliptic acting on pairs (a, φ) of vector fields and functions on R3. (For
operators acting on vector-valued functions, the definition of ellipticity is
that the symbol, which is now a matrix whose entries are functions of
(x, ξ), should be invertible for all non-zero real ξ.)

Exercise 1.1.9. Given any operator P ∈ Diffk(X) we can go back to
p(x, ξ) by ‘oscillatory testing’. Show that

p(x, ξ) = e−i〈x,ξ〉P (ei〈x,ξ〉). (1.1.13)

Show further that

σk(P )(x, ξ) = lim
|ξ|→∞

|ξ|−kp(x, ξ) (1.1.14)

Exercise 1.1.10. The point of view I have taken here1 is strongly
motivated by quantum mechanics. The function p(x, ξ) is thought of as a
‘classical observable’ that is, by definition, a smooth function of position x
and momentum ξ. Then p(x,D) is the corresponding ‘quantum observable’
operating (unboundedly) on the quantum state space L2(Rn).

Let
P = p(x,D), Q = q(x,D) (1.1.15)

where p = pk(x; ξ) + · · · and q = q`(x; ξ) + · · · , these being the terms
homogeneous of degree m and m′ respectively, and the · · · denoting terms
of lower degree in ξ. Show that

[P,Q] = r(x,D) (1.1.16)

where r = rk+`−1 + · · · and

rk+`−1 = −i{pk, q`} (1.1.17)

is the Poisson bracket of pm and qm′ , defined generally by

{f, g} =
n∑
j=1

(
∂f

∂ξj

∂g

∂xj
− ∂g

∂ξj

∂f

∂xj

)
(1.1.18)

[This follows immediately from Exercise 1.1.6.]
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Exercise 1.1.11. For composition of differential operators P =
p(x,D) and Q = q(x,D), of orders k and `, obtain the following formula:

PQ = R = r(x,D), (1.1.19)

where

r(x, ξ) = exp

(
i

2
$(Dx, Dξ, Dy, Dη)

)
p(x, ξ)q(y, η)|y=x,η=ξ . (1.1.20)

Here
$(Dx, Dξ, Dy, Dη) = 〈Dξ, Dy〉 − 〈Dη, Dx〉

and the formula is interpreted by (formal) expansion of the exponential in
power series. The sum will be finite because p and q are polynomial in ξ.

1.2. Invariance properties

In exercise 1.1.10, it was noted that p(x, ξ) should be viewed as a function
of position x and momentum ξ. The geometry underlying the Poisson bracket
is symplectic geometry. This strongly suggests that from a more invariant
point of view, if x ∈ V (a vector space) then ξ should be in the dual space
V ∗. On V × V ∗ there is a natural symplectic form and in coordinates the
corresponding Poisson bracket is (1.1.18).

Let us explain why this is indeed the correct point of view. We shall do
this in the context of manifolds and vector bundles.

Let M be a smooth connected oriented manifold and let E and F be
complex vector bundles over M . There are many ways to define the space of
differential operators acting between sections of E and sections of F . To make
the invariance more obvious, we use connections.

Let

C∞(M,E) = {smooth sections of E over M}. (1.2.1)

If k is a positive integer, denote by Ωk(M,E) the space of E-valued k-forms;
we have

Ωk(M,E) = C∞(M,E ⊗ ΛkT ∗M),Ω0(M,E) = C∞(M,E). (1.2.2)

A connection ∇ in (or on) E is (for us) a linear operator

∇ : Ω0(M,E) −→ Ω1(M,E) (1.2.3)

which satisfies the Leibniz rule

∇(f ⊗ s) = df ⊗ s+ f ⊗∇s for all f ∈ C∞(M), s ∈ C∞(M,E). (1.2.4)

Notice that this is a global definition, but a standard argument (using the
Leibniz rule, and suitable choices of f) shows that it is really local. More
precisely, the value of ∇s at a point x in M depends only upon s and its first
derivatives at x (in any local trivialization near x). More precisely: choose a
local trivialization of E in an open set U . If E is of rank N , then for each local
section s ∈ C∞(U,E), we have a CN -valued function s̃ defined in U . Then
there is an N ×N matrix of 1-forms, A, defined over U , such that

∇̃s = ds̃+As̃ (1.2.5)
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Because ∇ is locally determined, for any open set U ⊂ M (not necessarily a
set on which E is trivial), there is an induced linear operator

∇ : Ω0(U,E) −→ Ω1(U,E) (1.2.6)

which we do not distinguish from the original one.

Definition 1.2.1. If E and F are complex vector bundles the space of
symbols of order k from E to F is the space of sections of the vector bundle
SkTM ⊗Hom(E,F ).

The space of all symbols of order k is denoted Sk(X;E,F ).

A symbol σ ∈ Sk(M ;E,F ) can be viewed in various ways. We have

σk ∈ C∞(M,Hom(SkT ∗M ⊗ E,F )) = C∞(M,SkTM ⊗Hom(E,F ). (1.2.7)

Recall also that if V is any vector space, the k-fold symmetric tensor product
SkV is canonically identifiable with the set of polynomials on V ∗, homogeneous
of degree k. So at any given point x of M , σ gives a function

σ(x, ξ) ∈ Hom(Ex, Fx), x ∈M, ξ ∈ T ∗M (1.2.8)

homogeneous of degree k in ξ, that is,

σ(x, tξ) = tkσ(x, ξ) for all t ∈ R. (1.2.9)

In local trivializations, σ(x, ξ) is identified with a matrix, each of whose entries
is smooth in x and a homogeneous polynomial of degree k in ξ.

A more invariant and global interpretation of σ(x, ξ) is as follows:

σ ∈ C∞(T ∗M,Hom(π∗E, π∗F )),

where π : T ∗M → M is the projection, with the additional condition that σ
is homogeneous of degree k on the fibres of π.

Using connections and symbols, we extend the definitions in Rn to any
manifold. Let’s warm up with the case of first-order operators:

Definition 1.2.2. The space of first-order differential operators Diff1(M ;E,F )
is defined to consist of all operators of the form

L = σ1 ◦ (−i∇) + σ0 (1.2.10)

where σj are symbols of order j from E to F and ∇ is an arbitrarily chosen
connection in E.

The first term in (1.2.10) is the composite

C∞(M ;E)
−i∇−→ C∞(M ;T ∗ ⊗ E)

σ1−→ C∞(M ;F ) (1.2.11)

where we think of σ1 as a section of Hom(T ∗M ⊗E,F ) as above. Hence L, as
defined in (1.2.10) does map sections of E to sections of F , as suggested by
the notation!

Proposition 1.2.3. The definition of Diff1(M ;E,F ) is independent of
the choice of connection ∇.

With respect to local trivializations of E and F over some open set U ,
every L ∈ Diff1(M ;E,F ) has the form `(x,D), where ` is an N ×N ′-valued
function of (x, ξ), polynomial of degree 6 1 in ξ and smooth in x. Here N and
N ′ are the ranks of E and F .
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Proof. The difference of two connections is algebraic, ∇′ = ∇+ τ , where
τ is a section of End(E)⊗ T ∗. Thus

− iσ1 ◦ ∇+ σ0 = L = −iσ′1 ◦ ∇′ + σ′0 (1.2.12)

is solved by
σ′1 = σ1, σ

′
0 − iσ′1 ◦ τ = σ0. (1.2.13)

So a change in connection can always be absorbed by a change in σ0. It is
clear from the expression for ∇ in local coordinates (see (1.2.5)) that locally

L = −iσ1 ◦ d + (σ1 ◦A+ σ0)

which is of the stated form. �

Remark 1.2.4. The annoying factor of i in the definition is put in so that
real symbols correspond to self-adjoint operators and for consistency. Other
authors adopt different conventions and put the i elsewhere.

Notice that the first-order symbol σ1 does not change under change of
connection. We have also given it an invariant geometric interpretation as a
section of a certain bundle.

We now extend the above definition from first order operators to operators
of arbitrary order. For this, we need to choose a connection also on TM . It is
natural to choose this to be torsion-free. Recall that there is then an induced
connection on all ‘tensor bundles’, in particular the symmetric tensor products
SjT ∗M . Combining this connection with the original one on E, we obtain a
connection on E ⊗ SJT ∗, for every j. All these connections will be denoted
by ∇.

In particular, with this choice made, we obtain an operator ∇(2)

∇(2) : C∞(M,E) −→ C∞(M,E ⊗ S2T ∗M) (1.2.14)

as the composite

C∞(M,E)
∇→ C∞(M,E ⊗ T ∗) ∇→ C∞(M,E ⊗ T ∗ ⊗ T ∗)→ C∞(M,E ⊗ S2T ∗)

(1.2.15)
where the last arrow is the algebraic operation of symmetrization. (If we
take the skew part instead of the symmetric part, we simply get the curvature
operator. The torsion-free condition is needed for this assertion to be correct.)

Iterating the above construction, we may define, for each j,

∇(j) : C∞(M,E) −→ C∞(M,E ⊗ SjT ∗). (1.2.16)

Given a finite collection of bundle morphisms

σj : E ⊗ SjT ∗ −→ F, (1.2.17)

in other words symbols from E to F of order j, we define a differential operator

P =

k∑
j=0

(−i)jσj ◦ ∇(j) (1.2.18)

of order k.

Notation 1.2.5. The set of all differential operators of order k from E
to F is denoted Diffk(M ;E,F ), Diffk(E,F ) or even Diffk if no confusion can
result from the notational simplifications.

The set of all differential operators from E to F (of arbitrary but finite
order) is denoted Diff∗(M ;E,F ).
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It is left to the reader to check that Diffk(M ;E,F ) is independent of the

choice of connection used to define the ∇(j).
Note that Diff∗(M ;E,E) is a graded ring under composition, and that the

corresponding Lie bracket given by commutator [P1, P2] has order 6 k1 + k2

if k1 and k2 are the orders of P1 and P2.

Exercise 1.2.6. Show that the set of differential operators
Diff∗(M ;E,F ) is independent of the choice of connection used in (1.2.17).

Exercise 1.2.7. An alternative definition is that in any local coordi-
nates and trivializing charts, L is given locally by a differential operator
in the usual sense in an open subset of Rn. Show that this is equivalent
to the definition using a connection.

If ∇̃ is a new connection and we write

k∑
j=0

(−i)j σ̃j ◦ ∇̃(j) = P =

k∑
j=0

(−i)jσj ◦ ∇(j) (1.2.19)

then it turns out that

σ̃k = σk. (1.2.20)

This is called the principal symbol of L.

Definition 1.2.8. The operator P ∈ Diffk(M ;E,F ) is said to be elliptic if
and only if σk(P ) is an invertible endomorphism π∗E → π∗F over T ∗M \ {0}.
By the homogeneity of σk, it is equivalent to demand invertibility over the
cosphere bundle inside T ∗M , or for all ξ sufficiently large.

.

Proposition 1.2.9. There is an exact sequence

0 −→ Diffk−1(M ;E,F ) −→ Diffk(M ;E,F ) −→ Sk(M ;E,F )→ 0 (1.2.21)

If E and F are equipped with hermitian structures and M is equipped
with a smooth measure so that the formal adjoint L∗ of L is defined, then
σk(L

∗) = σk(L)∗ (for all real ξ).
If G is a third vector bundle and

P ∈ Diffk(M ;F,G), Q ∈ Diff`(M ;E,F ) (1.2.22)

so that PQ ∈ Diffk+`(M ;E,G), then

σk+`(PQ) = σk(P )σ`(Q). (1.2.23)

Exercise 1.2.10. Let ∆g be the Laplacian acting on functions on M ,
defined by some riemannian metric g. Show that σ2(∆g) = |ξ|2g, where
this is the dual metric on T ∗M .

Exercise 1.2.11. Suppose that E and F are equipped with hermitian
structures (a hermitian metric in each fibre, smoothly varying with the
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fibre). Given also a smooth volume-form dµ on M , we define L2 inner
products on C∞(M ;E) and similarly C∞(M ;F ) by

〈s, s′〉 =

∫
M

(s, s′) dµ (1.2.24)

where the round brackets denote the pointwise inner product, and we
assume either that M is compact or if not that at least one of s and s′ has
compact support. The formal adjoint of P ∈ Diffk(M ;E,F ) is defined by
the equation

〈Ps, t〉 = 〈s, P ∗t〉 (1.2.25)

for all s ∈ C∞0 (M,E), t ∈ C∞0 (M,F ).

Show that P ∗ is a differential operator in Diffk(M ;F,E) and that
σk(P

∗) = σk(P )∗.
Deduce that the ‘rough Laplacian’ ∇∗∇ ∈ Diff2(M ;E,E) is elliptic.



CHAPTER 2

Distributions and the Fourier Transform

2.1. Motivation for distributions

2.1.1. The Dirichlet Problem. Let Ω ⊂ Rn be a bounded domain with
smooth boundary. Suppose we wish to solve the problem

∆u = f in Ω, u|∂Ω = 0. (2.1.1)

with the boundary condition

u|∂Ω = 0. (2.1.2)

Here f is say a given smooth function defined in Ω. There is a classical
approach (the Dirichlet principle) along the following lines. Let

E(u) =

∫
Ω

(
1

2
|∇u|2 − fu) dx (2.1.3)

where u is (in the first instance) in C1
0 (Ω), the space of continuously differen-

tiable functions which satisfy the boundary condition (2.1.2). If u0 minimizes
E(u) over all u ∈ C1

0 (Ω), then for any smooth φ ∈ C1
0 (Ω),

d

dt
E(u0 + tφ)

∣∣∣∣
t=0

= 0. (2.1.4)

This implies that ∫
Ω

((∇u,∇φ)− (f, φ)) dx = 0. (2.1.5)

If we knew that u were C2, we could integrate by parts to obtain∫
Ω

(∆u− f)φ dx = 0 for all φ with φ|∂Ω = 0. (2.1.6)

If ∆u− f ∈ C0, this implies that ∆u = f in Ω.
We would like to use this idea to prove the existence of a solution u of

the problem (2.1.3). To push it through, however (i.e. to find a minimizing
u0) we need to make sense of the idea that ∇u can be defined even if u
is not differentiable: we somehow need to work with u ∈ L2(Ω) such that
∇u ∈ L2(Ω). In fact, we do this exactly as suggested in the above calculation.
Namely if u ∈ L2(Ω), we define the derivatives ∂ju as a functional on C∞0 (Ω
namely

∂ju[φ] = −
∫

Ω
u∂jφ. (2.1.7)

By Cauchy–Schwartz this is well-defined if u ∈ L2(Ω). We can then say that
∂ju ∈ L2(Ω) if this functional is given by integration of φ against an L2

function.

15
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2.1.2. Green’s Functions. It’s been known for a long time that if f ∈
C∞0 (Rn), then the solution u which decays at ∞ to Poisson’s equation

∆u = f (2.1.8)

is given by

u(x) =

∫
Gn(x− y)f(y) dy (2.1.9)

where
Gn(x) = cn|x|2−n, for n > 3, (2.1.10)

and cn is some constant. The point about Gn (the Green’s function for the
Laplacian in Rn) is that it solves ∆Gn = 0 away from x = 0 and has ‘the right
singularity’ at x = 0.

