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Topological signals
Beyond the node centered description of  network dynamics 

The dynamical state of a simplicial complex includes  
node, edge, and higher-order topological signals
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Topological Syncrhonization
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θ1 ϕ[1,2]ϕ[1,2]

Higher-order Topological DynamicsNode-based dynamics

A. P. Millan, J.J. Torres and G. Bianconi PRL (2020) 
T. Carletti, L. Giambagli, G. Bianconi PRL (2023)



Coupling topological signals 
of different dimension
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How can we couple  

topological signal  

of different dimension  

locally and topologically?



Boundary Operators

B[1] =

[1,2] [1,3] [2,3] [3,4]
[1] −1 −1 0 0
[2] 1 0 −1 0
[3] 0 1 1 −1
[4] 0 0 0 1

,
B[2] =

[1,2,3]
[1,2] 1
[1,3] −1
[2,3] 1
[3,4] 0

.

Boundary operators

The boundary of the boundary is null 

B[1]

B⊤
[1]

B⊤
[2]

Discrete divergence 

Discrete gradient 

Discrete Curl

B[m−1]B[m] = 0, B⊤
[m]B⊤

[m−1] = 0



Simplicial complexes and 
Hodge Laplacians

L[0] = B[1]B⊤
[1] L[2] = B⊤

[2]B[2]L[1] = B⊤
[1]B[1] + B[2]B⊤

[2]

The Hodge Laplacians describe diffusion 


from m-simplices to m-simplices through (m-1) and (m+1) simplices


Hodge Laplacians

For a 2-dimensional simplicial complex we have



Dirac legacy



Dirac operator on graphs



Lesson V:

The Dirac operator 


on graphs and simplicial complexes

Dirac operator on graphs 
• Eigenvalues, Eigenvectors Chirality 
• Weighted and Normalised Dirac operator 
• Topological Dirac equation 
• Insights into the mathematical interpretation of gamma matrices 

Dirac operator on simplicial complexes 

Dirac operator in dynamical systems and signal processing 
• Dirac Synchronisation and Global Dirac Synchronization 
• Dirac Turing patterns 
• Dirac signal processing 



The Dirac operator on  graphs




Topological spinor
The topological spinor is defined on both nodes and edges of a graph 


as   or equivalently


 


with 


•   defined on nodes, i.e. 


•   defined on edges, i.e. 


G = (V, E)

Ψ = χ ⊕ ψ ∈ C0 ⊕ C1

Ψ = ( χ
ψ)

χ χ ∈ C0

ψ ψ ∈ C1



Exterior derivative and its dual

• The exterior derivative  is defined as 


    gradient


• It adjoint operator   is defined as 


    divergence

d : C0 → C1

(dχ)e=[i,j] = χj − χi

d* : C1 → C0

(d*ψ)i = ∑
e∈E+

i

ψe − ∑
e∈E−

i

ψe



Boundary matrix

Boundary matrix

B⊤
[1]

B[1]

Discrete gradient 

Discrete divergence 

1

2

3

4

The discrete gradient can be represented 

by the coboundary matrix B̄[1] = B⊤

[1]

B[1](r, ℓ) =
1 if ℓ = [s, r]

−1 if ℓ = [r, s]
0 otherwise

 is a  matrix of elementsB[1] N0 × N1



Boundary operator and co-
boundary matrix

B[1] =

[1,2] [1,3] [2,3] [3,4]
[1] −1 −1 0 0
[2] 1 0 −1 0
[3] 0 1 1 −1
[4] 0 0 0 1

, B⊤
[1] =

[1] [2] [3] [4]
[1,2] −1 1 0 0
[1,3] −1 0 1 0
[2,3] 0 −1 1 0
[3,4] 0 0 −1 1

,

Boundary and co-boundary matrices

B⊤
[1]

B[1]

Discrete gradient 

Discrete divergence 

1

2

3

4

The discrete gradient can be represented 

by a coboundary matrix B̄[1] = B⊤

[1]