In fact, the reason why (2.1.9) holds is the formula

∆xGn(x− y) = δ(x− y) (2.1.11)

where δ(x− y) is the Dirac δ-function, which has the property∫
δ(x− y)φ(y) dy = φ(x) (2.1.12)

for all smooth functions φ. There is of course no function δ which has this
property but that is the only problem: for each y ∈ Rn we have the evaluation
map

δy : C∞(Rn)→ R, δy(φ) = φ(y). (2.1.13)

Moreover, (2.1.11) makes perfect sense if we evaluate or ‘test’ against a func-
tion φ ∈ C∞0 (Rn) and integrate by parts:∫

Gn(x− y)∆xφ(x) dx = φ(y) (2.1.14)

for the singularity of Gn(x− y) along the diagonal is integrable.
These two examples motivate the need to be able to differentiate objects

that are more general than classically differentiable functions. The trick is to
think in terms of duality, as already hinted at in (2.1.14) and (2.1.7).

2.1.3. A quick introduction to distributions. The theory of distri-
butions, in its rigorous and present-day form, was systematically developed
by Laurent Schwartz in the late 1940s (though has roots stretching back go
George Green in the 1830s). A systematic treatment can be found in Volume
I of Hörmander’s series on the analysis of partial differential operators.

The space of distributions C−∞(Rn) is defined as the dual space of C∞0 (Rn).
It is common to refer to elements of C∞0 as ‘test functions’. There is a con-
tinuity condition involved in the definition of distribution which we shall not
dwell upon (though it is of course important).

Example 2.1.1. We note that C∞(Rn) ⊂ C−∞(Rn) for if f ∈ C∞, it
defines a functional by

f [φ] = 〈f, φ〉 =

∫
f(x)φ(x) dx. (2.1.15)

Example 2.1.2. Evaluation maps. We have already seen the Dirac δ-
function δy which is the function of evaluation φ 7→ φ(y). More generally, we
have evaluation functionals of the form

φ 7→ δy(p(D)φ) (2.1.16)
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where p(D) is a differential operator as before.

2.1.4. Differentiation of distributions. In 1 dimension, the derivative
of a distribution u is defined by the formula

〈u′, φ〉 := −〈u, φ′〉. (2.1.17)

since this is the correct formula if u is (continuously) differentiable and 〈·, ·〉
is integration.

Exercise 2.1.3. Show that if u is a distribution on R and u′ = 0 in
the sense of (2.1.17), then u is a constant.

Similarly in Rn,
∂ju(φ) := −u(∂jφ) (2.1.18)

defines the derivative ∂ju of any distribution u.
As well as being able to differentiate distributions, one can also multiply

by smooth functions: if f ∈ C∞(Rn), the distribution fu is defined by the
formula

〈fu, φ〉 = 〈u, fφ〉. (2.1.19)

for any test-function φ ∈ C∞0 . In particular, C−∞(Rn) is a module over
C∞(Rn).

Note also that there is a definition of C−∞(X), where X is an open sub-
set of Rn—the space of continuous linear functionals on C∞0 (X). Just like
functions, distributions can be patched together in the following sense. If X
is covered by open sets Xj , and a collection of distributions uj ∈ C−∞(Xj)
has the property that uj = uk as elements of C−∞(Xj ∩Xk), then there is a
unique distribution u in X with u|Xj = uj .

Exercise 2.1.4. Prove the equation in R3

∆G3 = δ0, G3(x) =
1

4π|x|
. (2.1.20)

Exercise 2.1.5. If T is an isometry of Rn and u is a distribution,
suggest a definition of T ∗u which extends pull-back on functions.

2.1.5. Lp and Sobolev spaces inside C−∞. Note that we can regard
C0(Rn) as a subspace of C−∞(Rn). If f ∈ C0, the definition we want to make
is

〈f, φ〉 =

∫
f(x)φ(x) dx, φ ∈ C∞0 . (2.1.21)

The integral is certainly convergent. Moreover, if the RHS is known for every
φ then f ∈ C0 is uniquely determined. (In other words, the linear functional
φ 7→ 〈f, φ〉 uniquely determines f ∈ C0.) To see this, suppose if possible that
f ∈ C0, f(x0) 6= 0 but 〈f, φ〉 = 0 for all φ. By picking φ(x0) = 1, everywhere
non-negative, and supported in a tiny ball B(x0, δ) on which f doesn’t change
sign, we see that 〈f, φ〉 6= 0 a contradiction. The existence of such a tiny ball
follows as in elementary analysis courses from the continuity of f at x0.

Thus we can unambiguously write C0 ⊂ C−∞.
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A harder result of the same kind is

Proposition 2.1.6. The space L1
loc of locally L1 functions is, in a natural

way, a subspace of C−∞.

Proof. (Cf. Hörmander, Linear Partial Differential Operators I, Theorem
1.2.5). The point is to show that if f ∈ L1

loc and∫
f(x)φ(x) dx = 0 for all φ ∈ C∞0 (2.1.22)

then f = 0 almost everywhere. The proof uses the result that

lim
t→0

1

tn

∫
|x−x0|<t

|f(x)− f(x0)| dx = 0 (2.1.23)

for almost all x0 in place of the continuity in the previous discussion. �

More generally, Lp(Rn), p > 1, may be viewed as a subspace of C−∞(Rn).
By Hölder’s inequality implies that Lp(Rn) ⊂ L1

loc and since we have already
agreed that L1

loc ⊂ C−∞, it follows that Lp is a well-defined subspace of C−∞.
By the device of convolution, one can show that any f ∈ Lp(Rn) can be

approximated by fε ∈ C∞, i.e.

‖fε − f‖p → 0 as ε→ 0.

In fact, the space Lp(Rn) may be viewed as the metric-space completion of
C∞0 with respect to the p-norm inside the space of distributions C−∞.

Now that we understand L2(Rn) ⊂ C−∞, we may define the Sobolev space
Hs(Rn) where initially s is a non-negative integer, to be the set of distributions
u in Rn such that

Dαu ∈ L2(Rn) for all |α| 6 k.
From its definition, Hs is a Hilbert space with the inner product

〈u, v〉k =

∫ ∑
|α|6k

(Dαu,Dαv) dx

(Hermitian pointwise innner product in the integrand.) Note that there are
many equivalent inner products on Hs all of which give the same topological
vector space—we shall see this when we look at the Fourier transform of Hs

below.
We can define H−s to be the set of all distributions which are finite sums

of the form Dαf , f ∈ L2, with |α| 6 s. Then the pairing (φ, ψ) 7→
∫
φ(x)ψ(x)

extends to identify Hs and H−s as dual spaces.
These spaces can be localized (i.e. defined for open sets of Rn). We shall

also define them using the Fourier transform in the next section.
Although smooth functions are very nice (infinitely nice!) it is very useful

to be able to view PDEs as mapping between Sobolev spaces. Not only does it
allow Hilbert Space theory to be brought to bear in linear problems, it allows
the implicit and inverse function theorems to be applied in nonlinear ones.

It is clear from the definition that if P = p(x,D) is a differential operator
of order 6 k, then by duality P defines a mappings

P : C−∞(Rn) −→ C−∞(Rn) and P : C−∞0 (Rn) −→ C−∞0 (Rn). (2.1.24)

Also for any integer s,

P : Hs(Rn) −→ Hs−k(Rn). (2.1.25)
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This may be thought of as an abuse of notation. After all, the definition of
a mapping should include its domain. In (2.1.25) we are really speaking of
the restriction of the first of the maps in (2.1.24) to the subspace Hs, and
are claiming that this restriction is continuous (i.e. bounded) between these
normed linear spaces.

2.2. Support and singular support

If u ∈ C−∞ and Ω ⊂ Rn is open, then we define u|Ω, the restriction of u
to Ω simply by restricting u to act on C∞0 (Ω). We say that u vanishes in Ω if
u|Ω is identically 0 (as a functional).

Definition 2.2.1. If u ∈ C−∞, supp(u), the support of u is defined as
follows: x0 ∈ supp(u) if there is no open neighbourhood of x0 to which the
restriction of u is zero.

In other words, a 6∈ supp(u) if there is an open neighbourhood V of a such
that u|V = 0. It follows from the definition that supp(u) is a closed set.

Similarly, we define singular support:

Definition 2.2.2. If u ∈ C−∞, then x0 is in the singular support of u if
and only if there is no open neighbourhood of x0 to which the restriction of u
is smooth. The set of all such points is closed and is denoted sing-supp(u).

Example 2.2.3. The δ-function δ0 is supported at 0. And this is also its
singular support.

2.3. The Fourier Transform

2.3.1. The Schwartz space and its dual. Recall the Schwartz space
S (Rn) consisting of functions f ∈ C∞, all of whose derivatives are rapidly
decreasing at ∞. The Schwartz space is intermediate between C∞0 and C∞,

C∞0 (Rn) ⊂ S (Rn) ⊂ C∞(Rn). (2.3.1)

The topological dual, S ′(Rn), called the space of tempered distributions, is
accordingly intermediate between the distributions and those with compact
support:

C−∞0 (Rn) ⊂ S ′(Rn) ⊂ C−∞(Rn). (2.3.2)

Polynomials lie in S ′ but not S : if p is a polynomial, then

φ 7−→
∫
p(x)φ(x) dx

is a continuous linear functional on S because of the rapid decrease of f .
We didn’t go in to the definition of the topology on C∞0 but we shall say

a few words about that of S . For each non-negative integer N , define, for
example,

‖f‖N = max
|α|+|β|6N

sup |xαDβf | (2.3.3)

This is a countable family of norms and, in the usual way, we can turn them
into a metric,

d(f, g) =

∞∑
N=0

1

2N
‖f − g‖N

1 + ‖f − g‖N
.
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The Schwartz space is defined to be the set of all f for which each of the
‖f‖N are finite, and it is made into a metric space with the above metric.
Equivalently, fn → f in S if for each N ,

‖fn − f‖N → 0 as n→∞. (2.3.4)

The space of tempered distributions is given the weak topology: so a sequence
un → 0 in S ′ if and only if un[φ]→ 0 as n→∞ for each fixed φ ∈ S .

2.3.2. The Fourier Transform. If f ∈ S (Rn), define

f̂(ξ) =

∫
e−i〈ξ,x〉f(x) dx, (2.3.5)

the Fourier transform in S . This maps S → S because the Fourier transform
interchanges differentiation and multiplication:

Lemma 2.3.1. If f ∈ S (Rn) then the Fourier transform of Djf is ξj f̂(ξ)

and the Fourier transform of xjf(x) is −Dj f̂(ξ).

We also denote (2.3.5) by F . From the lemma it follows that F is a
mapping from S (Rn) to S (Rn). The second Rn is really dual to the first
one—it is the space of ‘frequencies’.

Exercise 2.3.2. Show that if f ∈ S , then given multi-indices α and

β, the semi-norm sup |ξαDβ
ξ f̂(ξ)| can be estimated in terms of the norm

‖f‖N from (2.3.3) for some N .

Theorem 2.3.3. The Fourier transform F is an isomorphism S (Rn)→
S (Rn) with inverse

F−1 : g 7−→ 1

(2π)n

∫
ei〈x,ξ〉g(ξ) dξ. (2.3.6)

.

Proof. Let G be the operator defined in (2.3.6). By the same argument
as for F , G maps S to S , and G applied to Djg(ξ) is equal to −xjG [g](x),
while G applied to ξjg(ξ) is equal to G [Djg](x). Consider T = G ◦F . Then

T (xjφ(−)) = G [−Djφ̂(−)] = xjTφ(x)

and

T (Djφ(−)) = G [ξjφ̂(−)] = DjTφ(x).

Thus T commutes with all multiplication and differentiation operators, and it
follows from this (exercise) that T must be a multiple of the identity.

The multiple can be determined by evaluation of one particular example

and the Gaussian φ(x) = e−|x|
2/2 is a good one to choose: this is because

(∂j + xj)φ(x) = 0 for each j

so the Fourier transform φ̂(ξ) satisfies the same equations and so is a fixed

multiple of e−|ξ|
2/2. Explicit calculation with φ shows that T [φ] = φ, so T is

equal to the identity. �
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By duality, we extend the Fourier transform to S ′, the tempered distri-
butions, through the formula

û[φ] = u[φ̂], φ ∈ S . (2.3.7)

This is justified because if u ∈ S , then the LHS is equal to∫
u(x)e−i〈x,ξ〉φ(ξ) dxdξ (2.3.8)

and we can interchange the order of integration here: when the ξ-integral is
performed first, we obtain ∫

u(x)φ̂(x) dx, (2.3.9)

which is the RHS of (2.3.7).

Example 2.3.4. The Fourier transform of δ0 is equal to 1. Proof:

δ̂0[φ] = δ0[φ̂] = φ̂(0) =

∫
φ(x) dx. (2.3.10)

More generally, the Fourier transform of Dαδ0 (which evaluates (−D)αφ at
x = 0) is equal to the monomial ξα.

Exercise 2.3.5. Calculate the Fourier transform of δy.

2.3.3. Sobolev spaces via the Fourier Transform. Parseval’s For-
mula states that the Fourier transform is (up to a factor (2π)n) an isometry
in L2: for functions f and g in S ,

〈f, g〉 = (2π)−n〈f̂ , ĝ〉 (2.3.11)

where 〈−,−〉 is the hermitian inner product on functions on Rn.

Exercise 2.3.6. Prove this result.

Strictly speaking, to prove that this is an isometry in L2 requires an ap-
proximation argument of L2 functions by functions in S . We shall ignore
this.

Note that (2.3.11) can be applied to Dαf,Dαg and gives

〈Dαf,Dαg〉 = (2π)−n
∫
ξ2αf̂(ξ)ĝ(ξ) dξ. (2.3.12)

Thus for the Sobolev Hs-norm, we have

‖f‖k = (2π)−n
∫ ∑
|α|6k

ξ2α|f̂(ξ)|2 dξ. (2.3.13)

It is easy to see that the norm on the RHS is equivalent to either of the simpler
norms ∫

(1 + |ξ|2k)|f̂(ξ)|2 dξ or

∫
(1 + |ξ|2)k|f̂(ξ)|2 dξ or (2.3.14)

where of course
|ξ|2 =

∑
ξ2
j . (2.3.15)
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Thus the Fourier transform takes a function in Hs into a function in L2 with
respect to the measures in (2.3.14).

Notation 2.3.7. The notation

〈x〉 =
√

1 + |x|2, 〈ξ〉 =
√

1 + |ξ|2,

will sometimes be used as an abbreviation in what follows. This is known as
the ‘Japanese bracket’.