Hodge Laplacians

L[0] = B[1]B⊤
[1] L[1] = B⊤

[1]B[1]

The Hodge Laplacians describe diffusion 


from m-simplices to m-simplices through (m-1) and (m+1) simplices: 


for a graph we have


Hodge Laplacians

1

2

3

4

Betti numbers of a connected network

 one connected component


 number of independent cycles

β0 = 1

β1 = N1 − (N0 − 1)
dim ker(L[m]) = βm



Exterior derivation and its adjoint  on a graph

d = ( 0 0
B⊤

[1] 0) d* = (0 B[1]

0 0 )
The exterior derivative and its adjoint

Ψ = ( χ
ψ)

act on a topological spinor



Basic definition of the Dirac operator on graphs

The Dirac operator in its simplest form 


is the self-adjoint operator   defined as


satisfying 


D : C0 ⊕ C1 → C0 ⊕ C1

D(χ ⊕ ψ) = (d + d*)(χ ⊕ ψ) = (d*ψ) ⊕ (dχ)

D = d + d*



Dirac operator on a network 

d = ( 0 0
B⊤

[1] 0)

D = d + d*
Dirac operator is a self-adjoint operator

d* = (0 B[1]

0 0 )

Exterior divergence



Dirac operator on graph

D = (
0 B[1]

B⊤
[1] 0 )
ç

Dirac operator on a graph

DΨ = (
0 B[1]

B⊤
[1] 0 ) ( χ

ψ) = (
B[1]ψ

B⊤
[1] χ)

Action of the Dirac operator on 

the topological spinor



The Dirac operator 

can be interpreted as the 


“square-root” of the Laplacian 


  


 ,                                  


The non-zero eigenvalues of the Dirac operator 

are the square root of the non-zero eigenvalues of the graph Laplacian.

D = (
0 B[1]

B⊤
[1] 0 ) D2 = 𝓛 = (

L[0] 0
0 L[1])

The Dirac as the square-root of the Laplacian



The spectrum of the Dirac operator

Since  and  are isospectral, it follows 

that:


Spectrum: For every positive eigenvalue   of  there is one positive and 
one negative eigenvalue  of the Dirac operator  with 


D2 = 𝓛 = (
L[0] 0
0 L[1]) L[0], L[1]

μ L[0]
λ D

λ = ± μ



Chirality
Let us define 


obeying the anti commutator relation 


• Chirality:If  is an eigenvector of the Dirac operator with 
eigenvalue , i.e. if  then  is an eigenvector of 

 with eigenvalue 


• Indeed from the anti-commutator relation it follows that 

γ0 = (1 0
0 −1)

{D, γ0} = 0

Ψ = ( χ, ψ)⊤

λ DΨ = λΨ γ0Ψ = ( χ, − ψ)⊤

D −λ

Dγ0Ψ = − γ0DΨ = − λγ0Ψ



Eigenvectors of the Dirac operator

• It follows that the matrix of eigenvectors of the Dirac operator can be 
expressed as 


• where                    Indicates the left  and right singular vectors of the 
boundary operator and  are the matrices of the harmonic 
eigenvectors of  respectively.

Uharm
0 , Uharm

1
L[0], L[1]

Φ = (U[1] U[1] Uharm
0 0

V[1] −V[1] 0 Uharm
1 )

U[1], V[1]



Index of the Dirac operator

The index of the Dirac operator  is given 


by the Euler number  of the graph


D

χE

ind D = dim ker d − dim ker d* = χE

ind D = χE = N0 − N1

Indeed



Introducing an algebra

with

D = (
0 bB[1]

b⋆B⊤
[1] 0 )

b ∈ ℂ, |b | = 1

Dirac operator on a network

can be enriched by an algebra



Weighted and Normalised Dirac operator on graphs




Weighted Dirac operator on a network

with

 D̂ = (
0 B̄*[1]

B̄[1] 0 )

D̃2 = 𝓛 = (
L̃[0] 0

0 L̃[1])

B̄[1] = B⊤
[1] B̄*[1] = G[0]B[1]G−1

[1]