To summarize,

f ∈ Hs(Rn)⇔ 〈ξ〉sf̂(ξ) ∈ L2(Rn). (2.3.16)

2.3.4. Convolution. Multiplication of Fourier transforms corresponds to
convolution of the original functions. If f and g are in S

f ∗ g(x) =

∫
f(y)g(x− y) dy. (2.3.17)

and

f̂ ∗ g = f̂(ξ)ĝ(ξ). (2.3.18)

This operation extends to distributions.

2.4. Parametrices for constant-coefficient operators via the Fourier
Transform

Let p(ξ) be an elliptic polynomial (with constant coefficients, as the nota-
tion suggests), of degree k. Recall that elliptic means that pk(ξ), the sum of
terms homogeneous of degree k, is non-zero for all real ξ 6= 0—or in the case
of ‘systems’ that pk(ξ) is an invertible matrix for all ξ 6= 0.

Let P = p(D) be the corresponding constant-coefficient differential oper-
ator. The equation

p(D)u = f (2.4.1)

if u and f are at least in S ′(Rn) is then equivalent in frequency-land to the
equation

p(ξ)û(ξ) = f̂(ξ). (2.4.2)

Now if p(ξ) 6= 0 for all ξ we could invert this to obtain

û(ξ) = p(ξ)−1f̂(ξ). (2.4.3)

We could then transform back to get a ‘formula’ for the solution, but already
here, note what we can read from this equation.

• If f ∈ C∞ ∩ S ′ then f̂ is rapidly decreasing, and so is the RHS of
(2.4.3). In particular, û is also rapidly decreasing, and the solution u
is also smooth. This is a result about regularity of solutions because
a priori, u was only a tempered distribution.
• If f ∈ S , then so is u.

Remark 2.4.1. This may appear obvious, but for the wave equation, for
example, (which is not elliptic) (weak) solutions of the homogenous equation
need not be smooth.
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Theorem 2.4.2. Suppose that p(ξ) is elliptic of order k and that u ∈
L2(Rn) satisfies the equation

p(D)u = f, (2.4.4)

where f ∈ Hs. Then automatically u ∈ Hs+k. In particular if f ∈ C∞ with
all derivatives in L2 (this L2 condition just imposes some mild decay at ∞)
then u ∈ L2 implies u ∈ C∞.

Remark 2.4.3. The proof will yield a good deal more, to be expanded
upon in the next Chapter.

Proof. For simplicity suppose that we are dealing with a scalar problem
so p(ξ) is an honest polynomial, not matrix-valued. Since F is an isomor-
phism, we may take the Fourier transform of (2.4.4) to obtain

p(ξ)û(ξ) = f̂(ξ) (2.4.5)

The assumptions u ∈ L2, f ∈ Hs translate to

û ∈ L2,

∫
(1 + |ξ|)2sf̂(ξ)2 dξ <∞. (2.4.6)

The ellipticity of p implies that for sufficiently large ξ, p(ξ) 6= 0.
In more detail, the fact that pk(ξ) 6= 0 for all ξ in the unit sphere |ξ| = 1

implies, by compactness of this sphere, that |pk(ξ)| > δ > 0 for all |ξ| = 1. If
q(ξ) = p(ξ)− pk(ξ) is the sum of the ‘lower-order terms’ then |q(ξ)| 6 C|ξ|k−1

for all |ξ| > 1, say, and some constant C depending on the coefficients of q.
By homogeneity,

|pk(ξ)| = |ξ|k|pk(ξ/|ξ|) > δ|ξ|k.
Combining this with the bound on q, we see that

|ξ| > R := C/δ =⇒ p(ξ) 6= 0.

Now let χ ∈ C∞(R) be a standard cut-off function,

0 6 χ 6 1, χ(t) = 1 for t 6 1, χ(t) = 0 for t > 2.

Then
g(ξ) = (1− χ(|ξ|/R))p(ξ)−1 (2.4.7)

is well-defined, because 1 − χ is non-zero only for |ξ| > R and p is invertible
there.

Multiply (2.4.5) by g. We obtain

(1− χ(|ξ|/R))û(ξ) = g(ξ)f(ξ)⇒ û(ξ) = χ(|ξ|/R)û(ξ) + g(ξ)f̂(ξ). (2.4.8)

Since û ∈ L2, the first term on the right lies in L2(Rn, (1 + |ξ|2)sdµ) for every
s (because χ cuts it off to have compact support). By construction of g, there
exists C > 0 such that

|g(ξ)| 6 C(1 + |ξ|)−k (2.4.9)

for all ξ. Multiplying (2.4.8) by (1+|ξ|)s+k and applying the triangle inequality
and (2.4.9),

|(1 + |ξ|)s+kû(ξ)| 6 |(1 + |ξ|)s+kχ(|ξ|/R)û(ξ)|+ (1 + |ξ|)s+k|g(ξ)|f̂(ξ)|
6 |(1 + |ξ|)s+kχ(|ξ|/R)û(ξ)|+ C(1 + |ξ|)s|f̂(ξ)|(2.4.10)

Taking the L2 norms of each side gives

‖(1 + |ξ|)s+kû(ξ)‖ 6 C0‖u‖+ C‖(1 + |ξ|)sf̂(ξ)‖. (2.4.11)
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Translating back to the x variables we see that the Hk+s- norm of u is bounded
in terms of ‖u‖ and the Hs-norm of f , as required. �

Remark 2.4.4. Here we used

c(1 + |ξ|) 6
√

1 + |ξ|2 6 C(1 + |ξ|)
for positive constants c and C to replace the weight (1 + |ξ|2)s in the Fourier
definition of Hs with the weight (1 + |ξ|)2s to simplify the notation.



CHAPTER 3

Pseudodifferential operators: the definitions

3.1. Introduction

Equation (2.4.8) from Chapter 2 can be read as

û(ξ) = χ(ξ/R)û(ξ) + g(ξ)p̂(D)u (3.1.1)

provided that u is Fourier transformable. Let

G(x) =
1

(2π)n

∫
eixξg(ξ) dξ, E(x) =

1

(2π)n

∫
eixξχ(|ξ|/R) dξ. (3.1.2)

Because g(ξ) is smooth and decreasing like |ξ|−k for large |ξ|, G(x) ∈ S ′ is
not necessarily smooth. By contrast, E(x) ∈ S .

Let us try to understand G better. We can do so by noticing that

(1 + ξDx)eix·ξ = (1 + |ξ|2)eix·ξ = 〈ξ〉2eix·ξ (3.1.3)

and

Dα
ξ e

ix·ξ = xαeix·ξ (3.1.4)

Recall also that if a function of ξ is bounded by a multiple of 〈ξ〉−n−1 (Japanese
bracket) then the integral of this function over Rn is uniformly and absolutely
convergent. So we have for each α, k + |α| = n+ 1, that

xαG(x) =
1

(2π)n

∫
(Dα

ξ e
ixξ)g(ξ)φ(x) dξ =

1

(2π)n

∫
eixξ(−Dξ)

αg(ξ)φ(x) dξ

(3.1.5)
so

|xαG(x)| 6 Cα if |α| > n− k. (3.1.6)

Hence

|G(x)| 6 C

|x|n+1−k . (3.1.7)

Exercise 3.1.1. Show similarly that |DβG| 6 Cβ/|x|n+1+|β|−k and
that if Vj are vector fields which vanish at 0, then

|V1 · · ·VnG| 6 C/|x|n+1−k.

(where the constant will depend upon the Vj).

In particular G is smooth on Rn \ 0 and there it blows up no worse than
like a negative power of |x|.

We can also describe G as a derivative of a continuous (decaying) function.
For this, use the identity (3.1.3). Picking N > n+1−k so that N +k > n+1,

25
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and writing

eix·ξ =

(
1 + ξDx

1 + |ξ|2

)N
eix·ξ (3.1.8)

Inserting this we obtain the formula

G =
1

(2π)n

N∑
r=0

(
N
r

)∫
(Dx · ξ)r

(
g(ξ)eix·ξ

(1 + |ξ|2)N

)
(3.1.9)

If the rth term in the sum is expanded, the result is a linear combination of
terms of the form Dα

xgα for multi-indices with |α| = r. Here

gα(x) =
1

(2π)n

∫
ξαg(ξ)

(1 + |ξ|2)N
eixξ dξ (3.1.10)

is absolutely convergent because of the choice of N , and so defines a bounded
continuous (in fact rapidly decreasing) function of x. This proves that G can
be written as a sum of derivatives of order 6 n+ 1− k of bounded continuous
functions of x.

3.2. Schwartz Kernels

The Schwartz kernel theorem is a very reassuring general result about
continuous linear operators from S (Rn) into S ′(Rn). We shall not prove it,
but it motivates the construction and description of inverses and generalized
inverses of differential operators that will be given below.

Suppose that u ∈ S ′(R2n). It is clear that if φ and ψ are Schwartz
functions then

φ� ψ := pr∗1(φ) pr∗2(ψ) ∈ S (R2n) (3.2.1)

and so u[φ� ψ] is well-defined. If u were a function, this would simply be∫
u(x, y)φ(x)ψ(y) dxdy. (3.2.2)

But we can read this a different way: fixing φ, we get the linear form

ψ 7−→ u[φ� ψ] (3.2.3)

on S (Rn). In other words, u[φ � −] ∈ S ′, and depends linearly on φ, so
defines a map Tu : S → S ′, and this can be checked to be continuous with
respect to the topologies on S and S ′.

The Schwartz kernel theorem states that conversely, every continous op-
erator A : S → S ′ arises in this way, that is A = Tu for some distribution u.
u is called the Schwartz kernel of A and we may non-systematially write KA

for this.

Exercise 3.2.1. Write down the Schwartz kernels of the identity, of
p(D), and of p(x,D).

Exercise 3.2.2. If f is say a smoothly bounded function (for each α,
|Dαf(x)| 6 Cα) and Mf is the multiplication operator φ 7→ fφ, identify
the Schwartz kernels of Mf ◦A and A◦Mf in terms of the Schwartz kernel
of A. Same problem for the operators Dj ◦A and A ◦Dj .
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Definition 3.2.3. An operator R is called smoothing if its Schwartz kernel
KR ∈ C∞(Rn × Rn) and is smoothly bounded.

If P is an operator then a parametrix for P is by definition an operator A
which inverts P modulo smoothing operators:

AP = 1 +R1, PA = 1 +R2. (3.2.4)

As we shall see, elliptic (differential) operators admit parametrices, and a
motivation for the development of the theory of pseudodifferential operators
is the systematic construction of such parametrices. Immediate consequences
of the existence of a parametrix are ‘elliptic regularity’ and ‘elliptic estimates’.
Moreover, when transferred to a compact manifold, we shall obtain the full
‘Fredholm package’ for elliptic differential operators on a compact manifold.

3.3. Symbol classes and pseudodifferential operators

Having a parametrix for a differential operator in Rn is clearly a useful
thing. From the Schwartz kernel theorem, a possible approach is to make an
inspired guess of a class of operators, or equivalently Schwartz kernels, which
is simple enough1 to be able to work with and general enough to contain differ-
ential operators, smoothing operators, and parametrices for elliptic differential
operators. We shall introduce the class of pseudodifferential operators to fit
these requirements.

To continue the motivation, note that the Fourier transform gives a unify-
ing way to represent kernels which are smooth outside the diagonal of Rn×Rn.
For example

Identity operator : δ(x− y) =
1

(2π)n

∫
eiξ·(x−y) dξ; (3.3.1)

p(D) :
1

(2π)n

∫
p(ξ)eiξ·(x−y) dξ; (3.3.2)

p(x,D) :
1

(2π)n

∫
p(x, ξ)eiξ·(x−y) dξ. (3.3.3)

Remark 3.3.1. We did not emphasise it at the time but given a polynomial
p(x, ξ) =

∑
|α|6k pα(x)ξα there is more than one way to define an associated

differential operator, precisely because D does not commute with x, (even
though ξ does commute with x). The option we took before was to put all the
Dj to the right of the pα(x), so we defined

p(x,D) = pL(x,D) =
∑

pα(x)Dα.

We can also define ‘right quantization’ of p(x, ξ) by putting all the Dj on the
left:

pR(x,D) =
∑

Dα ◦ pα(x).

If the coefficients of p are real (and scalar), then formal adjoint switches pL
and pR:

pL(x,D)∗ = pR(x,D) if p is real.

1Simplicity is, of course, in the eye of the beholder: perhaps tractable would be a better
word
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Exercise 3.3.2. Find a formula for pR(x,D) in terms of pL(x,D).
(There is a formula involving exp(iDy ·Dξ)).)

Exercise 3.3.3. Find the kernel representations of pL(x,D) and
pR(x,D).

Exercise 3.3.4. Extend the discussion of adjoints to the case of sys-
tems, i.e. where p(x, ξ) takes values in N ×M matrices, and p(x,D) maps
C∞(Rn,CN )→ C∞(Rn,CM ).

We define symbol classes as smooth functions of (x, ξ) which generalize the
idea of being a sum of homogeneous functions of ξ for large ξ. There are in
fact several possible definitions. We take one of the simpler ones with uniform
behaviour in x.

Definition 3.3.5. A function a ∈ C∞(Rp×Rn), with variables z and ξ in
the two factors, is called a symbol of order k if for all multi-indices α, β there
is an estimate of the form

sup |Dα
zD

β
ξ a(z, ξ)| 6 Cαβ〈ξ〉k−|β|. (3.3.4)

The space of all symbols of order k is denoted Sk(Rp;Rn). Here k can be any
real number, though in practice it will usually be an integer in our applications.

Example 3.3.6. Any polynomial p(x, ξ) =
∑
|α|6k pα(x)ξα is a symbol of

order k provided that the coefficients pα, and all their derivatives, are bounded.

More generally, if h(z, ξ) is homogeneous of degree k in ξ for |ξ| > R, then
h is a symbol of order k (provided the behaviour in z is suitably uniform). A
finite sum of such homogeneous symbols is still a symbol. This observation
motivates the following refinement of the class Sk:

Definition 3.3.7. If k ∈ Z then a ∈ Sk is called a polyhomogeneous (‘phg’)
symbol if there exists a sequence aj ∈ Sk−j , where ak−j is homogeneous of
degree k − j in ξ for all |ξ| > 1 such that

a−
N∑
j=0

aj ∈ Sk−N−1 (3.3.5)

for every N . The space of all phg symbols is written Skphg.

Exercise 3.3.8. Find an example of a symbol of order 0, say, which
is not phg.

The space Sk has a topology defined similarly to that of S . For each
positive integer N we may introduce the norm

‖a‖N = max
|α|+|β|6N

sup〈ξ〉|β|−k|Dα
zD

β
ξ a| (3.3.6)

in Sk. This countable collection of norms gives Sk the structure of a Frechet
space for every k.
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Note that Sk increases with increasing k. The intersection of all the Sk is
non-zero. It is denoted S−∞ and we have

a ∈ S−∞ ⇐⇒ for every α, β,N, there exists CN,α,β so that

|Dα
zD

β
ξ a| 6 CN,α,β〈ξ〉

−N . (3.3.7)

Thus we may think of such a as being smooth in z and ‘Schwartz in ξ’; more
precisely every z-derivative of a(z, ξ) is Schwartz in ξ, with all estimates uni-
form in z.

Some basic results about the symbol spaces can be proved in straightfor-
ward fashion by a combination of induction and Leibniz’s rule for differentia-
tion of products. For example, product (a, b) 7→ ab restricts from C∞ to define
a continuous map Sk × S` → Sk+` for all k and `.

Similarly elliptic symbols have ‘asymptotic inverses’ that are again sym-
bols.

Definition 3.3.9. The symbol a ∈ Sk is called (uniformly) elliptic if there
exist R > 0 and δ > 0 such that

|a(z, ξ)| > δ|ξ|k for all |ξ| > R (3.3.8)

Proposition 3.3.10. If a ∈ Sk is elliptic, then there exists b ∈ S−k with
1− ab ∈ S−∞. Moreover, if a is phg, then b is also phg.

Proof. The definition of b is straightforward, and parallels our construc-
tion of a parametrix for constant coefficient elliptic differential operators. Pick
a standard smooth cut-off function equal to 1 for |ξ| 6 R and vanishing for
|ξ| > 2R. Define

b(z, ξ) = (1− χ(ξ))a(z, ξ)−1; (3.3.9)

This precisely makes sense because a−1 exists where 1 − χ 6= 0. The elliptic
estimate for a gives that the first symbol estimate (in S−k) of b. The others
follow by repeated differentiation of the identity ab = 1−χ and induction. �

Remark 3.3.11. For ‘systems’ i.e. when our symbols take values in Hom(V, V ′),
for two finite-dimensional complex vector spaces V , V ′, this proposition re-
mains true. The ellipticity condition is now that

a(x; ξ)−1 exists for all |ξ| > R (3.3.10)

and its operator norm is bounded by δ|ξ|−k for |ξ| > R (independent of x).

The reason for introducing these spaces is the following:

Definition 3.3.12. A pseudodifferential operator A in Rn of order k is
defined through its Schwartz kernel

KA(x, y) =
1

(2π)n

∫
a(x, y; ξ)eiξ·(x−y) dξ (3.3.11)

where a ∈ Sk(R2n;Rn). The set of all pseudodifferential operators of order
k is denoted Ψk(Rn). If a ∈ Skphg, then we have a polyhomogeneous pseudo-
differential operator of order k. The space of all pseudodifferential operators
of order k in Rn is denoted Ψk (or Ψk(Rn)), and Ψk

phg for the subspace of
polyhomogeneous pseudodifferential operators.

For the avoidance of doubt, Ψ−∞ is defined by (3.3.11) with a ∈ S−∞.
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In other words, if u ∈ S (Rn),

Au(x) =
1

(2π)n

∫
a(x, y; ξ)eiξ·(x−y)u(y) dξdy (3.3.12)

=
1

(2π)n

∫
a(x, y; ξ)eiξ·xû(ξ) dξ (3.3.13)

where û is the Fourier transform of u. Notice that in the second representation
û ∈ S so the integral is absolutely and uniformly convergent, so Au is certainly

continuous. Operating on both sides with xαDβ
x , integrating by parts and

using the symbol estimates shows that in fact Au ∈ S . Later we shall prove
more precisely that

Theorem 3.3.13. If A ∈ Ψk(Rn), then A is a continuous linear operator
S → S .

Notation 3.3.14. If a ∈ Sk(Rn;Rn) is a symbol, it is customary to write
Op(a) or a(x,D) for the pseudodifferential operator

Au(x) =
1

(2π)n

∫
a(x; ξ)eiξ·(x−y)u(y) dy.

3.4. Some results about symbols

We shall often have occasion to write down expressions of the form

I(a) =

∫
a(x, ξ)eiξ·(x−y) dξ (3.4.1)

where a is a symbol in Sk. If k < −n, then this is absolutely and uniformly
convergent and so defines a bounded continuous function of x. (The basic
point here is that 〈ξ〉−n−δ is integrable in n dimensions if δ > 0. And the
definition of Sk gives a bound on |a| by a multiple of 〈ξ〉−k.)

However, we want to be able to handle such integrals when k does not
satisfy this condition. In this case, I(a) still defines a distribution in S ′(R2n).
One approach to deriving results about I(a) might be to replace a by

aj(z, ξ) = χ(ξ/j)a(z, ξ), j = 1, 2, . . . (3.4.2)

where χ is a standard cut-off function equal to 1 in a neighbourhood of |ξ| 6 1,
say, but vanishing for |ξ| > 2.

Then aj → a uniformly and with all derivatives on sets of the form Rn ×
{|ξ| 6 R}, for any given R. Moreover aj is compactly supported with respect
to the ξ variable, so I(aj) is a very nice integral to which can apply all the
usual tricks (integration by parts, differentiation under the integral sign) with
impunity.

To obtain results about I(a), however, we need convergence with respect
to the topology of the symbol spaces. Sadly, aj does not converge to a in

the topology of Sk. However, it does converge in the topology of S` for every
` > k, and this is sufficient for our applications.

Proposition 3.4.1.

(a) Let χ ∈ C∞0 ({|ξ| < 1} with χ(ξ) = 1 in a neighbourhood of ξ = 0.
Then χε(ξ) := χ(εξ) is uniformly bounded in S0 and χε → 1 in Sk

for every k > 0.
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(b) If a ∈ Sk and b ∈ S`, then ab ∈ Sk+` and the map (a, b) 7→ ab is
continuous with respect to the obvious topologies.

(c) If a ∈ Sk, then Dα
xD

β
ξ a ∈ S

k−|β|.

Proof. We give the proof of (i). The proof of (ii) follows by systematic
use of the Leibniz rule and applying the known symbol estimates of a and b.
The proof of (iii) is obvious.

For (i), we start by noting that since χ(ξ) is smooth and has support in
the unit ball, it is certainly a symbol, and so for each β,

|Dβ
ξ χ(ξ)| 6 Cβ〈ξ〉−|β|. (3.4.3)

for some constant Cβ.
From the definition of χε, we see by the chain rule

Dβ
ξ χε(ξ) = ε|β|(Dβ

ξ χ)(εξ) (3.4.4)

and so
|Dβχε| 6 Cβε|β|〈εξ〉−|β|. (3.4.5)

If |β| > 0, then for k > 0, then we have

〈ξ〉|β|−k|Dβχε| 6 Cβε|β|
〈ξ〉|β|−k

〈εξ〉|β|
(3.4.6)

Now

〈ξ〉|β|−k

〈εξ〉|β|
=

(1 + |ξ|2)(|β|−k)/2

(1 + ε2|ξ|2)|β|/2

=
(1 + |ξ|2)(|β|−k)/2

ε|β|(ε−2 + |ξ|2)|β|/2

6
1

ε|β|(ε−2 + |ξ|2)k/2
6 εk−|β|, (3.4.7)

using the fact that
1 + |ξ|2

ε−2 + |ξ|2
6 1 if ε 6 1.

Substituting this into (3.4.6), we obtain the uniform estimate

〈ξ〉|β|−k|Dβχε| 6 Cβεk (3.4.8)

which proves the result unless |β| = 0.
In this case, Taylor’s formula gives

|1− χ(εξ)| 6
{
Cε|ξ| if ε|ξ| 6 1;
1 if ε|ξ| > 1.

(3.4.9)

This can clearly be replaced by the statement

|1− χ(εξ)| 6
{
Cεδ|ξ|δ if ε|ξ| 6 1;
1 if ε|ξ| > 1.

(3.4.10)

where δ is any number in (0, 1). For δ in this range, multiply by 〈ξ〉−δ. We
obtain

〈ξ〉−δ|1− χ(εξ)| 6
{
Cεδ if ε|ξ| 6 1;
〈ξ〉−δ if ε|ξ| > 1.

(3.4.11)

This shows that
sup〈ξ〉−δ|1− χ(εξ)| = O(εδ)
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for δ ∈ [0, 1] and completes the proof. �

Corollary 3.4.2. If a ∈ Sk, then aε = χε(ξ)a(x; ξ) ∈ S−∞ is bounded in
Sk and aε → a in S` for every ` > k.

Proof. Let aε(x; ξ) = χε(ξ)a(x; ξ) where χε is as in the proposition. We
have seen that χε → χ in Sδ for every positive δ. Since multiplication is
continuous (part (ii) of the Proposition) it follows that χεa → a in Sk+δ for
every δ. �

Theorem 3.4.3. For j = 0, 1, 2, . . . suppose that Aj ∈ Ψk−j(Rn). Then

there exists a pseudodifferential operator A ∈ Ψk(Rn) such that, for each N ,

A =

N∑
j=0

Aj mod Ψk−N−1(Rn). (3.4.12)

Proof. Since Aj is determined by its amplitude aj ∈ Sk−j , it is sufficient
to prove the analogue of (3.4.12) for a given sequence of symbols, that is:
given aj ∈ Sk−j , there exists a ∈ Sk with the property that

a−
N∑
j=0

aj ∈ Sk−N−1 (3.4.13)

for every N . Then A = Op(a,D) will have the required property.
Let χ be a standard cut-off function equal to 1 for t 6 1 equal to 0 for

t > 2, 0 6 χ(t) 6 1 for all t. Set

ãj(x; ξ) = (1− χ(εj |ξ|))aj(x; ξ). (3.4.14)

The idea is to choose εj → 0 so fast that

a(x; ξ) :=
∞∑
j=0

ã(x; ξ) (3.4.15)

does the job. First note that the assumption that εj → 0 implies that the
sum (3.4.15) is locally finite: when ξ is restricted to a ball {|ξ| 6 R}, all but
finitely many terms vanish. So a ∈ C∞(Rn × Rn). However, this is not yet
enough to prove (3.4.13).

Let us temporarily denote by ‖f‖µ,ν the µ-th norm used to define the
topology of Sν , that is

‖f‖µ,ν = sup〈ξ〉−ν
∑

|α|+|β|6µ

〈ξ〉|β||Dα
xD

β
ξ f | (3.4.16)

From this definition it follows at once that

‖f‖µ,ν 6 ‖f‖µ′,ν′ whenever µ 6 µ′ and ν > ν ′. (3.4.17)

We know that (1 − χ(ε|ξ|)aj(x; ξ) tends to zero in Sk−j+1 as ε → 0 for
fixed j. In particular, for each j, we can choose εj so small that

‖ãj‖j,k−j+1 6 2−j . (3.4.18)

Now fix N and consider the difference

a−
N∑
j=0

ãj =
∑

j>N+1

ãj = rN , say. (3.4.19)
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We need to show that rN ∈ Sk−N−1, in other words

‖rN‖µ,k−N−1 <∞ for all µ. (3.4.20)

For fixed µ, (3.4.17) says that

‖ãj}µ,k−N−1 6 ‖wtaj}j,k−j+1 6 2−j if µ 6 j, k−j+1 6 k−N−1 i.e. j > N+2.
(3.4.21)

Thus if µ 6 N + 2, we write

RN = ãN+1 +
∑

j>N+2

ãj . (3.4.22)

The first term is in Sk−N−1 anyhow, and

‖
∑

j>N+2

ãj‖µ 6
∑

j>N+2

‖ãj‖µ 6
∑

j>N+2

2−j <∞. (3.4.23)

If µ > N + 2, we split the sum differently,

RN =

µ−1∑
j=N+1

ãj +
∑
j>µ

ãj . (3.4.24)

Again, the finite sum lies in Sk−N−1 and the (µ, k−N−1)-norm of the infinite
sum is estimated using (3.4.21). This completes the proof. �

Remark 3.4.4. Given a ∈ Sk and a sequence aj ∈ Sk−j , if (3.4.13) holds
for every N , we write

a ∼
∞∑
j=0

aj . (3.4.25)

This should be understood as an asymptotic expansion of a for large ξ. For
the corresponding operators A and Aj in (3.4.12), we also write

A ∼
∞∑
j=0

Aj . (3.4.26)

Remark 3.4.5. It is pretty clear from the proof that if a′ is another symbol
in Sk satisfying (3.4.25), then a− a′ ∈ S−∞, because this is by definition the
intersection of all the Sk. Similarly, if A′ is another pseudodifferential operator
satisfying then A− A′ ∈

⋂
k Ψk. We shall see later (Theorem 3.8.1) that this

latter intersection is precisely Ψ−∞ (i.e. operators of the form Op(r,D), where
r ∈ S−∞.

3.5. The symbol and principal symbol of a pseudodifferential
operator

The class of operators Ψk is supposed to be a natural generalization of the
Diffk (at least if k is a positive integer!). In this section we define the principal
symbol of A ∈ Ψk. For operators associated to general amplitudes a(x, y; ξ)
as in Definition 3.3.12, we also define the ‘full symbol’ σA(x; ξ) which gives a
canonical representation of A.

The input in the Definition 3.3.12 is an ‘amplitude’ a(x, y; ξ) depending
on 3n variables, whereas the output KA(x, y) depends only upon 2n variables,
see (3.3.11).
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One should expect therefore, that the map {amplitudes} → {kernels} will
have a big null-space. This is indeed the case. What is true is that there is a
bijective map

Ψk(Rn) −→ Sk(Rn;Rn), A 7−→ σA (3.5.1)

defined as follows. Let eη(x) = eiη·x, and set

σA(x; η) = e−η(x)A[eη](x). (3.5.2)

Then we have the formula

σA(x; η) =
1

(2π)n

∫
a(x, y; ξ)eiξ·(x−y)−iη·(x−y) dξdy (3.5.3)

and after replacing y by y − x and ξ by ξ − η in this integral, we have

σA(x; η) =
1

(2π)n

∫
a(x, x+ y; ξ + η)eiξ·y dξ dy (3.5.4)

If the amplitude a in (3.3.11) happens to be independent of y, then this reduces
to

σA(x; η) =
1

(2π)n

∫
a(x; ξ + η)eiξ·y dηdy =

∫
a(x; ξ + η)δ(ξ) dξ = a(x; η)

(3.5.5)
so that σA(x; ξ) = a(x; ξ) in this case.

On the other hand, brushing some technicalities under the carpet, we have

Au = σA(x,D)u, (3.5.6)

as follows by writing u ∈ S in terms of its Fourier transform. Indeed, applying
A to

u(y) =
1

(2π)n

∫
eiy·ξû(ξ) dξ (3.5.7)

we obtain

Au(x) =
1

(2π)n

∫
[Aeξ](x)û(ξ) dξ

=
1

(2π)n

∫
σA(x; ξ)eiξ·xû(ξ) dξ

=
1

(2π)n

∫
σA(x; ξ)eiξ·(x−y)u(y) dξdy (3.5.8)

as claimed.
This argument shows how to write the pseudodifferential operator A in

(3.3.11) in ‘reduced form’ using σA(x; ξ). What we have not verified is that
σA ∈ Sk. To summarize:

Theorem 3.5.1. Let A be a pseudodifferential operator of order k. Then
there exists a unique (reduced, full) symbol σA ∈ Sk(Rn;Rn) such that

KA(x, y) =
1

(2π)n

∫
σA(x; ξ)eiξ·(x−y) dξ. (3.5.9)

Moreover, we have the asymptotic expansion

σA(x; ξ) ∼
∑
α

i|α|

α!
Dα
yD

α
ξ a(x, y; ξ)

∣∣
y=x

. (3.5.10)
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If σA is the ‘full symbol’ of A, then it is also useful to have a definition
of the leading order term, generalizing the principal symbol of a differential
operator.