L̃[0] = B̄*[1]B̄[1], L̃[1] = B̄[1]B̄*[1]

with

F. Baccini, F. Geraci and G. Bianconi (2022)



Normalised Dirac operator

If the matrix ,  are the diagonal matrices with elements


 


The weighted Dirac operator is also called normalised Dirac operator and 
has eigenvalues bounded in absolute value by one

G−1
[1] G−1

[0]

G−1
[1](ℓ, ℓ) = wℓ /2

G−1
[0](r, r) = ∑

ℓ∈Er

wℓ

|λ | ≤ 1

F. Baccini, F. Geraci and G. Bianconi (2022)



Normalised Dirac operator of unweighted 
networks

If the weights of all the links are one, i.e.  we have


That the  matrices ,  are the diagonal matrices with elements


 


The normalised Dirac operator with spectrum satisfying 


 is given by 


wℓ = 1

G−1
[1] G−1

[0]

G−1
[1](ℓ, ℓ) = 1/2 G−1

[0](r, r) = kr

|λ | ≤ 1

F. Baccini, F. Geraci and G. Bianconi (2022)

 D̃ = (
0 K−1B[1]/2

B⊤
[1] 0 )



Symmetric Weighted Dirac operator on a network

with

 D̂ = (
0 B̄*[1]

B̄[1] 0 )

D̂2 = 𝓛 = (
L̂[0] 0

0 L̂[1])
B̄*[1] = G1/2

[0]B̄[1]G−1/2
[1] B̄[1] = G−1/2

[1] B̄⊤
[1]G

1/2
[0]

L̂[0] = B̄*[1]B̄[1], L̂[1] = B̄[1]B̄*[1]

with

F. Baccini, F. Geraci and G. Bianconi (2022)



Topological Dirac equation


G. Bianconi, 

Topological Dirac equation on networks and 

simplicial complexes

JPhys Complexity (2021) 



Topological spinor
On a network we consider the topological spinor


 


Characterising the dynamical state of the topological signals of 
the network, being a vector with a block structure formed by a 

0-cochain and a 1-cochain                                                     

.

Ψ = ( χ
ψ)

χ =

χ1
χ2
⋮
χN

, ψ =

ψℓ1

ψℓ2

⋮
ψℓL



Topological Dirac equation
The topological Dirac equation is then given by 


 

with Hamiltonian


  


Where    with anti-commutator 

i∂tΨ̃ = ℋΨ̃

ℋ = D + mβ

β = (1 0
0 −1) {D, β} = 0



Topological Dirac equation: Eingenstates

The topological Dirac equation is then given by 


 


Has solution   with  independent of time


if and only if


 


Proof: Substituting  into    we get


 thus this implies 

i∂tΨ̃ = ℋΨ̃

Ψ̃ = e−iEtΨ Ψ

EΨ = ℋΨ

Ψ̃ = e−iEtΨ i∂tΨ̃ = ℋΨ̃

i∂te−iEtΨ = Ee−iEtΨ = ℋe−iEtΨ EΨ = ℋΨ



Energy Eigenstates 
The energy eigenstates satisfy     


which leads to


      


 are respectively the singular vectors of  


with eigenvalue   and the energy   


is given by      

EΨ = ℋΨ

Eχ = B†ψ + mχ,
Eψ = Bχ − mψ

χ, ψ B

λ E

E = ± |λ |2 + m2



Sketch of the derivation
The eigenvalue problem      is equivalent to 


    


Let us re-order obtaining


  


Therefore


                                        This implies  

EΨ = ℋΨ

Eχ = bBψ + mχ,
Eψ = b⋆B⊤χ − mψ

(E − m)χ = bBψ,
(E + m)ψ = b⋆B⊤χ

(E − m)(E + m)χ = BB⊤χ = L[0] χ,

(E + m)(E − m)ψ = B⊤Bψ = Ldown
[1] ψ

E2 = m2 + |λ |2



For  there is symmetry between positive 
energy eigenstates and negative energy eigenstates. 