Definition 3.5.2. Define Symk = Sk/Sk−1. For polyhomogeneous sym-
bols, define Symk

phg to be the space of functions a ∈ C∞(Rn × (Rn \ 0))

(positively) homogeneous of degree k in the second variable,

a(x; tξ) = tka(x; ξ) for all t > 0.

Remark 3.5.3. The difference between the definitions of Symk and Symk
phg

is not as great as it looks. If a ∈ Skphg, then a = ak mod Sk−1
phg for large ξ where

ak(x; ξ) is homogeneous of degree k in ξ where defined. But such a function
extends canonically as a homogeneous function for all ξ 6= 0. We are thus
identifying Symk

phg with the space of these canonically extended homogeneous
functions.

Definition 3.5.4. If A is a pseudodifferential operator of order k defined
by the amplitude a(x, y; ξ), then

σk(A) = [a(x, x; ξ)] (3.5.11)

where the square brackets denote the equivalence class in Symk or in Symk
phg

if A is polyhomogeneous.

Note that if A is in ‘reduced form’, i.e. defined by the amplitude σA(x; ξ),
then σk(A) = [σA].

3.6. Fundamental properties of pseudodifferential operators

In this section we gather, without proofs, the main properties of pseudodif-
ferential operators in Rn that make them so useful in the study of differential
operators. The first result concerns the formal ‘algebraic’ properties, includ-
ing the (principal-) symbol exact sequence (3.6.1). Next we have a ‘residuality
result’ which shows in particular that Ψ−∞ =

⋂
k Ψk. Then we summarize the

mapping properties of pseudodifferential operators acting first on S and then
on Sobolev spaces.

The following three-part Theorem shows that Ψ∗ enjoys properties very
similar to Diff∗:

Theorem 3.6.1.

(i) Symbol sequence: for every k ∈ R, there is an exact sequence

0 −→ Ψk−1 −→ Ψk σk−→ Symk → 0. (3.6.1)

(ii) Composition: if A ∈ Ψk and B ∈ Ψ` then AB ∈ Ψk+` (with obvious
interpretations if either k or ` is equal to −∞). The principal symbol
is multiplicative in the sense that

σk+`(AB) = σk(A)σ`(B). (3.6.2)

(iii) The principal symbol map is a ∗-homomorphism in the sense that
σk(A

∗) = σk(A)∗, where A∗ is the L2-adjoint of A.

There is a parallel statement for the subclass of polyhomogeneous operators,
in which everything is adorned with the subscript phg.
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Since differential operators are polynomials, the entire information of a dif-
ferential operator is captured by a finite number of symbols. This is no longer
true of pseudodifferential operators. The next result identifies the ‘residual
space’ of operators in

⋂
k Ψk.

Theorem 3.6.2. The space
⋂
k Ψk is equal to Ψ−∞, the latter being defined

through symbols of order −∞. It consists of operators with smooth Schwartz
kernels rapidly decreasing away from the diagonal of Rn × Rn. If A ∈ Ψ−∞

there is a unique a ∈ S−∞ such that A = σA(x,D).

Now we move on to mapping properties.

Proposition 3.6.3. If A ∈ Ψk, then A defines a continuous linear map
S → S .

We prove similarly that

Proposition 3.6.4. If A ∈ Ψk, then sing-supp(kA) = ∆, the diagonal of
Rn ×Rn. In other words, the restriction of the distribution to Rn ×Rn \∆ is
smooth.

It follows directly from this result that the singular support of Au cannot
exceed the singular support of u if A ∈ Ψk. This is often called the ‘pseudolo-
cality property’ of pseudodifferential operators.

Proposition 3.6.5. If A ∈ Ψk(Rn) and u ∈ S ′(Rn), then

sing-supp(Au) ⊂ sing-supp(u) (3.6.3)

Proof. Let x0 be a point outside of the singular support of f and let
χ′ be a cut-off function which is identically equal to 1 in a neighbourhood of
x0. Further, choose another cut-off function χ with the property that χ is
identically equal to 1 on supp(χ′) and with support so small that supp(χ) ∩
sing-supp(f) = ∅. (We’ll see very soon why we need these two cut-off functions.
We want to prove that if A ∈ Ψk, then Af is smooth near x0, or equivalently
χ′Af is smooth. If we write

f = χf + (1− χ)f, (3.6.4)

then
χ′Af = (χ′Aχ)f + (χ′A(1− χ))f (3.6.5)

where the products are to be understood as operator composition. By defini-
tion, χf is smooth and we have seen that A maps smooth to smooth, so the
first term is smooth. As for the second term, the kernel of the operator is

χ′(x)(1− χ(y))KA(x, y). (3.6.6)

Now this is supported away from the diagonal for if we put x = y in the χ
factors, we obtain χ′(x)(1−χ(x) = χ′(x)−χ(x)χ′(x) = 0 since χ is identically
1 on supp(χ′). Remark that if we don’t have χ and χ′ as defined, we cannot
conclude that χ(x)(1− χ(y)) is supported away from the diagonal. �

Theorem 3.6.6 (Boundedness in Sobolev spaces). If A ∈ Ψk, then A
defines a bounded linear map Hs → Hs−k for every s ∈ R.

Proof. To be supplied. Cf. Melrose’s notes, §§2.13–2.16. �

Discussion of compactness also to be supplied.
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3.7. Parametrix construction

Let P = p(x,D) be an elliptic differential operator in Rn. A parametrix
is an operator A which is an inverse mod Ψ−∞, that is

AP − 1 ∈ Ψ−∞, PA− 1 ∈ Ψ−∞. (3.7.1)

The goal of this section is to show that the existence of such A is essentially
reduced to algebra, given the results summarized in §3.6.

We shall present two slightly different arguments, though there are com-
mon elements to both.

We shall give more details in the next chapter, but let’s consider the case
of composition of PA, where A ∈ Ψ` and P ∈ Diffk. So suppose that

KA(x, y) =
1

(2π)n

∫
a(x, y; ξ)eiξ·(x−y) dξ (3.7.2)

Then

DxjKA =
1

(2π)n

∫
(ξj +Dxj )a(x, y; ξ)eiξ·(x−y) dξ (3.7.3)

It follows that if P = p(x,D), then

KPA =
1

(2π)n

∫
p(x, ξ +Dx)a(x, y; ξ)eiξ·(x−y) dξ (3.7.4)

Since p is smooth in the first variable and polynomial in the second variable
it follows that

b(x, y; ξ) := p(x, ξ +Dx)a(x, y; ξ) (3.7.5)

is as symbol of order k+`, so B = PA is a pseudodifferential operator of order
k + ` and

σk+`(PA) = σk(P )σ`(A). (3.7.6)

Proposition 3.7.1. Let the notation be as above, with P ∈ Diffk, A ∈ Ψ`

and B = PA. Then the amplitude b in (3.7.5) which gives B as a pseudodif-
ferential operator has the formula

b(x, y; ξ) =
∑
α

1

α!
∂αξ p(x; ξ)Dα

xa(x, y; ξ). (3.7.7)

Note that the sum here is finite, extending only over α with |α| 6 k.

Proof. If h is any vector, then by Taylor’s theorem,

p(x; ξ + h) =
∑
α

1

α!
∂αξ (x; ξ)hα. (3.7.8)

This is a finite sum, so a little thought shows that we can substitute h = D
here, formally, and obtain the formula

p(x; ξ +Dx) =
∑
α

1

α!
∂αξ (x; ξ)Dα

x (3.7.9)

The result now follows immediately from (3.7.5). �

Exercise 3.7.2. Obtain a formula for the composite AP where A is a
pseudo-differential operator and P is a differential operator (without using
the results of §3.6.
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It turns out that this formula extends, in the sense of asymptotic expansion
of symbols, for composition of pseudodifferential operators. See Theorem ??
below.

Theorem 3.7.3. Let P = p(x,D) be an elliptic differential operator of
order k on Rn. (Recall that this means that the part pk of p homogeneous of
degree k in ξ satisfies

|pk(x; ξ)| > δ|ξ|k for |ξ| 6= 0 (3.7.10)

where δ > 0.) Then P admits a parametrix in Ψ−k, that is to say an operator
inverting P mod Ψ−∞:

AP = 1 +R, PA = 1 +R′, R,R′ ∈ Ψ−∞ (3.7.11)

3.7.1. Proof via Neumann series. Let us show first that there exists
A0 ∈ Ψ−k such that PA0 − 1 ∈ Ψ−1. First of all, we know that σk(P ) is
invertible. This means that there is a symbol a0 ∈ S−k such that σk(P )a0 =

1. By the exactness, there exists A0 ∈ Ψ−kphg with symbol equal to a0, and

σ0(PA0) = σ0(1). So the difference R1 := 1 − PA0 ∈ Ψ−1 as required. We
would like to define A = A0(1 − R1)−1, for then PA = 1. We don’t know
that 1−R1 is invertible as an operator so this argument does not quite work.
However, we can work formally, though this requires some more theory which
we’ll come to in the next Chapter.

The usual proof for ordinary geometric progressions shows that

(1−R1)(1 +R1 + · · ·+RN1 ) = 1−RN+1
1 (3.7.12)

and the RHS is 1 mod Ψ−N−1. So if we replace A0 by

AN = A0(1 +R1 + · · ·+RN1 ) (3.7.13)

(which is well-defined by the composition theorem),

PAN = 1−RN+1
1 (3.7.14)

so we have inverted P mod Ψ−N−1.
We shall see below (see the section on completeness and residuality) that

in fact one can find S ∈ Ψ0 such that S ∼
∑∞

j=0R
j
1. Precisely, this implies

that
R := (1−R1)S ∈ Ψ−∞ (3.7.15)

Hence if we define A ∈ A1 ◦ S we satisfy the first condition of (3.7.11).
Similarly, we find a ‘left parametrix’ B and a smoothing operator T such

that B ◦ P = 1 − T . Now the usual argument in the ring Ψ∗/Ψ−∞ that
multiplicative inverses of invertible elements are unique shows that B = A mod
Ψ−infty. In particular B = A + U , where U ∈ Ψ−∞ and it follows from
B ◦ P = 1 − T that A ◦ P = 1 − T + U(1 − T ) so A is also a left parametrix
(with R′ = T + U(1− T ).

Corollary 3.7.4 (Elliptic Regularity). Suppose that P is elliptic of order
k in Rn. Suppose that u and f satisfy

Pu = f (3.7.16)

where u ∈ S ′ and f ∈ S ′ ∩ C∞. (This means that f is smooth and doesn’t
grow to fast at ∞). Then u is in fact smooth.
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Proof. If Pu = f , and A is a parametrix, then left-multiplying by A
gives u = Af − Ru. Since A is a pseudodifferential operator, it maps C∞ to
C∞. Since R is smoothing it maps S ′ to S . Hence u is indeed smooth. �

Remark 3.7.5. Little needs to be changed if P is a ‘system’, i.e. if the
symbols are matrix-valued. The ellipticity condition is that pk(x; ξ) is invert-
ible for all x ∈ Rn, ξ 6= 0, and the norm of p−1

k (x; ξ) is bounded by a multiple

of |ξ|−k for all ξ 6= 0.

3.7.2. Alternative approach. We used the full force of the formal prop-
erties of pseudodifferential operators to prove Theorem 3.7.3. We can also
make the construction, only assuming the composition formula of a differen-
tial operator with a pseudodifferential operator as follows.

We start as before with the construction of A0,

PA0 = 1 +R1, R1 ∈ Ψ−1.

From here, we can find A1 ∈ Ψ−k−1 such that PA1 = R1 + R2, where R2 ∈
Ψ−2. All we ever use is the ellipticity of P and the composition rules for PA
where P is a differential operator and A ∈ Ψ∗. In this way, we obtain for each
N > 0, Aj ∈ Ψ−k−j and Rj ∈ Ψ−j such that

P (A0 + · · ·+AN ) = 1 +RN+1. (3.7.17)

To go all the way to an error term in Ψ−∞ we need to be able to take the sum
to infinity of the Aj just as we needed to sum to ∞ the geometric projection
using the other method.

3.8. Proofs and sketch-proofs

We shall prove the results of §3.6 in the following order. First we shall prove
the ‘residuality theorem’, Theorem 3.6.2. Next we shall prove the ‘reduction
theorem’, Theorem 3.5.1. From these two results, the rest of Theorem 3.6.1
follows fairly easily.

Then we discuss the mapping properties—the proof of boundedness and
compactness in Soboleve spaces will be supplied later.

3.8.1. Proof of the residuality theorem, Theorem 3.6.2.

Theorem 3.8.1. A continuous linear operator A : S (Rn) → S ′(Rn) lies
in
⋂
N ΨN if and only if the kernel KA is smooth and rapidly decaying away

from the diagonal in the sense that for all N and multi-indices α and β, there
exists a constant CN,α,β such that

|Dα
xD

β
yKA(x, y)| 6 CN,α,β〈x− y〉−N . (3.8.1)

More over, any such operator is the quantization of a symbol of order S−∞.

Proof. See, for example, Melrose’s notes, Proposition 2.4.
Note that the last part follows from the Fourier Transform. For we see

that, given KA(x, y), we need to find an amplitude a such that

KA(x, y) =
1

(2π)n

∫
a(x, ξ)eiξ·(x−y) dξ. (3.8.2)

But if we define g(x, z) = KA(x, x− z), (3.8.2) becomes

g(x, z) = KA(x, x− z) =
1

(2π)n

∫
a(x, ξ)eiξ·(z) dξ (3.8.3)
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so that for fixed x, a(x, ξ) is the Fourier transform of z 7→ g(x, z). Unravelling
the definitions, we see that the decay conditions on KA translate directly into
the conditions ensuring a ∈ S−∞. �

3.8.2. Proof of the reduction theorem, Theorem 3.5.1. The fol-
lowing simple calculation shows that if a(x, y; ξ) is a symbol of order k which
vanishes on the diagonal x = y then the operator with amplitude a(x, y; ξ) is
actually of order 6 k − 1.

To see this, for any given j, consider the kernel with amplitude (xj −
yj)a(x, y; ξ). The corresponding operator has kernel

KA(x, y) =
1

(2π)n

∫
(xj − yj)a(x, y; ξ)eiξ·(x−y) dξ

=
1

(2π)n

∫
a(x, y; ξ)Dξje

iξ·(x−y) dξ

=
1

(2π)n

∫
Dξja(x, y; ξ)eiξ·(x−y) dξ. (3.8.4)

By the symbol estimates, we see that the operator is of order 6 k − 1.
There is a caveat. The amplitude (xj−yj)a(x, y; ξ) is only in Sk if a(x, y; ξ)

has some decay for |x− y| → ∞ (i.e. away from the diagonal). Our definition
of Sk requires uniform boundedness (and of all derivatives) in (x, y). This
turns out not to be a serious problem here, for if

b(x, y; ξ) ∈ 〈x− y〉µSk, i.e. 〈x− y〉−µb(x, y; ξ) ∈ Sk (3.8.5)

pick a cut-off function χ and split b,

b(x, y; ξ) = χ(|x− y|)b(x, y; ξ) + (1− χ(|x− y|))b(x, y; ξ). (3.8.6)

The first term on the RHS lies in Sk and is supported near the diagonal.
The second term, grows away from the diagonal, but is identically zero in a
neighbourhood of it. One can show, by similar arguments to those elsewhere in
this chapter, that the associated pseudodifferential operator has a smooth ker-
nel, rapidly decaying away from the diagonal, that is, satisfying all estimates
(3.8.1).

The above discussion suggests the following iterative process. Given a(x, y; ξ),
let a0(x; ξ) = a(x, x; ξ). Then a(x, y; ξ) − a0(x; ξ) vanishes on the diago-
nal and so is really a symbol b1(x, y; ξ) of order 6 k − 1. Then define
a1(x; ξ) = b1(x, x; ξ) and continue.

This is the reason why we can get rid of the y-dependence in the more
general class of symbols. Here is the exact result:

Theorem 3.8.2. If a(x, y; ξ) ∈ Sk(R2n;Rn). Then there exists σA(x; ξ),

σA(x; ξ) ∼
∑
α

i|α|

α!
Dα
yD

α
ξ a(x, y; ξ) |y=x (3.8.7)

such that

1

(2π)n

∫
a(x, y; ξ)eiξ·(x−y) dξ =

1

(2π)n

∫
σA(x; ξ)eiξ·(x−y) dξ. (3.8.8)

In words, the pseudodifferential operators defined by a and by σA are equal.



41

Proof. Use Taylor’s Theorem with remainder in the form

a(x, y; ξ) =
∑
|α|<N

(−i)|α|

α!
(x−y)αDα

y a(x, x; ξ)+
∑
|α|=N

(−i)|α|

α!
(x−y)αRN,α(x, y; ξ)

(3.8.9)
and

RN,α(x, y; ξ) =

∫ 1

0
(1− t)N1Dα

y a(x, (1− t)x+ ty; ξ),dt. (3.8.10)

Note that the sum of terms with |α| = j defines a symbol of order k − j
and the remainder term vanishes to order k − N on the diagonal and so the
corresponding pseudodifferential operator is of order k −N .

More precisely, the same integration by parts argument shows that the
operator with amplitude

(−i)|α|

α!
(x− y)αDα

y a(x, x; ξ) (3.8.11)

is the same as the operator with amplitude

i|α|

α!
Dα
ξD

α
y a(x, x; ξ) (3.8.12)

Choose an asymptotic sum b(x; ξ) of the symbols (3.8.11). If B is the
corresponding operator, then we have, for every N ,

A−B =

N−1∑
j=0

Aj +RN −B so B =

N−1∑
j=0

Aj + SN (3.8.13)

where SN ∈ Ψk−N . It follows that A − B ∈ Ψ−∞ and we may invoke the
residuality characterization to complete the proof. �

3.8.3. Formal properties continued: adjoints. The L2 inner product
for functions on Rn is

(u, v) =

∫
v∗(x)u(x) dx. (3.8.14)

IfA is a pseudodifferential operator with amplitude a(x, y; ξ), then the (formal)
adjoint A∗ is defined by requiring

(u,Av) = (A∗u, v) for all u, v ∈ S . (3.8.15)

The following is a simple computation, but is very important:

Proposition 3.8.3. The formal adjoint A∗ of A is a pseudodifferential
operator with amplitude

(x, y; ξ) 7−→ a∗(y, x; ξ).

In particular, if A ∈ Ψk, then A∗ ∈ Ψk and

σk(A
∗) = σk(A)∗. (3.8.16)

The proof is left to the reader. The result remains true for ‘systems’ if a∗

is interpreted as the adjoint (conjugate-transpose) of the matrix a.
Less trivial is the following:
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Theorem 3.8.4. Let A be a pseudodifferential operator with (full) symbol
σA. Then

σA∗ =
∑
α

i|α|

α!
Dα
xD

α
ξ σ
∗
A(x; ξ) (3.8.17)

We defer the proof.
A corollary of the above considerations is the following:

Proposition 3.8.5. Let A be a pseudodifferential operator with amplitude
a(x, y; ξ). Then there is a unique ‘left symbol’ σ̃A(y; ξ) such that

KA(x, y) =
1

(2π)n

∫
σ̃A(y; ξ)eiξ·(x−y) dξ. (3.8.18)

Moreover,

σ̃A(y; ξ) =
∑ (−i)|α|

α!
Dα
yD

α
ξ σ(y; ξ). (3.8.19)

Proof. Start from the representation of A∗ in terms of its full symbol
σ∗A(x; ξ). By preceding remarks, it follows that A is also represented by the
operator (3.8.18) where

σ̃A(y; ξ) = σA∗(y; ξ)∗. (3.8.20)

Now apply Theorem 3.8.4 to obtain (3.8.19). �

3.8.4. Proof of the Theorem 3.6.1. This is now straightforward. The
exactness of the symbol sequence follows immediately by use of the represen-
tation A = Op(σA, D).

As for composition, we prove the following more precise version of (3.6.2).

Theorem 3.8.6. Suppose that A and B are pseudodifferential operators
with (full) symbols σA and σB respectively. Then

σAB ∼
∑
α

i|α|

α!
Dα
ξ σA(x; ξ)Dα

xσB(x; ξ) (3.8.21)

Proof. This is now very easy. Write A interms of its symbol σA(x; ξ) and
B in terms of its symbol σ̃B(y; ξ). Then

Bu(y) =
1

(2π)n

∫
σ̃B(z; η)eiη·(y−z)u(z) dzdη (3.8.22)

and so

ABu(x) =
1

(2π)2n

∫
σA(x; ξ)σ̃B(z; η)eiξ·(x−y)+iη·(y−z)u(z) dxdydξdη.

(3.8.23)
Doing the y integral first produces (2π)nδ(ξ − η), so then doing the η integral
yields

ABu(x) =
1

(2π)n

∫
σA(x; ξ)σ̃B(z; ξ)eiξ·(x−z)u(z) dxdξ. (3.8.24)

Since σA(x; ξ)σ̃B(y; ξ) is a symbol given that σA and σ̃B are, it follows that
AB is a pseudodifferential operator of order k + `. The formula for σAB
from Theorem 3.8.6 follows from the formulae for writing a general symbol in
reduced form. �
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3.8.5. Mapping properties. We shall sketch the proof that if A ∈ Ψk,
then A is a continuous linear map S → S . By Corollary 3.4.2, it is sufficient
to show that if a ∈ S−∞ and f ∈ S , then given any µ,

‖Af‖µ 6 Cµν‖f‖ν (3.8.25)

for some ν, where the constant Cµν is controlled by one of the norms on S`.
Here the subscripts refer to the norms on S (not Sobolev norms!), i.e.

‖f‖µ =
∑

|α|+|β|6µ

sup |xαDβf |. (3.8.26)

We start with the base case µ = 0. We use essentially the same device as
at the beginning of the chapter, the identity

1 + ξ ·Dy

1 + |ξ|2
eiξ·(x−y) = eiξ·(x−y). (3.8.27)

Choose L so large that

L > `+ n+ 1 (3.8.28)

and recall the notation

〈ξ〉 =
√

1 + |ξ|2. (3.8.29)

We may assume that a = a(y; ξ). Then

Af(x) =
1

(2π)n

∫
eiξ·(x−y)a(y; ξ)f(y) dξdy. (3.8.30)

Since a has compact support we may integrate by parts L times using the
identity (3.8.27), obtaining

Af(x) =
1

(2π)n

∫
eiξ·(x−y)

(
1− ξ ·Dx

1 + |ξ|2

)L
(a(y; ξ)f(y)) dξdy

=
1

(2π)n

∫
eiξ·(x−y)

(
1

1 + |ξ|2

)L
(a(y; ξ)f(y)) dξdy (3.8.31)

Since 〈ξ〉−La(y; ξ) is bounded by a multiple of 〈ξ〉−n−1,

|Af(x)| 6 C
(∫

dξ

〈ξ〉n+1

)
‖f‖L 6 C‖f‖L. (3.8.32)

To proceed further we use induction and some estimates of [A,D] and [A,Mj ],
where Mj is the operation of multiplication by xj . The idea is as follows:

DjAf = ADjf − [A,Dj ]f. (3.8.33)

The first term on the RHS is controlled by the L-Schwartz norm of Djf ,
i.e. by the (L + 1)-Schwartz norm of f . The second term on the RHS is
controlled provided that [A,Dj ] satisfies an estimate similar to (3.8.32). An
estimate similar to (3.8.32) with A replaced by [A,Mj ], will give a bound on
sup |xjAf |.

Now the kernel of [A,Dj ] is

(Dxj +Dyj )KA (3.8.34)

which is of the form (3.3.11) but with

a(x, y; ξ) replaced by (Dxj +Dyj )a(x, y; ξ), (3.8.35)
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since (Dxj +Dyj ) annihilates the exponential factor. This is again a symbol,
and in particular we can bound a finite number of its derivatives with respect
to (x, y) by one of the norms on S`.

Similarly, the kernel of [A,Mj ] is equal to

(xj − yj)KA(x, y) (3.8.36)

and an integration by parts shows that this is again of the form (3.3.11), where
a is replaced by Dξja(x, y; ξ). If a is a symbol of order ` then Dξa is a symbol
of order `− 1 by definition.

Repeated use of these commutator calculations allows us to prove (3.8.25)
for every µ.

3.8.6. Proof of Proposition 3.6.4. The proof is made by copying the
argument starting from (3.1.4). We must replace this equation by

(x− y)αeiξ·(x−y) = Dα
ξ e

iξ·(x−y) (3.8.37)

Applying this in the formula for KA and integrating by parts,

(x− y)αKA(x, y) =
1

(2π)n
Dα
ξ a(x, y; ξ)eiξ·(x−y) dξ (3.8.38)

where again we may assume a ∈ S−∞ and argue by density provided we
make estimates with respect to the norms defining the topology of S`. If
|α| > `+n+1 then as before the integral is absolutely and uniformly convergent
and bounded by a multiple of the |α|-norm on S`. Hence there is a constant
Cα such that

(x− y)αKA(x, y) 6 Cα. (3.8.39)

From this it follows that |KA(x, y)| 6 C|x− y|−`−n−1 and in particular KA is
continuous away from the diagonal. (This is not a sharp bound). A similar
argument applies to estimate

(x− y)αDβ
xD

γ
yKA(x, y) (3.8.40)

where the choice of α (or rather a lower bound for α) is dictated by the choices
of β and γ.



CHAPTER 4

Pseudodifferential operators on manifolds

4.1. Introduction

In the previous Chapter we moved from using the Fourier transform to
defining a parametrix for constant-coefficient elliptic operators in Rn to the
definition of pseudodifferential operators in Rn.

Recall that a pseudodifferential operator of order k is an operator A :
S (Rn)→ S (Rn) whose Schwartz kernel has the form

KA(x, y) =
1

(2π)n

∫
a(x, y; ξ)eiξ·(x−y) dξ, (4.1.1)

where the amplitude a lies in the class of symbols of order k. The set of all
pseudodifferential operators of order k is denoted Ψk or Ψk(Rn). The subspace
of polyhomogeneous pseudodifferential operators arises by taking a ∈ Skphg and

is denoted Ψk
phg. Recall that the integral defining KA is only absolutely and

uniformly convergent if a ∈ S−n−1. Otherwise some fancy footwork is required.
One trick is the observation from the last chapter that S−∞ is dense in Sk in
the topology of S`, for every ` > k. This means that we can always think of a
formula like (4.1.1) as a limit in which a is replaced by χ(ε|ξ|)a(x; ξ), χ being
a standard cut-off function as in Chapter 3, §3.4.

In any case, the integral defining KA is a tempered distribution on R2n

which is smooth away from the diagonal.

4.2. Pseudodifferential operators on manifolds

LetX be a compact manifold without boundary (connected and orientable,
for the sake of argument).

• Extension of distributions to manifolds;
• Schwartz kernel theorem for manifolds

Remarks about the need for a density.
In particular any linear map A : C∞(X)→ C−∞(X) has a Schwartz kernel

KA(x, y) which is a section of 1 � Ω, in other words it is a density ‘in the y
variables’.

• Vector bundle extension

Definition 4.2.1. The linear operator A is a pseudodifferential operator
of order k on X if for smooth functions...to be added

By patching arguments, one proves the analogues of the main theorems
stated in §3.6, more precisely:

Theorem 4.2.2. Let X be a compact manifold and let E and F be complex
vector bundles over X.

45
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(i) Symbol sequence: for every k ∈ R, there is an exact sequence

0 −→ Ψk−1(X;E,F ) −→ Ψk(X;E,F )
σk−→ Symk(X;E,F )→ 0. (4.2.1)

(ii) Composition: if A ∈ Ψk(X;F,G) and B ∈ Ψ`(X;E,F ) then AB ∈
Ψk+`(X;E,G) (with obvious interpretations if either k or ` is equal
to −∞). The principal symbol is multiplicative in the sense that

σk+`(AB) = σk(A)σ`(B). (4.2.2)

(iii) The principal symbol map is a ∗-homomorphism in the sense that
σk(A

∗) = σk(A)∗, where A∗ is the L2-adjoint of A (for chosen metrics
on the bundles and a volume form on X).

There is a parallel statement for the subclass of polyhomogeneous operators,
in which everything is adorned with the subscript phg.

Patching arguments also prove that if A ∈ Ψk(X;E,F ), then A is bounded
as a map between Sobolev spaces Hs(X;E)→ Hs−k(X;F ).

4.3. The elliptic package for differential operators on compact
manifolds

We start by noting that the results of the previous section imply the exis-
tence of a parametrix for any elliptic operator on X:

Theorem 4.3.1. Let P : C∞(X;E) → C∞(X;F ) be an elliptic operator
of order k, where X is compact and E and F are complex vector bundles.
Then there exists a parametrix A ∈ Ψ−k(X;F,E) for P , that is an operator
such that

PA = 1−R1, AP = 1−R2 (4.3.1)

where R1 and R2 are smoothing operators.

Proof. Given Theorem 4.2.2, either of the iterative arguments in §3.7
can be used without essential change. �

Combining this with a little functional analysis, we obtain the following
fundamental theorem.

Theorem 4.3.2. Let P : C∞(X;E)→ C∞(X;F ) be an elliptic operator of
order k, where X is compact and E and F are complex vector bundles. Then
for every s,

P : Hs(X;E)→ Hs−k(X;F ) (4.3.2)

is bounded and Fredholm. The kernel consists of smooth sections of E and the
range, for any s, can be complemented by smooth sections of F . (One may
choose metrics and take these smooth sections to be a basis for the kernel of
the formal adjoint operator P ∗.