However the symmetry between positive energy 
states and negative energy states breaks down for 

 

The states at energy states at   
are localised on nodes and they have a degeneracy 

given by the Betti number  

The energy states   
are localised on links and they have a degeneracy 

given by the Betti number 

E2 > m2

|E | = m

E = m

β0

E = − m

β1

Matter-Antimatter asymmetry and homology



Eigenvectors of the Dirac equation
The eigenvectors associate to non-zero eigenvalues  of the Dirac operator  are





where  are the right and left singular vector of  corresponding to singular value  and  indicates the normalisation 
constants.


The eigenvectors associated to  of the topological Dirac equation are instead


 


Therefore the overall normalisation of the nodes signal changes with respect 


to the normalisation of the edge signal.

λ

ϕ[+]
λ = 𝒞 (uλ

vλ) ϕ[+]
λ = 𝒞 ( uλ

−vλ)
uλ, vλ B[1] λ 𝒞

E = ± m2 + λ2, λ ≠ 0

ϕ[+]
λ = 𝒞 (

uλ
b*λ*

|E | + m
vλ) ϕ[+]

λ = 𝒞 (
bλ

|E | + m
uλ

−vλ )



Eigenvectors of the Dirac equation
The harmonic eigenvectors associated to the zero eigenvalue  of the Dirac operator  are





where  are the harmonic eigenvector of  and  respectively


 


The eigenvectors associated to energies   of the topological Dirac equation are instead


 


With eigenstates of energy  having degeneracy  and the 


eigenstates of energy  having degeneracy 

λ = 0

ϕN
0 = (uh

0 ) ϕE
0 = ( 0

vh)
uh, vh L[0] L[1]

E = ± m

ϕ+
0 = (uh

0 ) ϕ−
0 = ( 0

vh)
E = m β0

E = − m β1



Dirac equation spectrum and eigenstate



Nambu-Jona Lasinio legacy



Mass of simple and higher-order networks

0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

β = 0.01A

B

C

β = 10

M0 =
g
𝒩 ∑

i=1

β2i +
g
𝒩 ∑

λ>0

M0

M2
0 + λ2

M1 =
g
𝒩 ∑

i=1

β2i+1 +
g
𝒩 ∑

λ>0

M1

M2
1 + λ2

The mass of  simple or  
higher-order networks  

depends  
on their geometry and topology

G. Bianconi The mass of simple and higher-order networks JPhysA (2023)

Gap equation



Combining the Dirac operator with algebra

Topological Dirac equation on 3 dimensional lattice

G. Bianconi, 

Topological Dirac equation on networks and simplicial complexes


JPhys Complexity (2021)


[Non-examinable]



Directional Dirac operator on  lattices

x-link  

y-link

(a) x-link  

y-link

z-link

(b)

On a lattice links have different directions 

The Directional Dirac operator induces a  
phase rotation of the topological signal depending on the direction of the links 



Introducing an algebra

with

D = (
0 bB[1]

b⋆B⊤
[1] 0 )

b ∈ ℂ, |b | = 1

Dirac operator on a network

can be enriched by an algebra



Topological spinor for 

3-dimensional  lattice

In order to treat every type of link differently  

by inducing different “rotations”of the topological spinor,  

in 3-d we need to consider the spinor  formed by two 0-cochains and two 1-cochains, i.e. 




with


                                                                


Ψ

Ψ = (Ξ
Ψ̂),

Ξ = (χ (1)

χ (2)), Ψ̂ = (ψ(1)

ψ(2))



Directional Boundary operators and Hodge Laplacians 

on the 3-dimensional  lattice

[B(w)]rℓ =
1 if ℓ = [s, r] and ℓ is a type  w−link

−1 if ℓ = [r, s] and ℓ is a type  w−link
0 otherwise

L(w)
[0] = B(w)B⊤

(w) L(w)
[1] = B⊤

(w)B(w)

L[0] = L(x)
[0] + L(y)

[0] + L(z)
[0]

We consider directional boundary operators only acting between nodes and w-type links

The directional Hodge Laplacians are given by 

The graph Laplacian is given by



Directional Dirac operators on 

3-dimensional  lattice

σ1 = (0 1
1 0), σ2 = (0 −i

i 0 ), σ3 = (1 0
0 −1) .

D(w) = (
0 ℬ(w)

ℬ†
(w) 0 )

ℬ(x) = σ1 ⊗ B(x), ℬ(y) = σ2 ⊗ B(y), ℬ(z) = σ3 ⊗ B(z),

In 3d the Directional Dirac operators are defined as 

with

where we make use of the Pauli matrices



Spatial directional Dirac operators 
The spatial directional Dirac operators 

  

are Hermitian  

and their square is given by the directional Laplacians 

D(w) = (
0 ℬ(w)

ℬ†
(w) 0 )

[D(w)]2 = ℒ(w) = (
I2 ⊗ L(w)

[0] 0

0 I2 ⊗ L(w)
[1] )



The Dirac operator on simplicial complexes




The exterior derivative on 
simplicial complexes

The exterior  derivative acts directly on the topological spinor  
in dimension n we have 

d =
0 0 0

B⊤
[1] 0 0

0 B⊤
[2] 0

, s =
s0
s1
s2

Exterior derivative operator Topological signal “spinor” 

s0
s1
s2

Node signal 
Link signal 
Triangle signal

s ∈ ⊕n
m=1 Cmd = ⊕n−1

m=0 δm

Thus for n=2, in matrix form we obtain



The Dirac operator on 
simplicial complexes

The Dirac operator allows  
to study interacting topological signals of different dimensions  

coexisting in the same network topology

D =

0 B[1] 0

B⊤
[1] 0 B[2]

0 B⊤
[2] 0

, s =
s0
s1
s2

Dirac operator Topological signal “spinor” 

s0
s1
s2

Node signal 
Link signal 
Triangle signal

D = d + d*
 Assuming a L2 norm between cochains we obtain



The action of the Dirac operator 

v [
1,
2]

t

[B
2w

+B
T 1
u]

[1
,2
]

[B
2T
v]

[1
,2
,3]

3

1

4 2

5

3

1

4 2

5

3

1

4 2

5a) b) c)

u [
2]

[B
1
v]

[2
]

t

w
[1
,2
,3
]

t

    , acts on              
D =

0 B[1] 0

B⊤
[1] 0 B[2]

0 B[2] 0
s =

s0
s1
s2

→ Ds =

B[1]s1

B⊤
[1]s0 + B[2]s2

B⊤
[2]s1

The Dirac operator allows cross-talking 

between signals of different dimension



Dirac decomposition

D =
n

∑
m=1

D[m]

where  


only couples -dimensional simplices 

to -dimensional simplices


Dirac decomposition   

 

D[m] = δm−1 + δ⋆
m−1

(m − 1)
m

D[m]D[m′￼] = D[m′￼]D[m] = 0 ∀m ≠ m′￼



Dirac decomposition for n=2

D = D[1] + D[2]

D[1] =
0 B[1] 0

B⊤
[1] 0 0
0 0 0

D[2] =
0 0 0
0 0 B[2]

0 B⊤
[2] 0

D2
[1] = 𝓛[1] =

L[0] 0 0

0 Ldown
[1] 0

0 0 0

D2
[2] = 𝓛[2] =

0 0 0
0 Lup

[1] 0

0 0 Ldown
[2]

Here 

 only couples node and link signals and 


only couples link and triangle signals

D[1]

D[2]



Dirac decomposition

Since the boundary of the boundary is null we obtain





which implies





D[1]D[2] = D[2]D[1] = 0

 ker(D[1]) ⊇  im(D[2])
 ker(D[2]) ⊇ im(D[1])



Dirac decomposition
Every topological signal can be decomposed in a unique way 

thanks to the Dirac decomposition





therefore every signals defined on nodes, links and triangles 
can be decomposed in a unique way as 