Moreover, the generalized inverse G defined by inverting P on its range,
picking the solution orthogonal to kerP , and to be zero on the orthogonal
complement of imP lies in Ψ−k(X;F,E) and differs from any parametrix by
smoothing operators.

The facts we needd from functional analysis are:

• The unit ball B in a Hilbert space H is compact if and only if H is
finite-dimensional.
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• A smoothing operator R on a compact manifold is compact in L2 in
the sense: if ‖fj‖ 6 1 in L2 for all j, then Rfj has an L2-convergent
subsequence.

Proof. That the kernels of P and of P ∗ consist of smooth sections follows
as in Rn: if Pu = 0, then

APu = u−R1u = 0 (4.3.3)

and so u = R1u. Since R1 is smoothing, u is smooth. First of all, the
existence of a parametrix guarantees that kerP consists of smooth sections of
E. Consider B = kerP ∩ {u : ‖u‖L2 6 1}.

Because B = R1(B) the second of our ‘standard facts’ shows that B is
precompact in L2. Since it is also closed, it is compact. Hence kerP is finite-
dimensional by the first of our standard facts.

We move on to the proof that the range of P : Hs → Hs−k is closed.
Let π1 be the orthogonal projection from L2(E) onto kerP and let W =

ker(P )⊥ ∩Hs. We claim that there is an estimate of the form:

‖Pu‖s−k > C‖u‖s for all u ∈W. (4.3.4)

where C > 0 and the subscripts denote Sobolev norms.
If (4.3.4) fails, there is a sequence un with

‖un‖s = 1, Pun → 0. (4.3.5)

Applying A, we obtain
un −R1un → 0. (4.3.6)

Using that R is compact again, it follows that un has a convergent subsequence,
which we may assume is the original one. The limit, u∞ must have norm 1.
Then Pu∞ = 0, yet u∞ is orthogonal to kerP , contradiction.

Now let us show that imP is closed. Suppose that fn is a sequence in
ImP . In particular there exist un ∈ L2(X;E) with Pun = fn. We assume
that fn → f , and need to find u such that Pu = f . By replacing un with
(1− π1)un, we may suppose that un ∈W . Then (4.3.4) gives

‖un‖ 6
1

C
‖fn‖ (4.3.7)

and so the un are uniformly bounded. Applying the parametrix to the equation
Pun = fn yields

un = R1un +Afn. (4.3.8)

Now Afn → Af and since we now know that ‖un‖ is uniformly bounded,
passage to a subsequence gives, again by the compactness of the operator R1,
that un is convergent. The limit must satisfy Pu = f , showing that the range
is closed.

Since the range is closed, the orthogonal complement of PHs(X;E), which
is isomorphic to kerP ∗ can be identified with the cokernel of P . This shows
everything except that the generalized inverse is a pseudodifferential operator.

We have
GP = 1− π1, PG = 1− π2 (4.3.9)

and
AP = 1−R, PA = 1−R′. (4.3.10)

Hence

GPA = (1− π1)A = G(1 +R′) so G = A− π1A−GR′. (4.3.11)
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Similarly,

APG = A−Aπ2 = G+RG so G = A−Aπ2 −RG. (4.3.12)

Notice that neither of (4.3.11) or (4.3.12) implies that G is a pseudodifferential
operator, because it is not clear that RG or GR′ is a pseudodifferential oper-
ator. However, we can combine them so that G appears sandwiched between
the smoothing operators R and R′:

G = A− π1A+Aπ2 −AR1 +R1GR1. (4.3.13)

Now we are in good shape because the first four terms are all pseudodiffer-
ential operators, and the last is smoothing (being a composite of smoothing×
bounded × smoothing). �

Remark 4.3.3. Another characterization of the generalized inverse is

GP = 1− π1, PG = 1− π2 (4.3.14)

where π1 is the L2 projection onto kerP and π2 is the orthogonal projection
onto imP⊥.

Remark 4.3.4. The existence of the parametrix and its boundedness in
Sobolev spaces implies the standard elliptic estimates

‖u‖s 6 C(‖Pu‖s−k + ‖u‖0) (4.3.15)

if s > 0. (Here ‖ · ‖0 stands for the H0 i.e. L2-norm.)

Corollary 4.3.5 (The Fredholm Alternative). Let P : C∞(X;E) →
C∞(X;F ) be an elliptic operator of order k and suppose that we have metrics
on E and F and a given volume element on X, giving everything L2 metrics.
Let P ∗ denote the formal adjoint of P . Then given f ∈ Hs(X;F ), the equation

Pu = f (4.3.16)

is solvable for u ∈ Hs+k(X;E) if and only if f ⊥ ker(P ∗).

Proof. Follows at once from the above. �

Example 4.3.6. On a compact connected riemannian manifold X, the
equation ∆u = f if and only if

∫
X f dµ = 0. This follows from the Fredholm

alternative, for ∆ is formally self-adjoint. So the equation is solvable if and
only if f ⊥ ker ∆. But the kernel consists just of the constants:

∆u = 0⇒
∫
u∆u = 0⇔

∫
|du|2 = 0. (4.3.17)

On a connected manifold, du = 0 implies u is a constant.

4.4. Trace and index—topological properties of index

Apart from allowing us to prove the basic properties of elliptic operators in
a considerable degree of generality, one can also obtain some general qualitative
results about the index of elliptic operators.

We have now seen that if X is a compact manifold and P is an elliptic
differential operator of order k between complex vector bundles E and F , then
P is a Fredholm operator Hs(X;E) −→ Hs−k(F ). For a Fredholm operator
P , the index is defined as

Ind(P ) = dim kerP − dim CokerP. (4.4.1)
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The celebrated Index Theorem of Atiyah and Singer gives a formula for (4.4.1)
in terms of topological data (the topology of the bundles E and F and of the
principal symbol σk(P )).

We shall not say more about this formula, but we shall describe an ap-
proach to its study, via parametrices and traces. In particular, we shall obtain
some qualitative information about the index (in particular some of its stabil-
ity properties—i.e. its invariance under deformation of the operator P ).

4.4.1. Trace of a smoothing operator. As usual I am missing out
some details here, but what follows should be nearly self-contained. Let X
be a compact manifold, let E → X be a complex vector bundle, and let
R : C∞(X;E)→ C∞(X;E) be a smoothing operator. Recall that this means
that KR ∈ C∞(X ×X;E � (E∗ ⊗ Λn)) where the second factor is the tensor
product of the dual of E with the n-forms on X, so that if f ∈ C∞(X;E),
R pr∗1(f) lies in pr∗1(E)⊗ pr∗2 Λn so that the push-forward or integral over the
fibres of pr1 is well-defined.

Definition 4.4.1. For such a smoothing operator R, the trace of R, Tr(R)
is defined to be

TrR =

∫
∆

tr(KR). (4.4.2)

In local coordinates, near the diagonal, KR has the form e(x, y) dy, where
e(x, y) ∈ Ex ⊗ E∗y . Then the pull-back to the diagonal is equal to e(x, x) dx,
and since e(x, x) ∈ End(Ex), tr e(x, x) is well-defined. This is the meaning of
(4.4.2)

Example 4.4.2. Let E be a vector bundle over a compact manifold X and
suppose that E is equipped with a fibre metric h and volume element dµ. Let
V be a finite-dimensional subspace of C∞(X;E). We are going to write down
the Schwartz kernel KR of the orthogonal projection operator R onto V .

Let dimV = d and let σ1, . . . , σd be an orthonormal basis of V , so that∫
X
h(σi, σj) dµ = δij . (4.4.3)

(We assume that h is antilinear in the second variable.)
Now for any section f of E, we define a section f∗ of E∗ as follows: for

each x ∈ X,

f∗x : Ex → C, f∗x [ux] = hx(ux, fx) for all ux ∈ Ex. (4.4.4)

We claim that

KR(x, y) =
d∑
j=1

ej(x)� e∗j (y). (4.4.5)

Then as a section of pr∗1(E) over X ×X,

KR(x, y)f(y) =
d∑
j=1

ei(x)hy(fy, ej,y). (4.4.6)

Integration with respect to y now gives∫
X
KR(x, y)f(y) dµy =

d∑
j=1

ei(x)

(∫
X
h(f, ej) dµ

)
. (4.4.7)
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In particular if f is in the L2-orthogonal complement of V then Rf = 0 (since
f is orthogonal to each of the ej). And similarly, Rej = ej for each j, as
required.

Remark 4.4.3. It is possible to extend the definition of Tr considerably:
for example to operators whose kernels are merely continuous, but we shall
not need this.

It should also be noted that there is a theory of traces for bounded linear
operators on a Hilbert space H. If dimH =∞, not every operator has a trace.
However, there is a set of operator which do have traces, and this is an ideal in
the algebra of all bounded operators. (Possible references are the little book
on trace ideals by Barry Simon, or Hörmander, Analysis of partial differential
operators, Chapter 19, Volume III.)

From the above considerations, it follows if R is orthogonal projection onto
V , then

dimV = Tr(R). (4.4.8)

Now let P be an elliptic operator between bundles E and F over X. Let
G be the generalized inverse as in Theorem 4.3.1 and let π1 be the projection
onto kerP , π2 the orthogonal projection onto kerP ∗,

GP = 1− π1, PG = 1− π2. (4.4.9)

Hence

Ind(P ) = dim kerP − dim kerP ∗ = Trπ1 − Trπ2. (4.4.10)

Combining this essentially trivial result with formal properties of the trace,
we obtain the much more useful

Theorem 4.4.4. Let P be elliptic as above and let A be a parametrix, so

AP = 1−R1, PA = 1−R2. (4.4.11)

Then

Ind(P ) = TrR1 − TrR2 (4.4.12)

The key to proving this is the commutator property for the trace:

Proposition 4.4.5. Let A be a pseudodifferential operator and let R be
smoothing. Then

Tr(AR) = Tr(RA). (4.4.13)

Proof. By partitions of unity subordinate to trivializing coordinate charts,
we reduce the result to proving that if A is pseudodifferential operator in Rn
and and R is a smoothing operator supported in a ‘box’ {|x| < r}×{|y| < r},
then (4.4.13) holds for such A and R. If A were smoothing the result follows
from the formulae for composing smoothing operators, for

KAR(x, z) =

∫
A(x, y)R(y, z) dy, KRA(x, z) =

∫
R(x, y)A(y, z) dy,

(4.4.14)
Hence

TrAR =

∫
tr(A(x, y)R(y, x)) dxdy, TrRA =

∫
tr(R(x, y)A(y, x)) dxdy.

(4.4.15)
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That these are equal follows from interchanging x and y in the second, and
using the fact that pointwise,

trA(x, y)R(y, x) = trR(y, x)A(x, y). (4.4.16)

(All integrals and manoeuvres are well-defined because R is compactly sup-
ported in a box.) The general result follows from this by approximating the
kernel of A by smoothing operators. We know that this can be done by Corol-
lary 3.4.2 from Chapter 3. �

Proof. (of Theorem 4.4.1). Let A be any parametrix, G the generalized
inverse. We have seen that G is a pseudodifferential operator and differs from
A by a smoothing operator, S, say, so

G = A+ S. (4.4.17)

Then

1− π1 = GP = (A+ S)P = 1−R1 + SP so that R1 = π1 + SP. (4.4.18)

Similarly,

R2 = π2 + PS. (4.4.19)

Hence

TrR1 = Trπ1 + TrSP, TrR2 = Trπ2 + TrPS = Trπ2 + TrSP. (4.4.20)

since S is smoothing. Subtracting,

TrR1 − TrR2 = Trπ1 − Trπ2 = IndP. (4.4.21)

�

From this result, we obtain the following stability result for the index:

Theorem 4.4.6. Let Pt : C∞(X;E) → C∞(X;F ) for t ∈ [0, 1] be a
continuous family of elliptic operators of order k. Then

IndP0 = IndP1. (4.4.22)

Remark 4.4.7. The continuity is easily defined either by working locally
and demanding that the coefficients, with respect to trivializations which are
independent of t, depend continuously on t, or by us of a fixed connection to
define Pt and demanding that the various symbol maps (see Chapter 1) are
all continuous in t.

Example 4.4.8. As a particular case, suppose that P andQ are two elliptic
operators with σk(P ) = σk(Q). Then P − Q = L, say, is of order 6 k − 1.
Then if we set

Pt = (1− t)P + tQ = P − tL (4.4.23)

we have σk(Pt) = σk(P ) for all t. The theorem applies and gives

IndP = IndQ. (4.4.24)

To be colloquial, the index doesn’t depend on the ‘lower order terms’ of an
elliptic operator.
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Proof. Since X is compact, we may choose a cover of X by trivializing
coordinate charts, and also fix once and for all a partition of unity subordinate
to this cover. We can use these data to define a definite ‘quantization’ or
‘lifting’ map

Sk(X)→ Ψk(X). (4.4.25)

Using this, given a continuous family of elliptic operators Pt, one can show
that there exists a continuous family of parametrices At. Then automatically,
the error terms Rt and R′t will depend continuously on t since

Rt = 1−AtPt, R′t = 1− PtAt. (4.4.26)

Hence t 7→ TrRt and t 7→ TrR′t are continuous in t and so is their difference,
which, for each t, is equal to IndPt. However this is an integer, so must be
independent of t. The result follows. �

This result shows two highly significant properties of the index. From the
topological point of view, it shows that one can define a map from homotopy
classes of elliptic symbols to Z: pick a symbol in the homotopy class, lift it
to an operator then map to the index. By the above results, the integer is
independent of all choices. This is usually called the analytic index a-Ind of
an elliptic symbol. In the early 1960’s Atiyah and Singer defined another map,
t-Ind from elliptic symbols (better interpreted in terms of K-theory). t-Ind is
defined in purely topological terms. They proved that t-Ind = a-Ind giving a
‘formula’ for a-Ind in purely topological terms.

On the other hand, another aspect of Theorem 4.4.1 is that it shows that
the the index of an elliptic operator is expressible, at least in principle, in
terms of traces and hence as the integral of a top-degree differential form over
X. Note that the smoothing operators we need the traces of are in principle
determined algorithmically by the coefficients of our operator P .

In the second part of this course, this idea will be pursued for elliptic oper-
ators of ‘Dirac type’. This will yield the index of operators of Dirac type as the
integral of an explicit differential form on X: moreover, this differential form
has a natural interpretation in terms of characteristic classes of the bundles
involved.



CHAPTER 5

Elliptic complexes and Dirac operators

5.1. Introduction

5.2. Elliptic complexes

A complex (E·, D·) is a sequence of bundles and differential operators

0−→C∞(E0)
D0

−→ C∞(E1)
D1

−→ C∞(E2) · · ·C∞(EN )→ 0. (5.2.1)

with the property DjDj−1 = 0 for all j. The canonical example is the de
Rham complex in which Ej = ΛjT ∗X and Dj = d. In order to simplify
things, we shall assume that in general all the Dj are of order 1 and we shall
abuse notation by denoting them all by D. We tacitly assume that all the
Ej are genuine non-zero vector bundles, but it is sometimes convenient to
augment (5.2.1) by adjoining E−1 = 0 and EN+1 = 0.