ℝN0+N1+N2 = im(D[1]) ⊕ ker(D) ⊕ im(D[2])

s = s[1] + s[2] + sharm
s[1] = D[1]D+

[1]s

s[2] = D[2]D+
[2]s

With



Eigenvalues of the Dirac operator

Due to the Dirac decomposition

the eigenvalues of the Dirac operator 


are the direct sum 

of the non-zero eigenvalues 


of  and of  

plus the zero eigenvalue 


with degeneracy  

D

D[1] D[2]

β0 + β1 + β2



Eigenvectors of the Dirac operator

Due to the Dirac decomposition

the eigenvectors of the Dirac operator 


are  the eigenvectors 

corresponding to non-zero eigenvalues 


of  or of  


r the harmonic eigenvectors of 




With  localised on nodes and links and 

 localised on links and triangles

D

D[1] D[2]

D
Φ = (Φ[1] Φ[2] Φharm)

Φ[1]

Φ[2]



Eigenvectors or the Dirac operator

In summary the eigenvectors of the Dirac operator 


defined on a simplicial complex of dimension 2 have the structure


Φ =
U[1] U[1] 0 0 Uharm

0 0 0
V[1] −V[1] U[2] U[2] 0 Uharm

1 0
0 0 V[2] −V[2] 0 0 Uharm

2



Topological Data analysis 

Persistent Dirac for molecular representations

JJ Wee, G. Bianconi, K. Xia (2023)




Dirac operator 

and


Dynamical systems

[Non examinable]



Coupling topological signals 
of different dimension



Dirac Synchronization 

on graphs

·Φ = Ω − σD̃ sin((D̃ − zγD̃2)Φ)

L. Calmon, J. Restrepo, J.J. Torres and G. Bianconi (2022) L. Calmon,S. Khrisnagopal, G. Bianconi (2023)

Dirac Synchronization allows to couple locally and 
topologically signals defined on nodes and links.  

Given  Dirac synchronisation obeys


• Node and links signals are not independent.      The 
order parameters depend on linear combinations of nodes 
and link signals


• The synchronization transition is discontinuous

Φ = (θ, ϕ)⊤



Dirac synchronization is explosive

on a fully connected network 



In the Dirac Synchronization the free dynamics of the 
synchronized state is localised on the links around


-dimensional holes (since we are in a network)





The free dynamics is localised on harmonic components


1

d⟨uharm, ϕ⟩
dt

= ⟨uharm, ω̂⟩



Dirac synchronisation on 
the fungi network

L. Calmon, J. Restrepo, J.J. Torres and G. Bianconi (2022) L. Calmon,S. Khrisnagopal, G. Bianconi (2023)



Global Dirac 
Synchronization

Consider a 2-dimensional cell complex whose dynamical state is encoded in the 
topological spinor 





Consider the uncoupled dynamics of identical oscillators placed on nodes, edges and 
2-cells


 


where 

X =
x(0)

x(1)

x(2)

·X = F(X) + DH(X)

F(X) =
f(x(0))
f(x(1))
f(x(2))

, H(X) =
h(x(0))
h(x(1))
h(x(2))

,



Dirac operator

D = γ[1]D[1] + γ[2]D[2]

In Dirac Global Synchronization the coupling 

between identical oscillators


 is captured by the Dirac operator 


where

 couples nodes with edges and 


 couples edges with two-cells

while the matrices  encode for the coupling constants 

D[1]

D[2]
γ[n]



Dirac operator and gamma matrices

D = γ[1]D[1] + γ[2]D[2]

where





And 





D[1] =
0 Id ⊗ B[1] 0

Id ⊗ B⊤
[1] 0 0

0 0 0

D[2] =
0 0 0
0 0 Id ⊗ B[2]

0 Id ⊗ B⊤
[2] 0

γ[1] =
γ(1)

0 ⊗ IN0
0 0

0 γ(1)
1 ⊗ IN1

0
0 0 0

γ[2] =

0 0 0
0 γ(2)