The condition D2 = 0 means that the (generalized) cohomology groups
are defined,

H i(E·, D·) =
kerD : C∞(X,Ei)→ C∞(X,Ei+1)

DC∞(X,Ei−1)
(5.2.2)

These spaces can be quite bad in general, but not if the complex is elliptic:
Passing to symbols, (5.2.1) gives rise to a sequence of bundle maps

0→ E0
x

σ1(D)x,ξ−→ E1
x

σ1(D)x,ξ−→ E2
x → · · ·ENx → 0 (5.2.3)

for each (x, ξ) in the total space of T ∗X. D2 = 0 implies that σ(D)2 = 0 by
the formal properties of the symbol.

Definition 5.2.1. The complex (5.2.1) is elliptic if the symbol sequence
(5.2.3) is exact for all (x, ξ) with ξ 6= 0.

We shall prove a generalized Hodge theorem for elliptic complexes, to the
effect that the cohomology spaces are finite-dimensional and that each coho-
mology class has a unique harmonic representative. But first some examples.

Example 5.2.2. De Rham complex Let Er = ΛrT ∗X. Then C∞(X;Er) =
Ωr(X) is the space of differential r-forms on X, and we have the exterior
derivative d giving us a complex. The symbol map is

σx,ξ(α) = iξ ∧ α (5.2.4)

It is an interesting to check that the complex is elliptic, i.e. that if ξ ∧ β = 0,
there exists α such that β = ξ ∧ α.

Example 5.2.3. If X is a complex manifold, of complex dimension m,
say, there is a bigrading of the (complex-valued) differential forms, where

53
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Ωp,q(X) consists of the forms with ‘p dzi and q dzi’ in their local expres-
sions, (z1, . . . , zm) being local holomorphic coordinates. The exterior deriva-
tive breaks as a sum

d = ∂ + ∂, ∂ : Ωp,q → Ωp+1,q, ∂ : Ωp,q → Ωp,q+1. (5.2.5)

These satisfy

∂2 = 0, ∂
2

= 0, ∂∂ + ∂∂ = 0 (5.2.6)

by virtue of d2 = 0. In particular, for fixed p, we have the complex

0→ Ωp,0(X)
∂→ Ωp,1(X)

∂→ · · · → Ωp,m(X)→ 0 (5.2.7)

with cohomology Hp,∗(X) (the Dolbeault cohomology groups).
There is a generalization: if E → X is any holomorphic vector bundle, one

can define a ‘twisted’ ∂ operator, denoted ∂E , such that

∂E : Ω0(X;E)→ Ω0,1(X;E) (5.2.8)

which satisfies the Leibniz rule relative to ∂ (∂E(fs) = ∂f ⊗ s + f ⊗ ∂Es for
every function f and section s) and such that ∂Es = 0 in U ⊂ X if and only
if s is a holomorphic section of E in U .

Then there is a unique extension of (5.2.8)

Ω0(X;E)→ Ω0,1(X;E)→ Ω0,2(X;E)→ · · · → Ω0,m(X;E) (5.2.9)

defining a complex. The p-th cohomology group is denoted Hp(X; O(E)) and
is isomorphic to the sheaf cohomology of the sheaf O(E) of holomorphic sec-
tions of E. Such groups are very important basic invariants of complex mani-
folds. If we take E to be the p-th exterior power of the holomorphic cotangent
bundle, (5.2.9) reduces to (5.2.7) so Hp,q is the q-th sheaf cohomology group
of Λp(T 1,0)∗.

Example 5.2.4. Deformation complex. Elliptic complexes often arise in
the study of moduli spaces. For example, suppose that X is a compact rie-
mannian 4-manifold and E → X is a bundle with hermitian metric. If A is a
unitary connection on E, the curvature F (A) is a 2-form with values in End(E)
(more specifically, the skew-adjoint endomorphisms of E). In 4 dimensions,
there is the decomposition Ω2 = Ω2

+⊕Ω2
− of the space of 2-forms, the +1 and

−1 eigenspaces of the Hodge ∗ opearator. The connection A is called anti-self
dual (ASD) if the component F (A)+ of F (A) in Ω2

+(X; End(E)) is zero.
The moduli space of all such instantons

M = {A : F (A)+ = 0}/Aut(X : E) (5.2.10)

has been much studied and led Donaldson and others to revolutionary results
about the differential topology of 4-manifolds.

We state without proof that the tangent space T[A]M at a (gauge-equivalence
class of) the connection A is the cohomology of the complex

0→ Ω0(X; u(E))→ Ω1(X; u(E))→ Ω2
+(X; u(E))→ 0. (5.2.11)

Here u(E) is the bundle of skew-adjoing endomorphisms of E. The middle
space represents an infinitesimal variation a in A and the map to Ω2

+(X : u(E)

is the linearization a 7−→ d+
Aa of the ASD equations. The first map φ 7−→ dAφ

is the infinitesimal action of the group of gauge transformations Aut(E) on the
space of connections. One can check that this is an elliptic complex provided
that F (A)+ = 0. Under good conditions (see the book of Donaldson and
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Kronheimer, for example) the moduli space is smooth at [A] with tangent
space equal to the first cohomology of this complex.

5.2.1. Generalized Hodge Theorem. Return to a general elliptic com-
plex (E,D). Choose hermitian metrics on the bundles Ej and a volume ele-
ment on X. Then for each j,

D : C∞(X;Ej)→ C∞(X;Ej+1) (5.2.12)

has an L2 adjoint

D∗ : C∞(X;Ej+1)→ C∞(X;Ej) (5.2.13)

We now make the following construction. Define

W0 =
⊕
j

E2j , W1 =
⊕
j

E2j+1 (5.2.14)

and L0 = D+D∗ acting from W0 to W1 and L1 = D+D∗ acting from W1 to
W0. More precisely L0 involves only the D2j and the adjoints (D2j+1)∗, while
for L1 it is the other way around.

Proposition 5.2.5. The complex (E,D) is elliptic if and only if

L0 : C∞(X;W0)→ C∞(X;W1) (5.2.15)

is elliptic (if and only if L1 is elliptic). In this case the two ‘Laplacians’ L1L0

and L0L1 are also self-adjoint elliptic operators.

Remark 5.2.6. Both L1L0 and L0L1 are operators of Laplace type and
preserve the degree. More precisely, acting on s ∈ C∞(X;E2j),

L1L0s = (D2j)∗D2j +D2j−1(D2j−1)∗. (5.2.16)

Proof. We show first that L1L0 is elliptic if and only if the complex
(E,D) is elliptic. Let us simplify notation even further by just writing σ =
σ(D) and σ∗ = σ(D)∗ = σ(D∗). (It is to be understood that the symbols are
all evaluated at some fixed ξ 6= 0.) Then

σ(L1L0) = σσ∗ + σ∗σ. (5.2.17)

We have seen in (5.2.16) that L1L0 preserves degree and maps E2j into itself.
Thus to check that (5.2.17) is an isomorphism it is enough, by elementary
linear algebra, to check that it is injective on E2j for each j.

So suppose that the complex is elliptic and that e ∈ E2j is annihilated by
(5.2.17),

(σσ∗ + σ∗σ)e = 0. (5.2.18)

Taking the inner product with e we learn that

|σ∗e|2 + |σe|2 = 0 and hence σe = 0, σ∗e = 0. (5.2.19)

Since the complex is elliptic, there exists η ∈ E2j−1 such that ση = e. But
then the last of (5.2.18) gives σ∗ση = 0, hence ση = 0. Hence e = 0 as
required.

Conversely, suppose that L1L0 is elliptic so that (5.2.17) is invertible.
Given e ∈ E2j with σ(e) = 0, we must find η ∈ E2j−1 such that σ(η) = e. For
this, let A be the inverse of (5.2.17) and set

η = σ∗Ae. (5.2.20)
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Then η does the job. The crucial observation is that the endomorphism σσ∗

of E2j commutes with A. This follows at once because σσ∗ commutes with
σσ∗ + σ∗σ. Hence

σ(η) = σσ∗Ae = A ◦ (σσ∗)e = AA−1e = e (5.2.21)

where in the third equality we used σ(e) = 0.
We finish off the proof by noting that the ellipticity of L1L0 is equivalent to

that of L0 (or L1). This uses exactly the same kind of positivity arguments and
D2 = 0 that we’ve seen before. Indeed, since σ(L1) = σ(L0)∗ it is elementary
linear algebra that σ(L0) is an isomorphism if and only if σ(L0)∗σ(L0) is an
isomorphism. �

It is customary to denote L1L0 by ∆, the generalized Hodge Laplacian
associated to the elliptic complex.

Theorem 5.2.7. Let X be a compact manifold and let (E,D) be an el-
liptic complex over X. Then the cohomology groups Hj(X;E·) are finite-
dimensional for each j.

Moreover, for each j, we have the decomposition

L2
s(M,Ej) = ker(D +D∗)⊕ ImD ⊕ ImD∗. (5.2.22)

and hence every cohomology class in Hj has a unique harmonic representative.
The index of D +D∗ is equal to the Euler characteristic of the complex.

Theorem 5.2.8. If (E,D) is an elliptic complex over a compact manifold,
then the cohomology groups are finite-dimensional. The direct sum of the even
cohomology groups is identifiable with the null-space of L, the direct sum of
the odd cohomology groups is identifiable with its cokernel.

Remark 5.2.9. This result includes the important facts that the de Rham
groups of a compact manifold are finite dimensional and also that the Dol-
beault groups of a compact complex manifold are finite-dimensional.

5.3. Operators of Dirac type

The operator L0 associated to an elliptic complex (first-order, as always
here) has the property that σ(L0) is an isomorphism, hence the second-order
symbol σ(L0)∗σ(L0) is an isomorphism. For the de Rham and Dolbeault
complexes, this second-order symbol turns out to be |ξ|2 times the identity,
where the length-squared of ξ is computed using the same metric used to define
the adjoint.

Indeed, if α is a form of degree k, then

σ(d)ξ(α) = iξ ∧ α, σ(d∗)ξ(α) = −iiotaξα (5.3.1)

where in the second we really have ξ] the vector associated by the metric with
the cotangent vector ξ.

To figure out σ(d + d∗)2, we may suppose that ξ = |ξ|e1 and consider
separately the cases α = e1 ∧ β on the one hand and that α contains no
e1-term on the other. If α = e1 ∧ β, then

i|ξ|e1 ∧ α = 0, −i|ξ|ιe1 = −i|ξ|β, (5.3.2)

where β has no e1-term. Hence for such α,

σ(d+ d∗)2
ξ(α) = i|ξ1|e1 ∧ (−i|ξ|β) = |ξ|2α. (5.3.3)
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The computation is essentially the same in the case that α is a form with no
e1 term.

Different authors use slightly different terminology, but let us say that a
first-order, (formally) self-adjoint operator

P : C∞(X;S) −→ C∞(X;S) (5.3.4)

is of Dirac type if and only if

σ(P )2
ξ = |ξ|2 ⊗ 1 (5.3.5)

Here S is a hermitian vector bundle.

Example 5.3.1. Suppose dimX is odd. Consider the de Rham complex,
equipped with a metric coming from a riemannian metric on X. Let W0

and W1 be, as before, the sum of the even and the odd form bundles over
X. Although these are not literally the same, they are isomorphic by the ∗
operator. In odd dimensions, the ∗-operator maps even forms to odd forms
and vice versa. So the operator

∗ (d + d∗) = ∗d + d∗ (5.3.6)

is a self-adjoint operator from W0 to itself. By the above computations, it is
an operator of Dirac type.

Example 5.3.2. Suppose that dimX is even and consider the de Rham
complex as in the previous example. Now W0 and W1 are not in general
isomorphic (consider for example X = S2). However, if we combine them and
the first-order operators L0 and L1 as follows:

L =

[
0 L1

L0 0

]
, L : C∞(X;W0 ⊕W1)→ C∞(X;W0 ⊕W1) (5.3.7)

then L is self-adjoint and

L2 =

[
L1L0 0

0 L0L1

]
(5.3.8)

so that L is of Dirac type.

Example 5.3.3. There is a similar discussion for the Dolbeault complex
and ∂ + ∂

∗
.

5.3.1. Clifford algebras. Let V be a real euclidean vector space. The
Clifford algebra of V is the polynomial algebra on V subject to the relations

wv + vw = −2〈w, v〉. (5.3.9)

It is denoted by Cl(V ).

Proposition 5.3.4. Let V be a real euclidean vector space of dimension
n. As a vector space, Cl(V ) is isomorphic to the exterior algebra Λ∗V . In
particular it has dimension 2n.

Proof. If we choose an orthonormal basis (e1, . . . , en) of V , then the
Clifford algebra relations become

e2
i = −1, eiej = −ejei if i 6= j. (5.3.10)

The tensor algebra on V consists of linear combinations of elements of the
form

eα = eα1 · · · eαk (5.3.11)
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We claim that in Cl(V ) this is equal to an element of the form

± eβ1eβ2 · · · eβ` where β1 < β2 < · · · < β`. (5.3.12)

To see this, suppose that α1 < · · · < αp but αp+1 6 αp. If αp+1 = αp = i,
say, then eiei appears and this is equal to −1. Thus in Cl(V ), eα = eα′ where
|α′| = |α| − 2. We may assume by induction that we have already dealt with
such terms.

If i = αp+1 < αp = j then either i ∈ {α1, . . . , αp−1} or not. In the first
case, we can keep moving the ei to the left, changing signs each time, until
it meets the ei in eα1 · · · eαp−1 at which point it explodes to give −1. Once
again we have reduced to a monomial with 2 fewer terms which we suppose
we already know how to deal with. In the opposite case, we move ei to the
left, changing signs each time, until the first p + 1 of the eαr are in the right
order. This gives an inductive method to start from any ‘word’ in the ei and
turn it into a correctly ordered word in a finite number of steps.

The result follows since the eα with α1 < · · · < αk form a basis for the full
exterior algebra on V . �

The proposition shows that the algebra structure of Cl(V ) gives another
algebra structure on Λ∗V . It is not hard to describe this structure.

Proposition 5.3.5. When Cl(V ) is identified with Λ∗V , we have

v · α = v ∧ α+ ιvα, (v ∈ V, α ∈ Λ∗V ) (5.3.13)

where ιv is interior product with the element of V ∗ dual to v by the metric.
The product of two arbitrary elements of Λ∗V is uniquely determined by this
formula.

Remark 5.3.6. One can consider more generally Cl(V,Q) where Q is a
(non-degenerate) quadratic form on any finite-dimensional real vector space.
There is an elaborate theory of the structure of these algebras, which depends
on the dimension of V and the signature of Q.

5.3.2. The spin representation. To be written
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