1 ⊗ IN1
0

0 0 γ(2)
2 ⊗ IN2



Global Dirac 
Synchronization

Global Dirac Synchronization is achieved on a 

square lattice tessellation of a torus and 


on a triangular tessellation of a weighted torus

Transient state                                  Globally synchronised state



Dynamical Turing patterns  
comprising three topological signals

• M

Muolo, Carletti Bianconi Chaos Solitons Fractals (2024)



The three way Dirac 
operator 

∂ = ( 0 I ⊗ B
I2 ⊗ B⊤ 0 ) γ = (

α ⊗ IN0
0

0 β ⊗ IN1) ∂ =
0 0 B

B⊤ 0 0
0 B⊤ 0

γ =

αuIN0
0 0

αvIN0
0 0

0 βuIN1
βuIN1

D = γ∂ =
0 0 αuB
0 0 αvB

βuB⊤ βuB⊤ 0

Treating three topological signal requires  
the three-way Dirac operator  

coupled with a non-trivial gamma matrix

Muolo, Carletti Bianconi Chaos Solitons Fractals (2024)



Dirac patterns are 
different!

Turing patterns                        Dirac patterns
·ϕ = F(ϕ) − σ𝓛ϕ ·ϕ = F(ϕ) − σDϕ

Muolo, Carletti Bianconi Chaos Solitons Fractals (2024)



Dirac Signal Processing

L. Calmon, M. Schaub and G. Bianconi  

Dirac signal processing of topological signals  

(2023)


+ noise
reconstruction

The Dirac operator allows us to filter out nodes and links signals jointly




Processing with the Dirac operator

Given a noisy topological signal defined on simplices of different dimension

   with  noise


The reconstructed signal is 

Found by  Minimising the Loss  


that jointly filters the signal with the Dirac operator:


 

s̃ = s + ϵ ϵ
̂s
𝓛

𝓛 = ∥s̃ − ̂s∥2
2 + γ ̂sT (D − EI)2 ̂s

  Hodge Laplacian kernel 

  Dirac kernel coupling signals of different dimension

m = 0
m ≠ 0



Processing with the Dirac operator

𝓛 = ∥s̃ − ̂s∥2
2 + γ ̂sTℛ ̂s

Possible choices for the regularisation term

̂sTℛ ̂s = ̂sT (D − EI)2 ̂ŝsTℛ ̂s = ̂sTD2 ̂s ̂sTℛ ̂s = ̂sT(D2 − zD3) ̂s



E =
s⊤Ds
s⊤s

Interpretation of the parameter m

The parameter E can be interpreted as 


Which allow us to interpret the regularisation as a 

minimization of the mean square error of the signal around E


The parameter E can be learned from data



Dirac signal processing on buoys data



Lesson V:

The Dirac operator 


on graphs and simplicial complexes

Dirac operator on graphs 
• Eigenvalues, Eigenvectors Chirality 
• Weighted and Normalised Dirac operator 
• Topological Dirac equation 
• Insights into the mathematical interpretation of gamma matrices 

Dirac operator on simplicial complexes 

Dirac operator in dynamical systems and signal processing 
• Dirac Synchronisation and Global Dirac Synchronization 
• Dirac Turing patterns 
• Dirac signal processing 



Higher-order structure and dynamics
Higher-order 

networks

Simplicial

 Topology

Simplicial

Geometry

Higher-order

dynamics

Combinatorial

Statistical

 Properties



Topological signals
Beyond the node centered description of  network dynamics 

The dynamical state of a simplicial complex includes  
node, edge, and higher-order topological signals
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Topological synchronisation

A. Millan, J. Torres and GB PRL 2020       T. Carletti, L. Giambagli and GB PRL 2023



Dirac equation spectrum and eigenstates

G. Bianconi  JPhys Complexity 2021



Higher-order
interac�ons

Nonlinear
dynamics

Topology

Theory of
complex systems

 Complexity challenge


